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1. Introduction

A nearly uncoupled Markov chain is a discrete chain whose states can be ordered
such that the transition matrix assumes the form

P11 P12 - Py
P2 P - Py

P= . . s (1)
Pa P2 - P

where all the off-diagonal blockB;; are small. Here each;; is ann; x n; matrix.
We set

€= max> IRyl @)

JF#

where|| * || is theoo-norm. Chains of this kind are used to model systems whose
states can be grouped into aggregates that are loosely connected to one another. They
have been addressed by many authors, see e.g. [1-4,9-11,13,14]. One reason why
nearly uncoupled Markov chains receive so much attention is that their stationary dis-
tributions are very sensitive to the perturbations in the transition matrices.'Lastd
77 be stationary distributions of transition matric®andP = P + F, respectively;
thatis,7" and7 " are row vectors satisfying

A P=x", T'P=7", 7l1=7"1=1,

wherel is the vector of all ones. According to the standard perturbation theory for
Markov chains, see e.g. [5,8],

Iz T =77 < 1A*IIF), ®)

whereA* is the group inverse of the matrik = I — P. Equality in (3) can be at-
tained for somé. It is shown in [15] that

1
|A*| > O (—) .
€

This means that small perturbations in the transition matrices of nearly uncoupled
Markov chains can result in large errors in their stationary distributions. The smaller
€ is, the more sensitive the stationary distributions are to the perturbations. However,
if the perturbatior has some special structure, the error bound (3) is often an over-
estimate. One typical example is thatifis a small entrywise relative perturbation
to P, then the entrywise relative errorin’ it causes must be small and independent
of any condition number, see [12,17,18].

In [20], Zhang studied a class of perturbations for nearly uncoupled Markov
chains to which their stationary distributions are insensitive. To state his result, we
partition F, 7T andz ' conformally withP as
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Fi1 Fi2 - Fi
Fi2 Fo2 - Fy
F = . . . b
Fri Fr2 - Frk
T T T 2T _ (aT AT
m o=[my,...,m ), wo=[m,...,T; ]

If the blocks of the perturbatiolf satisfy

IFiil <n and |Fjll <en, i# ], (4)
then under some regularity conditions, it is proved in [20] that
Iz" — 77|
- — <on. (5)
E

The quantityc in (5) is bounded from above astends to 0. However, the upper
bound forc is not discussed in [20]. Under the same assumption (4), Barlow [1]
bounded the error in another way and obtained
Iz " — 71|
T
wherec1 andc, are well defined. Both error bounds (5) and (6) demonstrate that
structured perturbations (4) cause small relative errors in the entire stationary distri-
bution.
The goal of this paper is to analyze the sensitivity of each aggregate distribution
nl.T to small relative blockwise perturbations in the transition ma@itnder the
assumption that

< c1n + coe, (6)

IFijll < nllPijll, i,j=21...,k, (7)
we will prove that
I =" . 2
Tl S2kf(e.mn+0m), i=1... .k (8)
i

Here f (e, ) is usually of moderate size. The error bound (8) shows that small rel-
ative blockwise perturbations iR induce small relative errors in each aggregate
distributionsT.

Under the stronger and yet reasonable assumption (7), our result improves that
of Barlow in two aspects. First, instead of that in the entire stationary distribution
7T, we bound the relative error in eaetl, and show that it is small however small
||nl.T|| is. This cannot be concluded from Barlow’s result (6) when s@mH is tiny
compared to others. We should mention that even under the regularity conditions in
[20], some aggregate distributions can be very small compared to others. To illustrate
this, consider the following example. LBtbe a 10x 10 block transition matrix of
the form
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A1 4E
E A
P= AE :
E A A4E
E A
where
05 05—« 0.1 0.1le
Az[o.s—e 05 } E=|:O.16 0.16}

and

e — 0.5 0.5 — 0.8¢ o 0.5 0.5 — 0.2¢
17 105-0.8¢ 0.5 © 227 105-0.2¢ 0.5 :

For anye, we have

3

T _ i-1 4i-1 _
ml =BT AT B = o

Therefore||z] || is tiny compared tdr,||. Small relative error inr T does not mean
small relative error imlT. In fact, assumption (4) is not enough to guarantee small
relative error inz]. For example, let perturbations 18£ and —10-*E be intro-
duced to tha10, 1) and(10, 9) blocks ofP, respectively. We have

I — 70

B ’
which showsr| has no accuracy at all.

