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Abstract

Let P be the transition matrix of a nearly uncoupled Markov chain. The states can be
grouped into aggregates such thatP has the block formP = (Pij )

k
i,j=1, wherePii is square

andPij is small for i /= j. Let πT be the stationary distribution partitioned conformally as
πT = (πT

1 , . . . , π
T
k
). In this paper we bound the relative error in each aggregate distribu-

tion πT
i caused by small relative perturbations inPij . The error bounds demonstrate that

nearly uncoupled Markov chains usually lead to well-conditioned problems in the sense of
blockwise relative error. As an application, we show that with appropriate stopping criteria,
iterative aggregation/disaggregation algorithms will achieve such structured backward errors
and compute each aggregate distribution with high relative accuracy. © 2001 Elsevier Science
Inc. All rights reserved.
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1. Introduction

A nearly uncoupled Markov chain is a discrete chain whose states can be ordered
such that the transition matrix assumes the form

P =


P11 P12 · · · P1k
P12 P22 · · · P2k
...

...
...

Pk1 Pk2 · · · Pkk

 , (1)

where all the off-diagonal blocksPij are small. Here eachPij is anni × nj matrix.
We set

ε = max
1�i�k

∑
j /=i

‖Pij ‖, (2)

where‖ ∗ ‖ is the∞-norm. Chains of this kind are used to model systems whose
states can be grouped into aggregates that are loosely connected to one another. They
have been addressed by many authors, see e.g. [1–4,9–11,13,14]. One reason why
nearly uncoupled Markov chains receive so much attention is that their stationary dis-
tributions are very sensitive to the perturbations in the transition matrices. LetπT and
π̂T be stationary distributions of transition matricesP andP̂ = P + F , respectively;
that is,πT andπ̂T are row vectors satisfying

πTP = πT, π̂TP̂ = π̂T, πT1 = π̂T1 = 1,

where1 is the vector of all ones. According to the standard perturbation theory for
Markov chains, see e.g. [5,8],

‖πT − π̂T‖ � ‖A#‖‖F‖, (3)

whereA# is the group inverse of the matrixA = I − P. Equality in (3) can be at-
tained for someF. It is shown in [15] that

‖A#‖ � O

(
1

ε

)
.

This means that small perturbations in the transition matrices of nearly uncoupled
Markov chains can result in large errors in their stationary distributions. The smaller
ε is, the more sensitive the stationary distributions are to the perturbations. However,
if the perturbationF has some special structure, the error bound (3) is often an over-
estimate. One typical example is that ifF is a small entrywise relative perturbation
to P, then the entrywise relative error inπT it causes must be small and independent
of any condition number, see [12,17,18].

In [20], Zhang studied a class of perturbations for nearly uncoupled Markov
chains to which their stationary distributions are insensitive. To state his result, we
partitionF, πT andπ̂T conformally withP as
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F =


F11 F12 · · · F1k
F12 F22 · · · F2k
...

...
...

Fk1 Fk2 · · · Fkk

 ,

πT = [πT
1 , . . . , π

T
k ], π̂T = [π̂T

1 , . . . , π̂
T
k ].

If the blocks of the perturbationF satisfy

‖Fii‖ � η and ‖Fij ‖ � εη, i /= j, (4)

then under some regularity conditions, it is proved in [20] that

‖πT − π̂T‖
‖πT‖ � cη. (5)

The quantityc in (5) is bounded from above asε tends to 0. However, the upper
bound forc is not discussed in [20]. Under the same assumption (4), Barlow [1]
bounded the error in another way and obtained

‖πT − π̂T‖
‖πT‖ � c1η + c2ε, (6)

wherec1 andc2 are well defined. Both error bounds (5) and (6) demonstrate that
structured perturbations (4) cause small relative errors in the entire stationary distri-
bution.

The goal of this paper is to analyze the sensitivity of each aggregate distribution
πT
i to small relative blockwise perturbations in the transition matrixP. Under the

assumption that

‖Fij ‖ � η‖Pij ‖, i, j = 1, . . . , k, (7)

we will prove that

‖πT
i − π̂i

T‖
‖πT

i ‖ � 2kf̄ (ε, η)η + O(η2), i = 1, . . . , k. (8)

Heref̄ (ε, η) is usually of moderate size. The error bound (8) shows that small rel-
ative blockwise perturbations inP induce small relative errors in each aggregate
distributionπT

i .

