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ABSTRACT
Effective reconstitution of cellular immunity following hematopoietic stem cell transplantation (HCT) is thought
to be important for protection from the morbidity caused by cytomegalovirus (CMV) reactivation and disease. This
review critically discusses current methods for assessment of CMV-specific cellular immune responses, with
emphasis on flow cytometry–based methodologies such as MHC-I and MHC-II tetramer staining and intracellular
cytokine assays. The advantages and weaknesses of these assays are considered in comparison to traditional
immunologic techniques. Application of these newer methodologies has provided insight into the dynamics of the
levels of CMV-specific CD4� and CD8� T-lymphocytes following HCT, and into the sources and diversity of these
cells. Data from preliminary clinical studies suggest that CMV-specific CD8� T-lymphocyte levels greater than 1
� 107/L of peripheral blood may correlate with protection from CMV disease. Studies on the functional phenotypes
of CMV-specific CD8� T-lymphocytes such as cytokine production, degranulation, and cytotoxicity have indicated
that these cells are heterogenous with regard to these properties. Future research will focus on establishing whether
any of these immunologic assays will serve as a correlate of protection and inform as to which patients are at high
risk for CMV reactivation and disease. Identification of an informative assay may allow its incorporation into
standard clinical practice for monitoring HCT patients.
© 2004 American Society for Blood and Marrow Transplantation
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NTRODUCTION

In the early days of allogeneic hematopoietic cell
ransplantation (HCT), cytomegalovirus (CMV) was
bserved to reactivate 30 to 60 days after transplanta-
ion, and disease occurred in approximately one half of
atients [1]. Among the risk factors for disease, recon-
titution of CMV-specific immunity was recognized
o be important [2-4]. With the advent of preemptive
ntiviral therapy, the incidence of CMV infection re-
ained unchanged, but the occurrence of CMV-asso-
iated disease dramatically decreased [5]. With this
hange, the time of onset of disease increased to ap-
roximately 6 months after HCT, and mortality due
o late-onset CMV caused the preponderance of

eaths at a rate approaching 10% for allogeneic HCT t

B & M T
ecipients [6]. Immunologic reconstitution remains
uintessentially important for protection from late-
nset CMV disease [5], as it did for early disease
efore the advent of ganciclovir (GCV) therapy. Thus,
t is important to understand the assays that are in use
o document and measure CMV-specific immuno-
ogic functions. The purpose of this review is to de-
cribe the relevance of these immunologic assays for
redicting who is susceptible to disease, and to assess
heir potential utility in predicting clinical outcomes.

MV IN HCT PATIENTS

Human CMV establishes persistent lifelong infec-

ions in most (50%-85%) individuals [7,8]. The virus
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rimarily infects endothelial cells in a range of tissues
nd, after a lytic cycle, establishes an asymptomatic
atent infection [9]. The principal site of virus latency
n the peripheral circulation is likely the monocyte.
lthough the factors that govern virus reactivation are
ot fully understood, it seems that periodic chronic
ow-grade reactivation occurs in healthy individuals.
n the context of immunologic impairment due to
onditioning for HCT, 60% to 70% of high-risk
CMV-seropositive) patients will experience CMV re-
ctivation during the first 100 days after conventional
r nonmyeloablative HCT, and approximately 20%
ill develop CMV disease during the first year. The
ungs and digestive tract are the organs most often
ffected [10,11]. The effect of modern preemptive
CV treatment—based on early detection of CMV
eactivation by methods [12] including polymerase
hain reaction [13] or antigenemia assays [14,15]—has
een to increase the time to onset of CMV disease,
ith the result that late disease is the current main
MV-related problem in HCT [16-19].
Several lines of study have presented persuasive

vidence that CD8� cytotoxic T lymphocytes (CTLs)
nd CMV-specific helper CD4� lymphocytes play an
mportant role in controlling CMV infection. First,
eddehase et al. [20-24] have used murine CMV
odels to demonstrate the importance of CD8� lym-
hocytes in this context. Second, experiments using in
itro culture methods to investigate CMV-specific
ellular immune responses in immunocompromised
ransplant recipients indicated that CMV disease was
ssociated with impairment of these responses [25-27].
ince then, rapid assays, often based on flow cytom-
try, have been used to examine the phenotype and
unctionality of the T cells involved in the immune
esponses to CMV and to address their clinical signif-
cance.

IRAL ANTIGENS RECOGNIZED BY THE CELLULAR
MMUNE SYSTEM

The CMV genome contains approximately 200
pen reading frames, which are expressed in a tempo-
al sequence of immediate-early, early, and late pro-
eins. Some of these, including the structural pp65 and
p150 proteins, induce vigorous immune responses.
ecause these are late gene products, this may seem
ounterintuitive, but when CMV infects the host cell,
ature CMV pp65 protein is transferred with the
irion [28,29] and is available to the immune system
efore viral protein synthesis. It is also the most abun-
antly produced tegument protein and is a major con-
tituent of noninfectious viral “dense bodies” that ac-
umulate in the cytoplasm of CMV-infected cells and
re released by these cells [30,31]. Thus, given the