The second improvement is that we drop the tegain error bound (6). This
makes our result consistent with the fact that the relative error should tend tp 0 as
tends to O.

As an application of our perturbation theory, we show that with appropriate stop-
ping criteria, iterative aggregation/disaggregation algorithms will achieve small
blockwise backward error and thus compute each aggregate distribution with high
relative accuracy.

This paper is organized as follows. In Section 2 we present some notation and
lemmas, especially we introduce a special decomposition of nonnegative matrices.
In Section 3 we use this decomposition to define the quantities involvgdeiny)
in (8). There we also analyze these quantities through the spectral analyzjs of
In Section 4 we investigate the structure of each block of the inverse of the ma-
trix I — P;, where P; is the principal submatrix o with theith row and column
of blocks removed. This structure will be exploited in Section 5 to get the error
bound (8). Finally we discuss the application in iterative aggregation/disaggregation
methods.



J. Xue / Linear Algebra and its Applications 326 (2001) 173-191 177

Throughout this paper we always assume fas a primitive matrix of order
n and for each diagonal block;;, the second largest eigenvalue (in real part) is
bounded away from 1.

2. Notation and lemmas

Throughout this papéf = || denotes theo-norm for matrices and column vectors
and the 1-norm for row vectors. L& be the matrix with entries;; andC be the
matrix with entries;;;. We denote byB| the matrix with entriegb;;| and letB < C
meanb;; < ¢;; for alli andj. For vectors|y| andy < x are defined in an analogous
way. We denote byt the column vector of all ones regardless of its dimension. For
transition matrice® as in (1), we denote by;, theith block row of P with P;;
deleted,P,; theith block column ofP with P;; deleted, and®; the principal matrix
of P obtained by deleting thieh block row and block column. We Ie}; denote the
stochastic complement @f; in P, that is,

Sii = Pii + Pl — P1) " Py, ©)

It was shown in [11] tha;; is stochastic and /|7 || is its stationary distribution.
Each nonnegative matri&k can be decomposed in the form

A=1"7 +R, (10)

whererT is a nonnegative row vector aitls a nonnegative matrix with at least one 0
in each column. In other words, tith entry ofr is the minimum of the entries in the
ith column of A. Decomposition (10) is called theolumn parallel decomposition
for nonnegative matrices. Based on (10), we definectiiamn parallel rateof a
nonnegative matriA as

IfrT10,
s(A)=Jo00 r'1=0, |[R||+#0,
0 r"1=|R| =0.

We now present two basic properties of tedumn parallel rate.

Lemma2.1. LetA; andA» be nonnegative matricethen
s(A1+ A2) < maxs(A1), s(A2)}.

Proof. Let A; andA2 have thecolumn parallel decompositions
Al = 1r;{ + R, A= 1){ + Ro,

respectively. Let:T be a nonnegative row vector whdsie entry is the smallest entry
of theith column ofR1 + R2. ThenAj + Az has thecolumn parallel decomposition

A1+ Ay =1(1+r2+u) +Ri+Ry—1u"
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from which it is straightforward to get that
s(A1+ A2) < max(s(A1), s(A2)). U

Lemma2.2. LetA1, Ao and S be nonnegative matrices of ordarsx p1, m2 x p2
and p1 x mp, respectively. Lefi; and A, have the column parallel decompositions

Al = 1rI + R1, A2= 1r; + Ro.
Set
_ rISl
ICETR
Then

s(A)(1+5(A2))
Vv

s(A15A2) <

Proof. We have
A1SAp = (r{ S1)1r] + 1r{ SRy + R1S1r) + R1SRa.