Under the stronger and yet reasonable assumption (7), our result improves that
of Barlow in two aspects. First, instead of that in the entire stationary distribution
πT, we bound the relative error in eachπT

i , and show that it is small however small
‖πT

i ‖ is. This cannot be concluded from Barlow’s result (6) when some‖πT
i ‖ is tiny

compared to others. We should mention that even under the regularity conditions in
[20], some aggregate distributions can be very small compared to others. To illustrate
this, consider the following example. LetP be a 10× 10 block transition matrix of
the form
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P =



A1 4E

E A
. . .

. . .
. . . 4E
E A 4E

E A2

 ,

where

A =
[

0.5 0.5 − ε

0.5 − ε 0.5

]
, E =

[
0.1ε 0.1ε
0.1ε 0.1ε

]
and

A1 =
[

0.5 0.5 − 0.8ε
0.5 − 0.8ε 0.5

]
, A2 =

[
0.5 0.5 − 0.2ε

0.5 − 0.2ε 0.5

]
.

For anyε, we have

πT
i = β[4i−1, 4i−1], β = 3

2(410 − 1)
.

Therefore,‖πT
1 ‖ is tiny compared to‖πT

10‖. Small relative error inπT does not mean
small relative error inπT

1 . In fact, assumption (4) is not enough to guarantee small
relative error inπT

1 . For example, let perturbations 10−4E and−10−4E be intro-
duced to the(10,1) and(10,9) blocks ofP, respectively. We have

‖πT
1 − π̃T

1 ‖
‖πT

1 ‖ ≈ 8.7,

which showsπT
1 has no accuracy at all.

The second improvement is that we drop the termc2ε in error bound (6). This
makes our result consistent with the fact that the relative error should tend to 0 asη

tends to 0.
As an application of our perturbation theory, we show that with appropriate stop-

ping criteria, iterative aggregation/disaggregation algorithms will achieve small
blockwise backward error and thus compute each aggregate distribution with high
relative accuracy.

This paper is organized as follows. In Section 2 we present some notation and
lemmas, especially we introduce a special decomposition of nonnegative matrices.
In Section 3 we use this decomposition to define the quantities involved inf̄ (ε, η)

in (8). There we also analyze these quantities through the spectral analysis ofPii .

In Section 4 we investigate the structure of each block of the inverse of the ma-
trix I − Pi, wherePi is the principal submatrix ofP with the ith row and column
of blocks removed. This structure will be exploited in Section 5 to get the error
bound (8). Finally we discuss the application in iterative aggregation/disaggregation
methods.
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Throughout this paper we always assume thatP is a primitive matrix of order
n and for each diagonal blockPii , the second largest eigenvalue (in real part) is
bounded away from 1.

2. Notation and lemmas

Throughout this paper‖ ∗ ‖ denotes the∞-norm for matrices and column vectors
and the 1-norm for row vectors. LetB be the matrix with entriesbij andC be the
matrix with entriescij . We denote by|B| the matrix with entries|bij | and letB � C

meanbij � cij for all i andj. For vectors,|y| andy � x are defined in an analogous
way. We denote by1 the column vector of all ones regardless of its dimension. For
transition matricesP as in (1), we denote byPi∗ the ith block row ofP with Pii
deleted,P∗i the ith block column ofP with Pii deleted, andPi the principal matrix
of P obtained by deleting theith block row and block column. We letSii denote the
stochastic complement ofPii in P, that is,

Sii = Pii + Pi∗(I − Pi)
−1P∗i . (9)

It was shown in [11] thatSii is stochastic andπT
i /‖πT

i ‖ is its stationary distribution.
Each nonnegative matrixA can be decomposed in the form

A = 1rT + R, (10)

whererT is a nonnegative row vector andR is a nonnegative matrix with at least one 0
in each column. In other words, theith entry ofr is the minimum of the entries in the
ith column ofA. Decomposition (10) is called thecolumn parallel decomposition
for nonnegative matrices. Based on (10), we define thecolumn parallel rateof a
nonnegative matrixA as

s(A) =


‖R‖
rT1 rT1 /= 0,

∞ rT1 = 0, ‖R‖ /= 0,

0 rT1 = ‖R‖ = 0.

We now present two basic properties of thecolumn parallel rate.

Lemma 2.1. LetA1 andA2 be nonnegative matrices. Then

s(A1 + A2) � max{s(A1), s(A2)}.