eagents available in the past decade, pp65 has been H

34
he most commonly studied CMV protein, and, as
uch, it has been considered the predominant target of
mmune responses against the virus. Other proteins
ecognized to lesser degrees include the surface gly-
oprotein, which is more likely to be important in
ediating virus neutralization by antibody; the imme-
iate-early protein; the pp50 protein; and the tegu-
ent pp150 protein [32-37]. These polypeptides con-
ain certain amino acid sequences that represent
ytotoxic epitopes that are presented by the major
istocompatibility complex (MHC) on the surface of
he virus-infected antigen-presenting cell (APC) [38].
ome of these epitopes are immunodominant in that
hey are more likely to be presented as a result of the
athway that begins with generation of the peptide by
leavage of the viral protein by the endosome; contin-
es with transport by the transporter associated with
ntigen processing (TAP) to the endoplasmic reticu-
um, further processing of the peptides, and integra-
ion into the complex with the MHC polypeptides;
nd concludes with the appearance of the mature
HC-I complex on the surface of the cell (Figure 1).
ach of these steps exerts selective pressure on the
ools of peptides, but the most stringent step is probably
he binding of the peptide to the MHC-I complex [39].

ETHODS FOR ASSESSMENT OF CMV-SPECIFIC
ELLULAR IMMUNE RESPONSES

imiting Dilution Analysis, Cytotoxicity, and
-Cell Proliferation Assays

These methods were routinely used during the last
decades to enumerate T-cell responses to antigens.
hese responses, when absent after HCT, have been
hown to be associated with the risk of CMV disease
3]. Essentially, populations of peripheral blood
ononuclear cells (PBMCs) that potentially contain
ntigen-specific CTL precursors are serially diluted
nto multiwell culture plates in the presence of antigen
nd irradiated APCs. After multiple days of in vitro
timulation, the expanded effector populations are de-
ected by proliferation assays [40] or by lysis of APCs
oaded with antigen and radioisotope, usually chro-
ium 51 [41,42]. Although such limiting dilution
nalysis assays are very sensitive, especially when mul-
iple rounds of in vitro stimulation are performed,
hey have serious deficiencies. The CTL precursors
ndergo proliferation and apoptosis in culture; there-
ore, the phenotypes of the T-cell effectors that are
btained by these in vitro methods probably do not
ccurately reflect the cells present in vivo [43-45]. In
ddition, these assays are laborious and time consum-
ng and require relatively large quantities of patient
aterial. For these reasons, they are not well suited
or examining the CMV-specific T-cell responses of

CT patients and will not be the focus of this review.
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HC-I Tetramers

The practical application of using soluble, tagged
HC-I complexes to bind antigen-specific T cells
as first described by Altman et al. [46] but owed
uch to the earlier work by Garboczi et al. [47] and

igure 1. Simplified depictions of MHC-I antigen processing, T-ce
ssays of cellular immune responses. The main panel outlines in a s
ntigens are processed to generate peptides and their presentation v
nteraction between peptide/MHC-I complexes on the APC cell s
pecific CD8� effector lymphocytes leads via complex signal transd
ffector cells. The flow cytometer–based tetramer-binding assay, a
uorescently conjugated probe that specifically binds T-cell recepto
lso uses flow cytometry after cell permeabilization and staining with
re produced by CD8� effectors or CD4� helper T lymphocytes as
ytokines after secretion from the cells by their capture on antibod
ntibodies. NFAT indicates nuclear factor of activated T cells; ER
ilver et al. [48], who assembled and refolded these l

B & M T
omplexes in vitro as part of their biochemical and
rystallographic studies. The key development was the
ultimerization of the complex into a tetrameric mol-
cule capable of engaging more than 1 T-cell receptor
TCR) molecule and thus of overcoming the relatively

tor signaling, and detection of their consequences by 3 widely used
tic manner a simplified version of the mechanisms by which CMV
MHC-I pathway on the surface of antigen-presenting cells (APC).
and T-cell receptor (TCR) complexes on the surface of antigen-
pathways (abbreviated here) to increased IFN-� production by the
ple of which is shown in the top inset panel (1), uses a synthetic
have affinity for the peptide/MHC-I complex. The ICC assay (2)
scent antibodies to detect cytokines such as IFN-� and TNF-� that
ult of interaction with APCs. The ELISPOT assay (3) detects these
d culture dishes and detection with enzyme-conjugated secondary
acellular signal-regulated kinase.
ll recep
chema
ia the
urface
uction
n exam
rs that
fluore
the res
y-coate
K, extr
ow affinity [49] of the MHC-I complex for the TCR.
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he MHC-I transmembrane protein consists of (1) a
eavy chain that contains the complete peptide-bind-
ng groove and that exists in multiple allelic types and
ubtypes and (2) an invariant light chain termed �2-
icroglobulin. The binding of peptides to the com-
lex is restricted by the HLA subtype of the heavy-
hain polypeptide [50]. In the original procedure for
aking tetramers [46], the heavy chain of choice was
xpressed in Escherichia coli as a truncated molecule
hat comprised just the extracellular domains but had
recognition tag for BirA biotin ligase engineered at
he carboxy terminus. The heavy and light chains are
eparately expressed and purified under denaturing
onditions from the bacteria and then combined with
molar excess of the MHC-I binding 8-11-mer pep-
ide in a refolding buffer. After refolding, the complex
s treated with BirA to biotinylate the heavy chain and
s purified by high-performance liquid chromatogra-
hy before the addition of fluorochrome-conjugated
treptavidin, which has 4 binding sites for biotin. This
orms a tetrameric complex that is normally stable for
onths at 4°C.
Refinements to these method have been described;