Letu' be the nonnegative row vector whds entry is the minimum of the entries
in theith column of matrile.SerT 4+ R1SR>. ThenA1S A2 has thecolumn parallel
decomposition

A1SA2 = 1r] + Rs,
where

rg = (r{SDr) +r{ SRy +u'
and

R3 = R1S1r] + R1SRy — 1u’.
Using the nonnegativity of matrices and norm inequalities we get

ral> (r{ SHry L= v(r{ D(r; 1IIS|| (12)
and

IRsll < [R1S1r3 || + [R1SR2ll < [SIIIRLIG3 1+ || R2l). (12)
Combining (11) and (12) completes the proof. O

These two lemmas will be used in Section 4 to investigatectitemn parallel
decompositiomf each block of 7 — P;)~L.

In the next section, we will bound (I — P;;)~1) through the spectral analysis of
P;;. To do this, we need the following lemma.

Lemma2.3. Let A be anm x m nonnegative matrix of the form = 1v" + Q,
wherevT is a nonnegative row vector afid || is small compared t¢v " ||. Note that
we do not assume that Q is nonnegativet
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ol
Tl
and let A have the column parallel decomposition
A=1"T+R.
If m§ < 1, then
m+Ds T
1—mé Tl

s(A) < < mé.

Proof. Letu' be the row vector whosi¢h entry is the minimum of the entries in the
ith column ofQ. Obviously,|«"| < ||Q||1T and thus

Tl < mlQll = mé|vT.

We have theolumn parallel decompositionf A with
rT=v'+u’ and R=0 - 1u".

Thus

IrT = oTl
- ~X
Tl T

i i

mé

and
IR QI+ llu™  (m+1)s
T Tl = u™ ~ 1—ms

s(A) = O

3. Spectral analysis of diagonal blocks

In this section we will define some quantities in terms of which we bound the
relative error (8). These quantities are somewhat complicated at first sight. However,
we will give insight into them through spectral analysis of the diagonal blégks

Let (I — P;;)~1 have thecolumn parallel decompositiotl — P;;)~% = 1T +
R;. We define

IRl . Tq +0
7 =s((I = Py~ =1l7u T (13)
i ii {OO riTl =0,
andforj # i
] Pyl .
%z{@m%l|mm¢a (14)
1 I Pijll = 0.

We now analyze; andg¢;; via the eigenpairs of — P;;.
Let y; be the Perron root of;; and IetviT be the corresponding left eigenvector
normalized so thaizl.Tl = 1. Let the columns otJ; form an orthonormal basis for
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the space orthogonal 19 and the columns of; form an orthonormal basis for the
space orthogonal tb. In other words,

Ulvi =0, Ului=1, J'1=0, JTJi=1
Let

Vi= iUy
Theniitis proved in [10] that

vlT -1
. =[1U;]

Wile=1, Vilz=I(5"U) 2 < /i,
where|| * |2 is the Euclidean norm. The following theorem boumdande;; .

and

Theorem 3.1. Let P; of ordern; be the th diagonal block of P in(1). Let B; =
VI — Pi)U;, 8 = |\U; B71VT| and lete be as in(2). For i # j, set

T
vi Pl'jl -
S IR0,

1 | Pijll = 0.
If 2n;6;¢ < 1, thent; in (13)is bounded as

2(n; + 1)8;e
T .
1-— 2n,~6,'e
Moreover if 2n;8;¢ < g;;, theng;; is bounded as

qij =

(15)

qij — 2nidi€

. 16
1+ 2n;é;€ ( )

¢ij =
Proof. We have

v 1-vi
ViT (] - Pll)[l Ul] = |:V1T(] _ Pii)l Bl} .
Then
1 1 T
(I —=Pi) " =——Lly; +0i,
-y
where

0; U;B7YVTC, and Ci=—( — Pl + A —y)l.

Cl-y
Since(I — P;;)1= Z#i P;j1 < €l, we have
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l-yi<e and |G| < 2e.
Therefore
QA= yIQill < 2ie.