Proof. LetA1 andA2 have thecolumn parallel decompositions

A1 = 1rT
1 + R1, A2 = 1rT

2 + R2,

respectively. LetuT be a nonnegative row vector whoseith entry is the smallest entry
of theith column ofR1 + R2. ThenA1 + A2 has thecolumn parallel decomposition

A1 + A2 = 1(r1 + r2 + u)T + R1 + R2 − 1uT
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from which it is straightforward to get that

s(A1 + A2) � max(s(A1), s(A2)). �

Lemma 2.2. LetA1, A2 and S be nonnegative matrices of ordersm1 × p1, m2 × p2
andp1 ×m2, respectively. LetA1 andA2 have the column parallel decompositions

A1 = 1rT
1 + R1, A2 = 1rT

2 + R2.

Set

ν = rT
1 S1

rT
1 1‖S‖ .

Then

s(A1SA2) � s(A1)(1 + s(A2))

ν
.

Proof. We have

A1SA2 = (rT
1 S1)1rT

2 + 1rT
1 SR2 + R1S1rT

2 + R1SR2.

Let uT be the nonnegative row vector whoseith entry is the minimum of the entries
in theith column of matrixR1S1rT

2 + R1SR2. ThenA1SA2 has thecolumn parallel
decomposition

A1SA2 = 1rT
3 + R3,

where

rT
3 = (rT

1 S1)rT
2 + rT

1 SR2 + uT

and

R3 = R1S1rT
2 + R1SR2 − 1uT.

Using the nonnegativity of matrices and norm inequalities we get

rT
3 1 � (rT

1 S1)rT
2 1 = ν(rT

1 1)(rT
2 1)‖S‖ (11)

and

‖R3‖ � ‖R1S1rT
2 ‖ + ‖R1SR2‖ � ‖S‖‖R1‖(rT

2 1 + ‖R2‖). (12)

Combining (11) and (12) completes the proof. �

These two lemmas will be used in Section 4 to investigate thecolumn parallel
decompositionof each block of(I − Pi)

−1.

In the next section, we will bounds((I − Pii)
−1) through the spectral analysis of

Pii . To do this, we need the following lemma.

Lemma 2.3. Let A be anm×m nonnegative matrix of the formA = 1vT +Q,

wherevT is a nonnegative row vector and‖Q‖ is small compared to‖vT‖. Note that
we do not assume that Q is nonnegative. Let
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δ = ‖Q‖
‖vT‖

and let A have the column parallel decomposition

A = 1rT + R.

If mδ < 1, then

s(A) � (m+ 1)δ

1 −mδ
and

‖rT − vT‖
‖vT‖ � mδ.

Proof. LetuT be the row vector whoseith entry is the minimum of the entries in the
ith column ofQ. Obviously,|uT| � ‖Q‖1T and thus

‖uT‖ � m‖Q‖ = mδ‖vT‖.
We have thecolumn parallel decompositionof A with

rT = vT + uT and R = Q− 1uT.

Thus

‖rT − vT‖
‖vT‖ = ‖uT‖

‖vT‖ � mδ

and

s(A) = ‖R‖
‖rT‖ � ‖Q‖ + ‖uT‖

‖vT‖ − ‖uT‖ � (m+ 1)δ

1 −mδ
. �

3. Spectral analysis of diagonal blocks

In this section we will define some quantities in terms of which we bound the
relative error (8). These quantities are somewhat complicated at first sight. However,
we will give insight into them through spectral analysis of the diagonal blocksPii .

Let (I − Pii)
−1 have thecolumn parallel decomposition(I − Pii)

−1 = 1rT
i +

Ri. We define

τi = s((I − Pii)
−1) =

{ ‖Ri‖
‖rT
i 1‖ rT

i 1 /= 0,

∞ rT
i 1 = 0,

(13)

and forj /= i

φij =
{

rT
i Pij 1

(rT
i 1)‖Pij ‖ ‖Pij‖ /= 0,

1 ‖Pij‖ = 0.
(14)

We now analyzeτi andφij via the eigenpairs ofI − Pii .
Let γi be the Perron root ofPii and letvT

i be the corresponding left eigenvector
normalized so thatvT

i 1 = 1. Let the columns ofUi form an orthonormal basis for
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the space orthogonal tovi and the columns ofJi form an orthonormal basis for the
space orthogonal to1. In other words,

UT
i vi = 0, UT

i Ui = I, J T
i 1 = 0, J T

i Ji = I.

Let

Vi = Ji(J
T
i Ui)

−T.