or example, the introduction of a point mutation in
he MHC-I heavy chain at a position known to inter-
ct with the CD8� co-receptor was made to reduce
onspecific interaction of the tetramer with irrelevant
D8� cells [51]. Chemical rather than enzymatic bi-
tinylation of the MHC-I heavy chain [52] and the use
f peptide-�2-microglobulin fusion molecules rather
han free peptide for complex formation [53] are other
ariations, but the basic procedure is straightforward
nd can be performed in any adequately prepared and
quipped biochemistry laboratory.

Tetramer staining can be performed on freshly
solated or fixed PBMCs or on whole blood, and the
esults are quantified by fluorescence-activated cell
orter (FACS) analysis. Although less commonly de-
cribed, in situ staining of tissue samples has also been
erformed, by, for example, Skinner et al. [54] and
kinner and Haase [55]. Counterstaining is normally
erformed with fluorescent antibodies to the CD8
ell-surface antigen. For FACS analysis, a primary
ate is set on lymphocytes, either based on their for-
ard and sideways light-scattering properties or, pref-
rably, by co-staining with antibodies to the CD3
ymphocyte surface marker. Some anti-CD8 antibod-
es have been reported to interfere with tetramer bind-
ng of the TCR [54,56], so it may be necessary to
elect a different antibody clone or to label with tet-
amer before CD8 antibody staining. Tetramer-bind-
ng cells are identified as a subset of the CD8� T
ymphocytes and may range from undetectable levels
o as high as 15% of the CD8� T lymphocytes in
ome HCT recipients.

Tetramer-based assays have proven to be a versa-

ile technology and have been used in a wide range of t

36
pplications, including detection of virus-specific T
ells in human immunodeficiency virus [46,57,58],
pstein-Barr virus [58-61], influenza [62], hepatitis C
irus [58], and CMV [63-67] infections; detection of
umor-specific CTLs [68-70]; isolation of antigen-
pecific cells for characterization; and even expansion
or immunotherapeutic use by flow sorting [71,72] or
y antibody bead capture. The disadvantage of
HC-I tetramers lies in their epitope specificity and

he HLA restriction of the peptides; a given tetramer
n samples from individuals with the corresponding
LA phenotype will detect only that subset of virus-
pecific CTL that recognizes the peptide with which
he tetramer is refolded. Thus, for a complete survey
f cellular immune responses to a given viral polypep-
ide, it is necessary to have previously identified the
mmunodominant cellular epitopes, such as the CMV
p65495–503 sequence in the case of HLA-A*0201, and
o have prepared the appropriate tetramer refolded
ith the appropriate HLA heavy-chain subtype. In
ddition, even when the tetramer reagent is available,
t could represent an epitope that is not immunodom-
nant in all individuals because of certain combina-
ions of HLA subtypes [73-75]. As more immunologic
nformation on CMV cellular immune responses
merges, it may be necessary to assemble panels of
etramers to cover multiple epitopes restricted by dif-
erent HLA types and represented at reasonable fre-
uencies in the patient population under study. An
nalysis of the coverage of different ethnic populations
ith CTL epitopes combined theoretical and empir-
cal studies to conclude that 90% coverage was attain-
ble with a panel of 11 to 15 epitopes [76].

It is also possible to combine tetramer staining
ith other flow-based assays to gain more phenotypic
nformation on the nature of antigen-specific cells.
ntracellular cytokine (ICC) assays (see below) can
rovide insight into the functionality of CTLs in
erms of their ability to secrete immunologically rel-
vant molecules such as interferon (IFN)-� or tumor
ecrosis factor (TNF)-�. Phenotyping with fluores-
ent antibodies to surface markers can determine ac-
ivation status (CD28 and CD69) or information on
he lineage and differentiation status (CDRA, CDRO,
nd CD62L) of the cells. Clonotyping of the tet-
amer-binding cells with antibodies to the V� region
f the TCR will provide information on the clonality
f the antigen-specific immune response [77-79]. Tet-
amer-binding cells can also be counterstained with
ntibodies to detect the presence of cytolytic effector
olecules such as perforin [80] and the granzymes
81,82] that are stored within cytotoxic granules of
ffector CTLs and released during the fusion of these
esicles with the target cell membrane (degranula-
ion). Rubio et al. [83] recently described, in the con-
ext of tumor immunity, a novel assay based on detec-

ion of mobilization of a vesicle membrane protein,
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D107a (lysosomal-associated membrane protein-1),
o the cell surface during this degranulation process.
ymphocytes from vaccinated melanoma patients
ere incubated with target cells expressing melanoma
ntigen and were then stained with tetramer and an-
ibodies to CD107a before flow analysis. These inves-
igators reported that only effector cell clones that
obilized CD107a exhibited high recognition effi-
iency for target cells that presented the relevant tu-
or antigenic peptide. Mobilization of CD107a may
e required as a means of breaking tolerance. Limited
ata from Betts et al. [84] suggest that degranulation,
s measured by CD107a expression, correlates with
he cytotoxic activity of CD8� T lymphocytes specific
or the CMV pp65495–503 epitope.