Applying Lemma 2.3 gives (15). L& — P;;)~! have thecolumn parallel decom-
position(I — P;)~t = 1ro + R;. Applying Lemma 2.3 once more we have

] — @ = y)r] Il < 2ni8ie.
It follows that

_ vl.TPijl-l- ((1— yl-)rl.T — U,T)Pijl

¢)4.
Y A —yorl 1Pl
> qij — 2111‘31'6.
1+ 2n;é;€

The eigenvalues oB; are those off — P;; other than 1- y;. Throughout this
paper we always assume that the second largest eigenvalue (in real pBstiof
bounded away from 1. Thus the eigenvalueBpfire bounded away from 0. B;
is diagonalizable, that is, there exists a nonsingular matxich thatr —1B; T is a
diagonal matrix, ther 35_1” < |ITIIT~Y/IA], wherex is the smallest eigenvalue
(in modulus) ofB;. Even thoughl — P;; is nearly singular and(/ — P;;)~1| must
be very large, we can expect thgg; || is of moderate size. Noting thdU; |2 = 1
and||V; |2 < /n;, we can also expect thdf is of moderate size and sp is very
small. The quantitieg;; may be large ifv; is not nearly orthogonal t&;; 1. In fact,
let p; be the ratio between the largest and smallest entriagToﬂ'hen we have
gij < 1/(nip;). Thereforep;; can be bounded away from 0 as longeass not very
large.

Fort; asin (13) and;; as in (14), we define

T = 1@,%)1(( ;, and ¢ = 1r2ia<>]i(r}12x¢>u). a7
We still need two other quantities to bound the error (8). To get them, we first define
a set of stochastic matrices for each diagonal blBgk

¢ ={T|T >0, Tl=1, T — Pill < 2n+e}. (18)
Heree is asin (2) andy is as in (7). On each sdt;, we define
oi =supll(d = "Il | T € &;} (19)
and
TP
¥ij = inf { ””P’-’” | Ted;, vl =0T, vT1= 1} . (20)
ij

We can also shed light oy andv;; through the spectral analysis of diagonal
blocksP;;. Letv' be the stationary distribution @f € ®;,i.e.,v'T = v" andv'1 =
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1. According to the perturbation theory for the Perron vem;Blof P;;, see [6], if

2n + € is sufficiently small, therjv" — vT|| < 5i(2n + €). Heres; is the condition
number forvT in infinity norm. It is shown in [6] that the separation of the Perron
root y; and other eigenvalues df; has a bearing upos. Since the eigenvalues
other thany; are bounded away from 1, this separation is not small. We can expect
thats; is of moderate size. If; (2n + ¢) < ¢;;, then it is straightforward to get that

Vij = qij — si(2n + €),
which implies thaty;; can be bounded away from Ogf; is not small.
The following theorem bounds .
Theorem 3.2. Leto; be asin(19)and let
gle.n) = U VT I(L+ 25 + 5i(2n + €))(2n + €).
If 1B, g (e, n) < 1, then
(1 +si (Zn + UV IIB_lll
—IB; Yigte.

Proof. LetT e &; and(I — T)¥ be the group inverse df — T, Letv' be the sta-
tionary distribution ofT and IetvT be the left Perron vector dt;; normalized so that
v]1=1Setu’ =v] —oT. Choosmg

F;, = "l U;
and noting thafluT|| < 5;(2y + €) andv] U; = 0, we have
V(Ui + F) =0, |F<silUill(2n +e).

It follows that

ol 0

whereBi = Vl.T(I — T)(U; + F;). The group inversél — T)¥ can be expressed as
(I =17V = Ui + F)B 'V, (21)
The difference betweeB; andB; is
B; — Bi = Vi(Pii = T)(U; + Fy) + V(I — Pi) F.
Taking norms we obtain
I1Bi = Bill < U NIV;TI1(2n + €) (L + 2s; + 5:(2n + 3€)) = g(e., ).
which implies that
1B

172 < - . (22)
’ 1— 1B ligle, m)




J. Xue / Linear Algebra and its Applications 326 (2001) 173-191 183

Using (22) and taking norms in (21) we have
A+sip+ U VI

1— 1B ligle, m)
By the definition ofo;, we complete the proof. O

I —T)#| <

From Theorem 3.2, we can also expect thast of moderate size. We then define
o =maxo; and ¥ = min(m;n Vij). (23)
i i JF

In Section 5, we will bound the relative error (8) in termscotp, o andy.