Then it is proved in [10] that[
vT
i

V T
i

]−1

= [1 Ui]

and

‖Ui‖2 = 1, ‖Vi‖2 = ‖(J T
i Ui)

−1‖2 � √
ni,

where‖ ∗ ‖2 is the Euclidean norm. The following theorem boundsτi andφij .

Theorem 3.1. Let Pii of orderni be the ith diagonal block of P in(1). Let Bi =
V T
i (I − Pii)Ui, δi = ‖UiB−1

i V T
i ‖ and letε be as in(2). For i /= j, set

qij =

vT
i Pij 1
‖Pij ‖ ‖Pij ‖ /= 0,

1 ‖Pij ‖ = 0.
.

If 2niδiε < 1, thenτi in (13) is bounded as

τi � 2(ni + 1)δiε

1 − 2niδiε
. (15)

Moreover, if 2niδiε � qij , thenφij is bounded as

φij � qij − 2niδiε

1 + 2niδiε
. (16)

Proof. We have[
vT
i

V T
i

]
(I − Pii)[1 Ui] =

[
1 − γi

V T
i (I − Pii)1 Bi

]
.

Then

(I − Pii)
−1 = 1

1 − γi
1vT

i +Qi,

where

Qi = 1

1 − γi
UiB

−1
i V T

i Ci and Ci = −(I − Pii)1vT
i + (1 − γi)I.

Since(I − Pii)1 = ∑
j /=i Pij1 � ε1, we have
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1 − γi � ε and ‖Ci‖ � 2ε.

Therefore

(1 − γi)‖Qi‖ � 2δiε.

Applying Lemma 2.3 gives (15). Let(I − Pii)
−1 have thecolumn parallel decom-

position(I − Pii)
−1 = 1rT

i + Ri. Applying Lemma 2.3 once more we have

‖vT
i − (1 − γi)r

T
i ‖ � 2niδiε.

It follows that

φij = vT
i Pij1 + ((1 − γi)r

T
i − vT

i )Pij 1

(1 − γi)r
T
i 1‖Pij ‖

� qij − 2niδiε

1 + 2niδiε
. �

The eigenvalues ofBi are those ofI − Pii other than 1− γi. Throughout this
paper we always assume that the second largest eigenvalue (in real part) ofPii is
bounded away from 1. Thus the eigenvalues ofBi are bounded away from 0. IfBi
is diagonalizable, that is, there exists a nonsingular matrixT such thatT −1BiT is a
diagonal matrix, then‖B−1

i ‖ � ‖T ‖‖T −1‖/|λ|, whereλ is the smallest eigenvalue
(in modulus) ofBi. Even thoughI − Pii is nearly singular and‖(I − Pii)

−1‖ must
be very large, we can expect that‖Bi‖ is of moderate size. Noting that‖Ui‖2 = 1
and‖Vi‖2 � √

ni, we can also expect thatδi is of moderate size and soτi is very
small. The quantitiesqij may be large ifvi is not nearly orthogonal toPij 1. In fact,
let ρi be the ratio between the largest and smallest entries ofvT

i . Then we have
qij � 1/(niρi). Thereforeφij can be bounded away from 0 as long asρi is not very
large.

For τi as in (13) andφij as in (14), we define

τ = max
1�i�k

τi and φ = max
1�i�k

(max
j /=i φij ). (17)

We still need two other quantities to bound the error (8). To get them, we first define
a set of stochastic matrices for each diagonal blockPii

�i = {T | T � 0, T 1 = 1, ‖T − Pii‖ � 2η + ε}. (18)

Hereε is as in (2) andη is as in (7). On each set�i , we define

σi = sup{‖(I − T )#‖ | T ∈ �i} (19)

and

ψij = inf

{
vTPij 1
‖Pij ‖

∣∣ T ∈ �i , v
T = vTT , vT1 = 1

}
. (20)

We can also shed light onσi andψij through the spectral analysis of diagonal
blocksPii . LetvT be the stationary distribution ofT ∈ �i , i.e.,vTT = vT andvT1 =
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1. According to the perturbation theory for the Perron vectorvT
i of Pii , see [6], if

2η+ ε is sufficiently small, then‖vT − vT
i ‖ � si(2η + ε). Heresi is the condition

number forvT
i in infinity norm. It is shown in [6] that the separation of the Perron

root γi and other eigenvalues ofPii has a bearing uponsi . Since the eigenvalues
other thanγi are bounded away from 1, this separation is not small. We can expect
thatsi is of moderate size. Ifsi(2η + ε) < qij , then it is straightforward to get that

ψij � qij − si (2η + ε),

which implies thatψij can be bounded away from 0 ifqij is not small.
The following theorem boundsσi .