In response to the research community’s need for
etramers, 4 years ago the National Institute of Allergy
nd Infectious Diseases instituted a central Tetramer
acility [85,86]. Located at Emory University, this
esource provides custom tetramers to investigators
round the world. A wide range of human, mouse,
acaque, and chimpanzee MHC-I alleles are available
or refolding with peptides, and the facility now offers
limited range of MHC-II tetramers.

HC-I Dimers

MHC-I dimers can be regarded as a technical
ariation on the concept of MHC-I tetramers. For
rocedures, see Schneck et al. [87]. This approach,
eveloped by Schneck et al. [88,89], was used to ex-
mine human T lymphotropic virus type 1 (HTLV-I)–
pecific cells [89,90]. The key molecule used by these
nvestigators was an HLA-A2/immunoglobulin chi-
era engineered in a eukaryotic expression plasmid by
using the �1 to �3 domains of HLA-A2 to murine
mmunoglobulin [91]. J558L cells in culture were
ransformed with this plasmid and with another plas-
id expressing human �2-microglobulin. A cell line
ecreting high levels of the chimeric protein was
elected, and the dimer was purified from culture
upernatant. This dimer was then loaded with the
LA-A2–binding peptide at a very high molar excess

660-fold) for 2 weeks before use in FACS. It is nec-
ssary to use a fluorescent antibody to mouse immu-
oglobulin to detect the dimer-labeled cells. One
echnical advantage of dimers compared with tetra-
ers is that the HLA-A2/immunoglobulin complexes
an be prepared in bulk, and then aliquots can be
oaded with different peptides. Our laboratory used
his approach to evaluate CMV pp65 epitope peptides
hat emerged from experiments with scanning syn-
hetic combinatorial libraries [92]. Dimers have been
ess widely used than MHC-I tetramers, possibly be-
ause of the effort required to establish the required
ecretory cell lines. A recent report described their use

s artificial APCs when coupled with CD28-specific [

B & M T
ntibody to beads [93]. These artificial APCs were
sed to expand CMV-specific CTLs and may have
tility in adoptive immunotherapy.

HC-II Tetramers

The first report of the synthesis and use of
HC-II tetramers to identify antigen-specific CD4�

ells was in 1999 [94]. However, for technical reasons,
heir preparation and use is more difficult [95], and
hey have not become widely available, although re-
ently they have become available commercially or via
he National Institute of Allergy and Infectious Dis-
ases tetramer facility. Furthermore, because of the
ery low levels of circulating CD4� cells specific for a
iven antigen—below the detection limit of flow cy-
ometry, which is approximately 0.01% of CD4� or
D8� lymphocytes—it has generally been necessary
o use an in vitro amplification step, combined with
abeling of the cells with a fluorescent dye, to estimate
he number of divisions undergone by the stimulated
ells and, hence, the original frequencies of the anti-
en-specific precursor cells. Nonetheless, several re-
orts have described the use of class II tetramers to
nvestigate immunity to influenza [94], herpes simplex
96], and autoimmune antigens [97].

CC Assays

These assays represent the current major alterna-
ive to the tetramer-based approach. The principle is
hat antigen is added to PBMC preparations in culture
r to samples of whole blood to induce the production
f cytokines such as IFN-� or TNF-�. The antigen
ay be a single peptide or pools of peptides
80,98,99], purified viral antigenic polypeptides [100],
r even virus-infected cell lysates [80,101] containing
omplex mixtures of viral antigenic polypeptides and
eptides. If CD8� immune responses are being stud-
ed, it is generally necessary to use peptides or cell
ysates containing peptides, because the cross-presen-
ation by the MHC-I pathway of endocytosed anti-
ens [102] can be inefficient except in the CD8�

endritic cell subpopulation [103]. Alternatively,
PCs can be infected with recombinant vaccinia or
odified vaccinia Ankara virus expressing the antigen
f interest. Ubiquitination of this antigenic protein
an improve the processing and, thus, presentation of
eptides [104,105]. For CD4� analysis involving the
HC-II complex, purified or recombinant virus pro-

ein may be used [100]. Interaction between the anti-
enic peptide displayed on the MHC-I or MHC-II
omplex on the surface of APCs in the culture and the
CR of virus-specific T cells induces cytokine pro-
uction in the latter. The addition of an inhibitor of
ransport, such as brefeldin A, prevents secretion and
o causes accumulation of the cytokine in the cell

106]. After the induction period, the cells are fixed

437
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nd permeabilized before staining with fluorescent
ntibodies to the cytokine and analysis by flow cytom-
try. Counterstaining with antibodies to CD4 and
D8 permits discrimination between these 2 lympho-
yte subsets. This method lends itself well to combi-
ation with MHC-I tetramers, because it is thus pos-
ible to determine the proportion of tetramer-binding
D8� lymphocytes that are capable of producing cy-
okine on virus-specific antigenic stimulation [66,78].
ecause engagement of peptide with the TCR tends
o lead to internalization and, hence, reduced tetramer
inding [107], it is often helpful to stain the cells with
etramer before the antigen-stimulation step. As with
etramer assays, it is also possible to combine ICC
ssays with flow-based clonotyping [79].