4. Column parallel decomposition of blocks of the inverse

Since the transition matrif is irreducible, the matrix — P; is a nonsingular
M-matrix. In this section we will show thatr — P;)~* has a special structure. To be
precise, we partitiog/ — P;)~* conformally with ;. We will show that the columns
of each block are nearly parallel fo This property will be exploited to bound the
error (8) in next section.

Theorem 4.1. Let P; be the principal submatrix of P ifil) obtained by deleting
the ith block row and block columriLet r and¢ be as in(17).Let (I — P;)~! be
partitioned conformally withP; in the block form(I — P,)1 = [G;,]. If T < ¢,
then for all | and mthe column parallel rate of;,,, is bounded as
T
$(Gim) € ——. (24)
¢—1

Proof. We only prove this theorem fér= k. Fori +# k, it can be proved in a similar
way. WritingI — P; inthe forml — P, = D — E, where

] — P11
I — P>y
D=
L I— P11
0 P -+ P
Po1 0 oo Poga
E = . . . 9
| Pe-11 Pr-12 -~ 0
we have

(I—-P)'=U-D'E)y*pt=>) (D'E) DL
j=0
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Let (D~1E)/ D1 be partitioned conformally witt?; in the block form
(DLEY D7t =[G}
Obviously
o0
Gim =Y Gy} (25)
/=0

and the relation betwee(ﬁl(,-;) andGl(-r’;fl) can be described via

1 B .
Gl(ij ) = Z(l — Py) 1P1pG§,J,,)1.

pF#l
To prove that for all, mandj, we have

() i
s(G;)) < g (26)
we proceed by induction o Obviously, (26) holds forj = 0, sinceGl(?) = -
Pyt andGl(f,? = 0 for! # m. Suppose it holds foj. Setting

H) = (I = Py~ Py G,
and applying Lemma 2.2, we have
TAH /@) T
Ipm/ X - _
¢ -
From Lemma 2.1, it follows that
G+ T

Using (25) and Lemma 2.1 completes the proof. (J

One interesting consequence of this structurégf is that for a nonnegative
matrix B, ||BG;;|| is near to|| B||||G;;||. To prove this, we letG;; have thecolumn
parallel decompositiois;; = 1r" + R. We have

-1
Il > —— Gl

¢

and
o—T
IBGijll = IIBLr" + BR|| = | B|l|Ir"| > TIIBIIIIG,:;II- (27)

5. Main result

In this section we will bound the relative error (8). First we bound it in the case
that only one row of blocks d? is perturbed.
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Lemmab5.1. Let P be a transition matrix of a nearly uncoupled Markov chain of
form (1). Let each block; ; in the kth block row of P be perturbed by a small per-
turbation Fj; with [|F; || < nl|P;|l and let the blocks in other block rows be unper-
turbed Let P be the perturbed stochastic matrix with stationary distributioh=
(7], ..., %1 Set

140 +o0€)d

fle,n) = W,

wheret and ¢ are defined as in(17), 0 and > are defined as i23). Then for
sufficiently small and for all i,

T—7ZT

ll;

T < 2f(e, Mn + O@p). (28)

Proof. We only prove this lemma fdr= k. If / # k, then the proof is similar.
SetFi, = [Fi1, ..., Frr—1]. The stochastic complement 8f; in P is
Sik = Sk + Fik + Feue(I — P) 1Py
Since(I — P 1Pyl =1,
1 Fie (I = PO Putl]l < NFiel 2 < Y7 1 Faall < me
1<i<k—1
and then|Six — Six|l < n(1+ €). Let