Theorem 3.2. Letσi be as in(19)and let

g(ε, η) = ‖Ui‖‖V T
i ‖(1 + 2si + si (2η+ ε))(2η+ ε).

If ‖B−1
i ‖g(ε, η) < 1, then

σi �
(1 + si (2η + ε))‖Ui‖‖V T

i ‖‖B−1
i ‖

1 − ‖B−1
i ‖g(ε, η) .

Proof. Let T ∈ �i and(I − T )# be the group inverse ofI − T , Let vT be the sta-
tionary distribution ofT and letvT

i be the left Perron vector ofPii normalized so that
vT
i 1 = 1. SetuT = vT

i − vT. Choosing

Fi = 1uTUi

and noting that‖uT‖ � si(2η + ε) andvT
i Ui = 0, we have

vT(Ui + Fi) = 0, ‖Fi‖ � si‖Ui‖(2η + ε).

It follows that[
vT

V T
i

]
(I − T )[1 Ui + Fi ] =

[
0

B̂i

]
,

whereB̂i = V T
i (I − T )(Ui + Fi). The group inverse(I − T )# can be expressed as

(I − T )# = (Ui + Fi)B̂
−1
i V T

i . (21)

The difference betweenBi andB̂i is

B̂i − Bi = Vi(Pii − T )(Ui + Fi)+ V T
i (I − Pii)Fi .

Taking norms we obtain

‖B̂i − Bi‖ � ‖Ui‖‖V T
i ‖(2η + ε)(1 + 2si + si (2η + 3ε)) = g(ε, η),

which implies that

‖B̂−1
i ‖ �

‖B−1
i ‖

1 − ‖B−1
i ‖g(ε, η) . (22)
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Using (22) and taking norms in (21) we have

‖(I − T )#‖ �
(1 + si(2η + ε))‖Ui‖‖V T

i ‖‖B−1
i ‖

1 − ‖B−1
i ‖g(ε, η) .

By the definition ofσi, we complete the proof. �

From Theorem 3.2, we can also expect thatσi is of moderate size. We then define

σ = max
i
σi and ψ = min

i
(min
j /=i ψij ). (23)

In Section 5, we will bound the relative error (8) in terms ofτ, φ, σ andψ.

4. Column parallel decomposition of blocks of the inverse

Since the transition matrixP is irreducible, the matrixI − Pi is a nonsingular
M-matrix. In this section we will show that(I − Pi)

−1 has a special structure. To be
precise, we partition(I − Pi)

−1 conformally withPi.We will show that the columns
of each block are nearly parallel to1. This property will be exploited to bound the
error (8) in next section.

Theorem 4.1. Let Pi be the principal submatrix of P in(1) obtained by deleting
the ith block row and block column. Let τ andφ be as in(17). Let (I − Pi)

−1 be
partitioned conformally withPi in the block form(I − Pi)

−1 = [Glm]. If τ < φ,

then for all l and m, the column parallel rate ofGlm is bounded as

s(Glm) � τ

φ − τ
. (24)

Proof. We only prove this theorem fori = k. Fori /= k, it can be proved in a similar
way. WritingI − Pi in the formI − Pi = D − E, where

D =


I − P11

I − P22
...

I − Pk−1,k−1



E =


0 P12 · · · P1,k−1
P21 0 · · · P2,k−1
...

...
...

Pk−1,1 Pk−1,2 · · · 0

 ,

we have

(I − Pi)
−1 = (I −D−1E)−1D−1 =

∞∑
j=0

(D−1E)jD−1.
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Let (D−1E)jD−1 be partitioned conformally withPi in the block form

(D−1E)jD−1 = [G(j)

lm ].
Obviously

Glm =
∞∑
j=0

G
(j)
lm (25)

and the relation betweenG(j)
lm andG(j+1)

lm can be described via

G
(j+1)
lm =

∑
p /=l

(I − Pll)
−1PlpG

(j)
pm.