A great strength of the ICC assay when used with
eptide libraries or whole antigen is that the assay can
e used to analyze samples from patients who possess
ny HLA phenotype. A discussion of the issues in-
olved in the design of the pools of overlapping pep-
ides in such libraries may be found in Roederer and
oup [108].
In an extracellular variation of the ICC assay, the

BMCs or blood samples from patients are incubated
ith viral antigens, and the secreted cytokines are
etected in the medium by using enzyme-linked im-
unosorbent assay [74,109] or cytokine bead array
110]. If enzyme-linked immunosorbent assay is used,
his method has the advantage of not requiring a flow
ytometer. Although the cytokine concentrations in
he medium or plasma can be quantitated by reference
o standards, this assay has the weakness that it does
ot identify the cell subpopulations that produce the
etected cytokines.

nzyme-Linked Immunospot

Enzyme-linked immunospot (ELISPOT) permits
etection of antigen-induced cytokine secretion at the
ingle-cell level [111,112] without a flow cytometer.
his assay is based on the principle of the enzyme-
inked immunosorbent assay. A 96-well tissue culture
late is coated with an antibody that binds the marker
ytokine of choice (usually TNF-� or IFN-�, but
LISPOT assays have been described for a range of
olecules, including interleukin [IL]-1, IL-2, IL-4,
L-5, IL-6, IL-10, and granzyme B). By using cells
which may be unseparated PBMCs or a mixture of
ffector cells and APCs such as peptide-loaded TAP-
eficient T2 cells [113] or autologous mature den-
ritic cells [114] and which are then incubated in the
ntibody-coated wells in culture medium containing
ntigen), cytokines are produced in response to spe-
ific stimulation. The immobilized antibody on the
urface of the plate binds the cytokine, and the culture
ells are then washed, thus removing the cells. The

ound cytokine is detected by using an enzyme-la- i

38
eled detection antibody and a chromogenic sub-
trate; this results in colored spots, each of which
epresents the position of a single cytokine-secreting
ell. Evaluation of the results can be assisted by com-
uter image-analysis systems, increasing the speed
nd, possibly, the objectivity [115]. The ELISPOT
ssay has the advantage of being highly sensitive, easy
o perform, and rapid, and it requires no expensive
quipment. However, it yields much less information
han the flow-based ICC or tetramer assays on the
henotypes of the antigen-specific cells. The sensitiv-
ty of ELISPOT seems to be comparable to that of the
CC assays: some researchers report lower limits of
etection in the former [116] and others in the latter
117,118]. Background may be a problem because of
onstitutive secretion by PBMCs of some cytokines,
uch as TNF-� [119], or because of the choice of
ulture vessels [120]. A recent technical development
ermed Lysispot detects lysis in a single cell assay. A
arker protein (�-galactosidase) is introduced into
ntigenic peptide-pulsed APCs by infection with a
erpes simplex amplicon that is capable of infecting a
ide range of human and mouse cells. Lysis of these
ells by effector cells is perforin dependent and pro-
uces blue spots in the culture wells. Furthermore,
his Lysispot assay can be combined with ELISPOT
or a 2-color ELISPOT that is capable of detecting
oth the cytolysis and cytokine-secretion functions of
ffector cells. For this, the plates are coated with a
ixture of antibodies to IFN-� and �-galactosidase
nd with 2 different conjugated secondary antibodies.
mixture of red and blue spots results [121]. ELIS-
OT remains a viable alternative to flow-based assays
ecause of its sensitivity and simplicity (Table 1).

ECONSTITUTION OF CELLULAR IMMUNITY AFTER HCT

After HCT, the recipients are immunocompro-
ised for at least a year and have defects in both
ellular and humoral immunity. During this period, in
ddition to the danger of relapse or development of a
econdary malignancy [122], there is an increased risk
f opportunistic bacterial, viral, or fungal infections
123]. These risks continue even after successful en-
raftment, which takes place by day 30 after transplan-
ation in both bone marrow and stem cell recipients,
ecause a high proportion of allograft recipients have
t least 1 postengraftment infection [124,125], the
ccurrence of which is the predominant independent
actor associated with nonrelapse mortality [125]. The
ature of the deficiency after engraftment probably
ies in the mononuclear cell subsets, because low num-
ers of these cells, especially CD4� lymphocytes, have
een associated with increased infections [126-128].
torek et al. [129] performed a detailed comparison of

mmune reconstitution after transplantation of bone
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arrow or mobilized stem cells. Using flow cytometry
o examine cell-surface markers, they found that pa-
ients who received stem cells had significantly higher
ononuclear cell subset counts, particularly CD4�

ymphocytes. The functionality of the cells was com-
arable as measured by lymphoproliferation, but the
CT recipients had a 2.4-fold higher rate of docu-
ented severe infections.
One of the more interesting debates in the field of