T ~T

T T
vy = ]fr and 9] = k .
ll Iz

The vectors;k andd’ . are stationary distributions ¢ andSkk, respectively. With
o asin (23), we have

lod =01 < I = Se) ™ISk — Skl < oL+ e).
Let
=[vf Pl — P " 01 and 37 = [U] (P + Fia) (I — P) ™, 07 ]
be partitioned conformally witP as

=[v,....,vf1 and " =[7],...,9]1.
It was proved in [11] that
T ~T
T v ~T v
=—— and 7' = .
Tl 97|
We now bound the relative errors betweeﬁ andv T for 1 < j < k— 1. Letting

(I — P;)~1 be partitioned conformally with?; as(I — P) 1= [Glm]. Then

T il ol
v; = Z vy Plelj and v; = Z v (Py + Fr1) Gy
1<i<k—1 1<i<k—1
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Using (27) implies that
Wil= Y lv{ PuGijl

1<I<k—-1
-t T
>=5= 2 InPalliGyl
1<I<k—-1
(¢ —D)¥ T
> 2 IuPallGy].
1I<i<k—1

Thus

T_ T T_ T ~T
] =3TI< Y. Il =D PuGil+ Y. 15 FuGyl
I<i<k-1 I<i<k—1

<n@+a@+m+n > I PG|
1<i<k-1

<(f(e.mn + 0] .

Normalizingv™ and?™ to z T and7 ', respectively, leads to (28).00

Based on Lemma 5.1, we can bound the relative error (8) as follows. We change
the block rows ofP into that of P one row at a time. Each time with Lemma 5.1
we bound the relative errors between aggregate distributions of two subsequently
changed transition matrices, since they differ only in one row of blocks. By proper
permutation, we assume that the perturbation at each time is added to the last row of
blocks. Except for the first time, some blocRs in P, and P, have been changed
to P;j + Fij when we apply Lemma 5.1. This may perturb the quantities, o and
Y. It can be easily verified thaﬂkk is always in®;, which means that the quantities
o andy can be used in the whole process. We now show that the other two quantities
7 andg are only slightly perturbed.

From thecolumn parallel decompositiod — P;;)~1 = 1ro + R;, we obtain

I = P = T D1 D Pyl = 1T = R(X = Pi)|| < 2l|Ri + 1.
JF
It follows from

Il = | > Fyl| < Y IFjI <kn| D Pyl

JFi JF JF
that
IFii (I — Pi) Y =1 Filr| + FiiRi|
<G DIF + nllR:
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Sk + DIRill + ©n.

It is pointed out in [19] that we can expect thiR; || is of moderate size. Thus we
can expect that the noriiF;; (I — P;)~1| is small compared to 1. Then

(I —Pi—F) = - P) YU — Fu(d — Pi)™H71
=1 + R +Ci,

where

UGl _ IFad = PiD~H|
12T + Rl 1= [1F (I — Pi)~ Y|
=((2k + D[R] + k)n + O(?).

Let(I — Pi; — Fi;)~* have the decompositial — Pi; — Fi;)~* = 177 + R;. Ade-
tailed calculation shows that

~ IR

T = ?Tll < (1+O()ti 4 O(ne)

i

and
~T
~ r; (Pij + Fij)l
ij = —=————— = (1-0()¢ij — O(ne).
@Ry + Fil) N
Let
T =maXw, %),  ¢ij = min{dij, dij).
We define

T =maxs; and ¢ = min(ming;;). (29)
i i j#i
Obviously,7 andg are very near ta ande¢, respectively.

The following theorem is the main result of this paper.

Theorem 5.2._Let P be the transition matrix of a nearly uncoupled Markov chain of
form(1).Let P = P + F be a perturbed transition matrix of P with¥;; || < nll P;; ||
foralliandj. Let

i =[xf,..n01 and 7' =[7],.... 7]
be stationary distributions of P and, respectivelySet
- 140 +0e)
fle,n) = 7(]5
Vi —1)

wheres andy are as in(23), 7 and¢ are as in(29). If n is sufficiently smajlthen
forl<i <k
AR

T < 2k f(e, Mn + O(m?). (30)
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Proof. We change the block rows ¢¥ to those ofP in k steps, one block row

at each step. From Lemma 5.1 ahdnd¢ in (29), the relative error between the
aggregate distributions of two subsequently changed transition matrices is no more
than 2f (e, n)n + O(n%). Applying Lemma 5.k times gives (30). [J

Remark 5.1.