To prove that for alll, mandj, we have

s(G
(j)
lm ) � τ

φ − τ
, (26)

we proceed by induction onj. Obviously, (26) holds forj = 0, sinceG(0)
ll = (I −

Pll)
−1 andG(0)

lm = 0 for l /= m. Suppose it holds forj. Setting

H
(j)

lpm = (I − Pll)
−1PlpG

(j)
pm

and applying Lemma 2.2, we have

s(H
(j)
lpm) � τ (1 + (τ/(φ − τ ))

φ
= τ

φ − τ
.

From Lemma 2.1, it follows that

s(G
(j+1)
lm ) � τ

φ − τ
.

Using (25) and Lemma 2.1 completes the proof. �

One interesting consequence of this structure ofGij is that for a nonnegative
matrix B, ‖BGij ‖ is near to‖B‖‖Gij ‖. To prove this, we letGij have thecolumn
parallel decompositionGij = 1rT + R. We have

‖rT‖ � φ − τ

φ
‖Gij ‖

and

‖BGij ‖ = ‖B1rT + BR‖ � ‖B‖‖rT‖ � φ − τ

φ
‖B‖‖Gij ‖. (27)

5. Main result

In this section we will bound the relative error (8). First we bound it in the case
that only one row of blocks ofP is perturbed.
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Lemma 5.1. Let P be a transition matrix of a nearly uncoupled Markov chain of
form (1). Let each blockPl,i in the lth block row of P be perturbed by a small per-
turbationFli with ‖Fli‖ � η‖Pli‖ and let the blocks in other block rows be unper-
turbed. Let P̃ be the perturbed stochastic matrix with stationary distributionπ̃T =
[π̃T

1 , . . . , π̃
T
k ]. Set

f (ε, η) = (1 + σ + σε)φ

ψ(φ − τ )
,

whereτ and φ are defined as in(17), σ andψ are defined as in(23). Then for
sufficiently smallη and for all i,

‖πT
i − π̃T

i ‖
‖πT

i ‖ � 2f (ε, η)η + O(η2). (28)

Proof. We only prove this lemma forl = k. If l /= k, then the proof is similar.
SetFk∗ = [Fk1, . . . , Fkk−1]. The stochastic complement of̃Pkk in P̃ is

S̃kk = Skk + Fkk + Fk∗(I − Pk)
−1P∗k.

Since(I − Pk)
−1P∗k1 = 1,

‖Fk∗(I − Pk)
−1P∗k‖ � ‖|Fk∗|1‖ �

∑
1�i�k−1

‖Fki‖ � ηε,

and then‖Skk − S̃kk‖ � η(1 + ε). Let

vT
k = πT

k

‖πT
k ‖ and ṽT

k = π̃T
k

‖π̃T
k ‖ .

The vectorsvT
k andṽT

k are stationary distributions ofSkk andS̃kk, respectively. With
σ as in (23), we have

‖vT
k − ṽT

k ‖ � ‖(I − Skk)
#‖‖Skk − S̃kk‖ � ση(1 + ε).

Let

vT = [vT
k Pk∗(I − Pk)

−1, vT
k ] and ṽT = [̃vT

k (Pk∗ + Fk∗)(I − Pk)
−1, ṽT

k ]
be partitioned conformally withP as

vT = [vT
1 , . . . , v

T
k ] and ṽT = [̃vT

1 , . . . , ṽ
T
k ].

It was proved in [11] that

πT = vT

‖vT‖ and π̃T = ṽT

‖̃vT‖ .

We now bound the relative errors betweenvT
j and ṽT

j for 1 � j � k − 1. Letting

(I − Pi)
−1 be partitioned conformally withPi as(I − Pi)

−1 = [Glm]. Then

vT
j =

∑
1�l�k−1

vT
k PklGlj and ṽT

j =
∑

1�l�k−1

ṽT
k (Pkl + Fk1)Glj .
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Using (27) implies that

‖vT
j ‖=

∑
1�l�k−1

‖vT
k PklGlj‖

� φ − τ

φ

∑
1�l�k−1

‖vT
k Pkl‖‖Glj‖

� (φ − τ )ψ

φ

∑
1�l�k−1

‖vT
k ‖‖Pkl‖‖Glj‖.

Thus

‖vT
j − ṽT

j ‖�
∑

1�l�k−1

‖(vT
k − ṽT

k )PklGlj‖ +
∑

1�l�k−1

‖̃vT
k FklGlj‖

�(ση(1 + ε)(1 + η)+ η)
∑

1�l�k−1

‖vT
k ‖‖Pkl‖‖Glj‖

�(f (ε, η)η + O(η2))‖vT
j ‖.