mmune reconstitution after allogeneic HCT con-
erns the contribution of the thymus to the T-lym-
hocyte repopulation of the recipient. In the fetus and
he neonate, the thymus is the primary site of T
ymphopoiesis. In young children, recovery of naive
D4 cell populations (bearing the CD45RA marker)
s rapid after chemotherapy, a phenomenon termed
hymic rebound [130]. However, in adults, the thymus is
nvoluted, and functional thymic tissue is replaced by
dipose tissue [131]. This seems to exert a constraint
n CD4 recovery after chemotherapy without trans-
lantation [132]: recovery of CD4� CD45RA� cells is
imited in many patients even after 2 years. Even after
llogeneic HCT, adults were found by flow cytometry
nalyses to have a limited ability to generate naive
D4� cells [133]. This view seemed to be challenged
y findings with a new assay [134] that measures the
umber of TCR-rearrangement excision circles
TREC) in peripheral blood T cells. These DNA
roducts, which arise during thymocyte development,
re stable and T-cell specific and are diluted during

able 1. Summary of Assays Available for Assessment of Cellular Imm

Variable Cells Detected

HC-I tetramer CD8� T lymphocytes Specific, rap
cells; allow
character
Abs or co

HC-II tetramer CD4� T lymphocytes Specific, rap
cells; allow
character
Abs or co

LISPOT CD8� and CD4� T
lymphocytes

Very sensiti
Does not
Not restr

ntracellular cytokine
assay (ICC)

CD8� and CD4� T
lymphocytes

Specific, rap
cells; allow
character
Abs. Pane
infected A
antigens (
many epit
HLA type

n vitro stimulation
combined with
cytotoxicity assay

CD8� T lymphocytes Sensitive. A

roliferation assays CD8� and CD4� T
lymphocytes

Simple assa
knowledg

bs indicates antibodies.
ach cellular division. They therefore seemed to t
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resent an elegant tool for measuring thymic output.
ouek et al. [135] reported that, as quantified by this
ssay, substantial numbers of naive T cells produced
y the thymus appeared in the peripheral circulation
s little as 100 days after transplantation and accumu-
ated to supranormal levels. This interpretation has
ince been challenged as misleading because of failure
o consider the complexities of T-cell dynamics [136-
38]. First, naive T cells are very long-lived, with a life
pan of 1000 to 10000 days [139]; thus, the presence of
REC-containing naive T cells is not evidence of
ngoing thymic production. In addition, after trans-
lantation, there are so few T cells in the peripheral
lood compartment that the arrival of a small number
f naive TREC� cells can have a large effect on the
REC levels, which are normally measured as TREC
ontent per microgram of cell DNA. In summary, this
pproach to evaluation of thymic function is indirect
nd should be used with caution.

ECONSTITUTION OF CMV-SPECIFIC IMMUNITY AFTER
LLOGENEIC HCT

A number of studies have been published that used
or more of the available immunologic techniques to
nvestigate the reconstitution of CMV-specific cellu-
ar immunity in HCT transplant recipients and to
orrelate them with CMV-related clinical events. The
verall message from these studies confirmed the cen-

ponses to Pathogens Such as CMV

antages Disadvantages

sitive. Identifies single
er cell
by co-staining with
ion with ICC assay

Restricted by HLA type. Nonfunctional
assay. Knowledge of immunodominant
epitopes required. Costly to prepare
large panels of tetramers

sitive. Identifies single
er cell
by co-staining with
ion with ICC assay

MHC-II tetramers difficult to prepare.
Low levels of specific CD4 cells may
require in vitro amplification step

ection of single cells.
a flow cytometer.

y HLA type

Limited information on phenotypes of
cells secreting cytokine

sitive. Identifies single
er cell
by co-staining with
ptides (CD8), virus-
use of whole
ermits coverage of
ot restricted by

Background levels and nonspecific
detection. Requires metabolically
active cells

cytotoxic function Labor intensive and time consuming.
Culture and in vitro stimulation may
alter cell phenotype

not require
llular epitopes

Provides only general information on
immune responses
une Res

Adv

id, sen
s furth

ization
mbinat
id, sen
s furth

ization
mbinat
ve. Det
require
icted b
id, sen
s furth

ization
ls of pe
PC, or
CD4) p
opes. N

ssesses

y. Does
e of ce
ral importance of T lymphocytes for protection
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gainst CMV disease. Notably, CMV disease is more
ommon in recipients who receive a graft from a
MV-seronegative donor [140-142].

ynamics of Levels of CMV-Specific CD8� Cells

Quinnan et al. [27] used conventional assays as
arly as 1982 to detect CMV-specific CTLs in HCT
ecipients and to show that these correlated with pro-
ection from CMV infection. Similarly, later investi-
ators who used the same cytotoxicity and lympho-
roliferation assay techniques also reported that
etection of CMV-specific CD8� CTLs was associ-
ted with protection from CMV disease [25,143].
ith the advent of MHC-I tetramer technology in

he late 1990s, several groups applied this assay either
lone [142,144,145] or in combination with ICC as-
ays [78,146-149] to enumerate CMV pp65-specific
D8� lymphocytes. With these flow-based methods,
MV-specific lymphocytes can be detected as early as
1 days after transplantation [144,145], although there
s considerable variation in the time of detection. For
xample, Hebart et al. [114] reported a range of 35 to
180 days after transplantation, with a median of 90
ays. The peak observed proportions of CMV-specific
D8� T lymphocytes are quite extraordinary, often
xceeding 10% and occasionally 20% of the CD8�

ymphocytes.
Cwynarski et al. [144] studied a cohort of 13 pa-

ients with allogeneic transplants from siblings and 11
ith transplants from matched unrelated donors and
eported that no patient with levels of CMV-specific
D8� lymphocytes �1 � 107 per liter of peripheral
lood developed CMV disease. In another small
tudy, Gratama et al. [142] found that in a cohort of 21
onor/recipient pairs in which either or both were
MV seropositive, no recipient with CMV-specific
D8� T lymphocyte levels �0.2 � 107/L developed
isease. Despite the absence of large definitive studies,
he consensus of these smaller reports suggests that
numeration of CMV-specific lymphocytes by tet-
amer/ICC assays has potential value for identifying
ndividuals at increased risk of CMV disease.

ource and Diversity of CMV-Specific Cells

Studies in our laboratory using tetramer staining
ombined with fluorescent antibodies to the variable
egion (V�) of the TCR have suggested that CMV-
pecific CD8� T lymphocytes detected in CMV-se-
opositive recipients of allogeneic stem cell transplants
rom CMV-seropositive donors are likely of donor
rigin and expand in the recipient after antigenic stim-
lus due to CMV reactivation [78]. Similarly, Peggs et
l. [150] reported data suggesting antigen-driven ex-
ansion of CMV-specific CD8� cells after HCT. This
ssue was addressed in more detail by Weekes et al.

77], who generated cell clones from HCT donors and d

40
ecipients. In concordance with the previous report
rom our group [78], all CMV-specific CD8� cell
lones in recipients were found by single-nucleotide
NA polymorphism analysis to be of donor origin.
equencing of the hypervariable region of the TCR �
hain indicated expansion and diversification of these
lones within the recipient. In addition, their data
uggested, but did not prove, the existence of de novo
eneration of CMV-specific clones from donor-de-
ived progenitor cells in seropositive recipients of
tem cell transplants from seronegative donors [151].

unctionality of CMV-Specific CD8� Cells

The combination of tetramer staining and ICC
ssays permits assessment of the functionality (in
erms of cytokine production) of CMV-specific CD8�

lymphocytes at the single-cell level [57,78,147,152].
zdemir et al. [147] used this combined technique to
xamine samples from 87 HCT recipients and found
hat in individuals who experienced CMV reactiva-
ion, as measured by CMV antigenemia, the propor-
ion of CMV-specific tetramer-binding CD8� T cells
hat produced TNF-� was lower than in patients who
id not. They also reported that patients with higher
mmune suppression, such as those receiving steroids
or treatment of acute graft-versus-host disease, had
ower levels of these cytokine-producing cells. They
uggested that failure to control CMV reactivation
ight be due to impaired function of these CMV-
pecific cells.

Characterization of the cytolytic function of
MV-specific CD8� T lymphocytes is more techni-
ally challenging because of the limited numbers of
hese cells in clinical samples. Expansion of virus-
pecific T lymphocytes by using in vitro stimulation to
btain the numbers required for conventional cyto-
oxicity assays will inevitably affect their activation
tatus and phenotype. Lacey et al. [78] used ex vivo
ytotoxicity assays to evaluate the CMV-specific cyto-
ytic function of unsorted and unstimulated PBMCs
rom HCT donors and recipients. They observed
triking differences between the CMV-specific ex vivo
ytolytic activity associated with PBMCs from HCT
onors compared with HCT recipients. They de-
ected little or no CMV-specific cytolytic activity in
onor PBMC samples, even when significant levels of
MV tetramer-binding CD8� lymphocytes capable
f producing IFN-� were present. By contrast, sam-
les from several HCT recipients possessed significant
evels of ex vivo CMV-specific cytotoxicity that cor-
elated with the frequency of tetramer-binding cells
78]. This was consistent with earlier data that re-
orted the absence of ex vivo CMV-specific cytotox-
city in samples from healthy donors and the presence
f such cytotoxicity in samples from human immuno-

eficiency virus–infected individuals [153]. It may be
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hat reactivation of CMV in the immunocompromised
CT recipients drives a change in phenotype of the
etramer-binding cells to a cytotoxic one. A critical
uestion that remains unanswered is whether the
daptive immune response controls CMV reactivation
fter HCT. When CMV seropositive recipients of
CT from seropositive donors (D�R) are compared
ith seropositive recipients of HCT from seronega-
ive donors (D�R�) recipients for CMV reactivation,
s measured by antigenemia rate, there are no differ-
nces. However, the probability of having a high level
f antigenemia (�10 cells per slide) is significantly
igher in the D�R� patient [154]. Thus, it is likely
hat the adaptive immune system contributed by the
onor influences the frequency or magnitude of CMV
eactivation.