1. Theorem 5.2 demonstrates that the sensitifity, ) of the aggregate distribu-
tIOI’lSTr to blockwise perturbatioRf depends on four quantitigs ¢, o and.
We can expect that is small,o is of moderate size angl andy are bounded
away from 0 and s¢f (¢, n) is of moderate size, which implies that the aggregate
distributionswl.T are insensitive to small blockwise perturbatien

2. If each block is a scalar, i.e;; = 1for1<i <k,thent=0=0¢ =y = 1.
In this case, Theorem 5.2 is just the entrywise perturbation theory obtained in
[12,17,18].

3. EvenifP = P + F is not nonnegative, as long &s the normalized left eigen-
vector corresponding to eigenvalue 1 is nonnegative, the error bound (30) still
holds. We will employ this fact in the following section.

6. Application in iterative aggregation/disaggr egation methods

Iterative methods coupled with aggregation/disaggregation technique is an im-
portant tool to compute the stationary distribution of a large-scale nearly uncoupled
Markov chain, see [2,9,10]. In this section we will show that under a proper stopping
criteria, iterative aggregation/disaggregation methods can achieve small blockwise
relative backward error and thus can compute the stationary distribution accurately
in the sense of blockwise relative error.

Let P be asin (1) and = I — P. Suppose that we have a computed stationary
distribution

Al =[7,.... 7]
such that

FTA=r", 7T1=1, (31)
whererT is partitioned conformally wittP as

= [rir,r;,...,r;]

and eachrT satisfies the stopping criteria

Irf I <tollZT, i=12... k (32)
Eachnl. can be decomposed as

7 =170, i=12...k
wherev] is already available before the aggregation step wiile= [|7] II, 17, |I,

, I, II1is obtained in the aggregation step by solving the linear system
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y'B=0, y'1=1 (33)
Here
B =(bij), bij=-7 Pyl i+,
and
bii = —Zb,’j, i=12,...,k.
JFi
Suppose we solve (33) via GTH algorithm [7], which produces an accurate solution

in the sense of entrywise relative error. From the error analysis of O’'Cinneide [12],
we have

Si=Q+e)yi, i=12... .k,
where|e;| < 9k2u andu is the unit roundoff. Denote

71 =[y10], y205,..., u0] and FTA=F" =[7].73,...,7]1.
It is easy to show that

T1=0, i=12... k.

Moreover,

7Tl =7 — 0] (I — Pi) + ZGjYiﬁjTPji
J#
k
<IN+ 9%P2u > yjlbjil
j=1

= ||’V\1-T|| + 18k2uy;bi;

< (101 + 28U 17y
I — 5 ||
1— 92y !
We now turn to construct the backward error for the computed sol@tloDenoting
L g
1+e M1
I
1tep 112

Tre I
wherel,, is the identity matrix of ordex;, we have
7'DA=7F". (34)
We can attribute each residLTﬁl to the perturbation

1 =1

7
AT 1
ll7;"
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in theith diagonal block ofDA. Thus we can rewrite (34) as
AP+ F) =7,

where
F S pi i
L i
ij 1+e ij J
and
€ 1
Fii = [ —Py)— —17".
ii 1+€i( ll) ||7/T\IT|| i
Obviously,
F1=0
and

IFijll < (tol + 182u 4+ OW?) 1 Pjll, i,j=12 ...,k

With the stopping criteria (32), iterative aggregation/disaggregation methods can
achieve a small blockwise relative backward error. Applying Theorem 5.2 and Re-
mark 5.1, we know the computed stationary distributidnis accurate in the sense
of blockwise relative error.
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