NormalizingvT andṽT to πT andπ̃T, respectively, leads to (28).�

Based on Lemma 5.1, we can bound the relative error (8) as follows. We change
the block rows ofP into that of P̃ one row at a time. Each time with Lemma 5.1
we bound the relative errors between aggregate distributions of two subsequently
changed transition matrices, since they differ only in one row of blocks. By proper
permutation, we assume that the perturbation at each time is added to the last row of
blocks. Except for the first time, some blocksPij in Pk andP∗k have been changed
toPij + Fij when we apply Lemma 5.1. This may perturb the quantitiesτ, φ, σ and
ψ. It can be easily verified that̂Skk is always in�k, which means that the quantities
σ andψ can be used in the whole process. We now show that the other two quantities
τ andφ are only slightly perturbed.

From thecolumn parallel decomposition(I − Pii)
−1 = 1rT

i + Ri, we obtain

‖(I − Pii)1rT
i ‖ = (rT

i 1)‖
∑
j /=i

Pij 1‖ = ‖I − Ri(I − Pii)‖ � 2‖Ri‖ + 1.

It follows from

‖Fii1‖ =
∥∥∥∥∥∥
∑
j /=i

Fij1

∥∥∥∥∥∥ �
∑
j /=i

‖Fij ‖ � kη

∥∥∥∥∥∥
∑
j /=i

Pij 1

∥∥∥∥∥∥
that

‖Fii(I − Pii)
−1‖=‖Fii1rT

i + FiiRi‖
�(rT

i 1)‖Fii‖ + η‖Ri‖



J. Xue / Linear Algebra and its Applications 326 (2001) 173–191 187

�((2k + 1)‖Ri‖ + k)η.

It is pointed out in [19] that we can expect that‖Ri‖ is of moderate size. Thus we
can expect that the norm‖Fii (I − Pii)

−1‖ is small compared to 1. Then

(I − Pii − Fii)
−1=(I − Pii)

−1(I − Fii(I − Pii)
−1)−1

=1rT
i + Ri + Ci,

where

‖Ci‖
‖1rT

i + Ri‖
� ‖Fii(I − Pii)

−1‖
1 − ‖Fii (I − Pii)−1‖

=((2k + 1)‖R‖ + k)η + O(η2).

Let (I − Pii − Fii)
−1 have the decomposition(I − Pii − Fii)

−1 = 1̃rT
i + R̃i . A de-

tailed calculation shows that

τ̃i = ‖R̃i‖
r̃T
i 1

� (1 + O(η))τi + O(ηε)

and

φ̃ij = r̃T
i (Pij + Fij )1

(̃rT
i 1‖Pij + Fij ‖) � (1 − O(η))φij − O(ηε).

Let

τ̄i = max{τi, τ̃i}, φ̄ij = min{φij , φ̃ij }.
We define

τ̄ = max
i
τ̄i and φ̄ = min

i
(min
j /=i φ̄ij ). (29)

Obviously,τ̄ andφ̄ are very near toτ andφ, respectively.
The following theorem is the main result of this paper.

Theorem 5.2. Let P be the transition matrix of a nearly uncoupled Markov chain of
form (1).Let P̃ = P + F be a perturbed transition matrix of P with‖Fij ‖ � η‖Pij ‖
for all i and j. Let

πT = [πT
1 , . . . π

T
k ] and π̂T = [π̂T

1 , . . . , π̂
T
k ]

be stationary distributions of P and̂P , respectively. Set

f̄ (ε, η) = (1 + σ + σε)φ̄

ψ(φ̄ − τ̄ )
,

whereσ andψ are as in(23), τ̄ and φ̄ are as in(29). If η is sufficiently small, then
for 1 � i � k

‖πT
i − π̂T

i ‖
‖πT

i ‖ � 2kf̄ (ε, η)η + O(η2). (30)
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Proof. We change the block rows ofP to those ofP̂ in k steps, one block row
at each step. From Lemma 5.1 andτ̄ and φ̄ in (29), the relative error between the
aggregate distributions of two subsequently changed transition matrices is no more
than 2f̄ (ε, η)η + O(η2). Applying Lemma 5.1k times gives (30). �

Remark 5.1.
1. Theorem 5.2 demonstrates that the sensitivityf̄ (ε, η) of the aggregate distribu-

tionsπT
i to blockwise perturbationF depends on four quantities̄τ , φ̄, σ andψ.