mportance of CMV-Specific CD4 Cells

It is clear from several lines of evidence that
MV-specific helper CD4� lymphocytes are impor-
ant for reconstitution of CD8� CMV-specific cell
esponses and for protection from disease. First, in
CT recipients, low levels of CMV-specific CD4� T

ymphocytes were associated with reduced reconstitu-
ion or functionality of CMV-specific CD8 cells
142,147,155]. In fact, for HCT recipients, the ab-
ence of lymphocyte proliferation to CMV antigen in
itro has been linked to risk for disease [2-5]. Second,
amadia et al. [156] reported that in renal transplant
ecipients with symptomatic CMV disease, CMV-spe-
ific CD4� T-cell responses were delayed and could
e detected only after antiviral therapy. Third, in
iddell’s classic trials of adoptive immunotherapy
gainst CMV by infusion of expanded CMV-specific
-cell clones from the donor, it was found that in
atients deficient in CD4� CMV-specific T-helper
ells, the infused clones decreased, suggesting that
hese cells are necessary for the persistence of the
ransferred CD8� cells [157]. A second adoptive
ransfer study, in which CMV antigen-stimulated
D4� T cells were infused into patients with chemo-
herapy-resistant CMV viremia and who lacked a
MV-specific CD4� helper response, led to a de-
rease in CMV load in all 7 patients, an increase in
MV-specific T-cell proliferation, and reconstitution
f CD4� and CD8� T cells in most patients. From
he studies described previously, it is clear that assess-
ent of cellular immunity to CMV should include
valuation of both CMV-specific CD4� T-helper
ells and CMV-specific CD8� effector T cells.

MV DISEASE IN HCT AND SOLID ORGAN
RANSPLANTATION

Ideally, after HCT, the reconstitution of immu-

ity occurs in a timely fashion such that the patient s

B & M T
s gradually protected from infection. Because many
nfections will occur before immune reconstitution,
he selective use of antibiotics and antivirals is nec-
ssary to protect the patient during the early
onths after HCT. At some point, of course, de-
ending on the particular clinical regimen, the pro-
hylactic therapy is usually stopped, and then, if
pecific immunity has not been restored, infection
nd disease can still occur. This is especially true for
atients at risk for CMV, for which preemptive use
f GCV was developed and used during the first 2 to
months after HCT. The widespread use of pro-
hylactic therapy has had the effect of increased
ate-onset CMV disease, defined as CMV-associ-
ted disease occurring �100 days after HCT [158].
he risk factors for this late CMV morbidity have
een determined to be CMV infection, lymphope-
ia, failure to reconstitute a lymphoproliferative
esponse to CMV, and graft-versus-host disease be-
ore day 90 after HCT [5].

CMV infections are a serious clinical problem in
he context of transplantation of solid organs, includ-
ng liver, lung, and kidneys. The CMV reactivation
nd disease incidence in these immunosuppressed pa-
ients are often higher than in patients who receive
tem cell transplants [159-161]. Tetramers, ICC, and
ymphoproliferation assays have been used to examine
MV-specific CD8� and CD4� T lymphocytes in
iver [64,162] and kidney [26,156,163] transplant re-
ipients. Taken together, these studies confirm the
mportance of both helper T cells and CTLs in pro-
ection from CMV reactivation and disease in solid
rgan transplant recipients.
A criterion for clinical utility of 1 or more of the

ewer assays of CMV immunity discussed in this
eview is the ability to aid in the prediction of which
atients might safely stop CMV preemptive ther-
py. Data from ongoing multicenter trials, such as
he Blood and Marrow Clinical Trials Network
rotocol 0201 (which is testing the immunopheno-
ypic characterization of stem cell grafts and mea-
uring posttransplantation immune reconstruction
nd T-cell responses from approximately 500 HCT
ecipients), may address this question. Beckman
oulter is also sponsoring an evaluation of the tet-
amer-binding assay for detection of CMV-specific
D8� T lymphocytes in HCT recipients. If such
ests, when used to monitor immune reconstitution,
an identify a patient population no longer at risk
or CMV complications on the basis of immune
tatus, then they could be important in patient man-
gement. However, assays for specific immune
unction, such as ICC or cytotoxicity assays, will
robably remain research tests, and future clinical
ests of CMV immunity will most likely serve as

urrogate markers for these more complex assays, as
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o the current CMV polymerase chain reaction and
ntigenemia measurements.

ONCLUSION

Several assays are now available to characterize
MV-specific CD8� and CD4� immune responses at
he cellular level. The MHC-I tetramer assay is a
owerful and convenient method for measurement of
MV-specific CD8� cells, but it requires the avail-
bility of a panel of tetramers of the appropriate HLA
ype corresponding to several immunodominant
pitopes. It, however, lends itself to further character-
zation or selection of CMV-specific cells. The ICC
ssay and its technical variants, when performed with
ools of peptides, permit the identification of lympho-
ytes that recognize a wide range of epitopes within
ifferent viral antigens and restricted by different
LA types. The ICC assay, because it measures cy-
okine secretion by CMV-specific CD8� and CD4�

ymphocytes, is also a functional assay, although it
oes not assess the primary cytotoxic function of
D8� lymphocytes. Both the tetramer and ICC as-
ays have a role in the assessment of CMV-specific
ellular immune responses in immunocompromised
ndividuals. The data that have emerged from studies
o date suggest that immunologic assays will be of
alue in identifying individuals at risk for reactivation
nd disease and will be helpful in guiding future im-
unotherapeutic interventions.
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