We can expect that̄τ is small,σ is of moderate size and̄φ andψ are bounded
away from 0 and sof̄ (ε, η) is of moderate size, which implies that the aggregate
distributionsπT

i are insensitive to small blockwise perturbationF.
2. If each block is a scalar, i.e.,ni = 1 for 1 � i � k, thenτ̄ = σ = 0, φ̄ = ψ = 1.

In this case, Theorem 5.2 is just the entrywise perturbation theory obtained in
[12,17,18].

3. Even if P̂ = P + F is not nonnegative, as long aŝπ, the normalized left eigen-
vector corresponding to eigenvalue 1 is nonnegative, the error bound (30) still
holds. We will employ this fact in the following section.

6. Application in iterative aggregation/disaggregation methods

Iterative methods coupled with aggregation/disaggregation technique is an im-
portant tool to compute the stationary distribution of a large-scale nearly uncoupled
Markov chain, see [2,9,10]. In this section we will show that under a proper stopping
criteria, iterative aggregation/disaggregation methods can achieve small blockwise
relative backward error and thus can compute the stationary distribution accurately
in the sense of blockwise relative error.

Let P be as in (1) andA = I − P. Suppose that we have a computed stationary
distribution

π̂T = [π̂T
1 , . . . , π̂

T
k ]

such that

π̂TA = rT, π̂T1 = 1, (31)

whererT is partitioned conformally withP as

rT = [rT
1 , r

T
2 , . . . , r

T
k ]

and eachrT
i satisfies the stopping criteria

‖rT
i ‖ � tol‖π̂T

i ‖, i = 1,2, . . . , k. (32)

Eachπ̂T
i can be decomposed as

π̂T
i = ‖π̂T

i ‖̂vT
i , i = 1,2, . . . , k

wherêvT
i is already available before the aggregation step whileŷT = [‖π̂T

1 ‖, ‖π̂T
2 ‖,

. . . , ‖π̂T
k ‖] is obtained in the aggregation step by solving the linear system



J. Xue / Linear Algebra and its Applications 326 (2001) 173–191 189

yTB = 0, yT1 = 1. (33)

Here

B = (bij ), bij = −v̂T
i Pij1, i /= j,

and

bii = −
∑
j /=i

bij , i = 1,2, . . . , k.

Suppose we solve (33) via GTH algorithm [7], which produces an accurate solution
in the sense of entrywise relative error. From the error analysis of O’Cinneide [12],
we have

ŷi = (1 + εi)yi, i = 1,2, . . . , k,

where|εi | � 9k2u andu is the unit roundoff. Denote

π̃T = [y1̂v
T
1 , y2̂v

T
2 , . . . , ykv̂

T
k ] and π̃TA = r̃T = [̃rT

1 , r̃
T
2 , . . . , r̃

T
k ].

It is easy to show that

r̃T
i 1 = 0, i = 1,2, . . . , k.

Moreover,

‖̃rT
i ‖=

∥∥∥∥∥∥̂rT
i − εi v̂

T
i (I − Pii)+

∑
j /=i

εj yi v̂
T
j Pji

∥∥∥∥∥∥
� ‖̂rT

i ‖ + 9k2u
k∑

j=1

yj |bji |

=‖̂rT
i ‖ + 18k2uyibii

�
(

tol + 18k2u

1 − 9k2u

)
‖π̂T

i ‖.

We now turn to construct the backward error for the computed solutionπ̂T.Denoting

D =


1

1+ε1
In1

1
1+ε2

In2

...
1

1+εk Ink

 ,

whereIni is the identity matrix of orderni, we have

π̂TDA = r̃T. (34)

We can attribute each residualr̃T
i to the perturbation

1

‖π̂T
i ‖ 1̃rT

i
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in the ith diagonal block ofDA. Thus we can rewrite (34) as

π̂T(P + F) = π̂T,

where

Fij = − εi

1 + εi
Pij , j /= i

and

Fii = εi

1 + εi
(I − Pii)− 1

‖π̂T
i ‖ 1̃rT

i .

Obviously,

F1 = 0

and

‖Fij ‖ � (tol + 18k2u + O(u2))‖Pij ‖, i, j = 1,2, . . . , k,

With the stopping criteria (32), iterative aggregation/disaggregation methods can
achieve a small blockwise relative backward error. Applying Theorem 5.2 and Re-
mark 5.1, we know the computed stationary distributionπ̂T is accurate in the sense
of blockwise relative error.
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