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a b s t r a c t

In this note, a common quadratic Lyapunov function is explicitly calculated for a linear
hybrid system described by a family of simultaneously triangularizable matrices. The
explicit construction of such a function allows not only obtaining an estimate of the
convergence rate of the exponential stability of the switched system under arbitrary
switching but also calculating an upper bound for the output during its transient response.
Furthermore, the presented result is then extended to the casewhere the system is affected
by parametric uncertainty, providing the corresponding results in terms of the nominal
matrices and uncertainty bounds.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis and control of switched systems have attracted much interest during the last decade [1–4]. As pointed
out in [1,5], there are three main problems concerned with switched systems, namely: (1) to find conditions for stability
(especially asymptotic and exponential) for arbitrary switching signals (i.e. not being constrained to a dwell time [3]);
(2) to identify the class of switching signals which provides stabilization; and (3) to construct stabilizing switching laws.
The first problem has attracted considerable interest since a switched system stable under any switching law offers a great
flexibility when designing a control scheme and it is the one considered in this work. In particular, we will consider the
linear continuous-time switched system:

ẋ(t) = Aσ(t)x(t)

y(t) = CTx(t)
(1)

where x ∈ Rn and Aσ(t) ∈ Awith

A =
{
A(i)(pi) ∈ Rn×n : pi ∈ Pi ⊆ Rni , i ∈ N̄ = {1, 2, . . . ,N}

}
≡
{
Ap; p ∈ P

}
which defines a finite set of real matrices, each one being potentially parameterized by a vector pi belonging to a compact
subset Pi ⊆ Rni for i ∈ N̄ and P = N̄ × P1 × P2 × · · · × PN . The switching signal σ : [0,∞) → P is a piecewise
constant function which selects the element of A parameterizing the linear system (1) at each time instant. The second
notation introduced above for A will be used throughout the note for the sake of simplicity. Also, it will be assumed
that A is a compact set with respect to the usual topology of Rn×n (generated by any induced norm on Rn×n) and that
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all the matrices in A are strictly stable (i.e., all their eigenvalues with negative real parts) [6]. Earlier works (e.g., [7])
showed that commutativity relations withinA played an important role in guaranteeing the stability of (1) under arbitrary
switching. In this sense, a set of pairwise commuting matrices allows constructing a common Lyapunov function which
guarantees the exponential stability of (1). Moreover, the works in [8,9] showed that the simultaneous triangularizability
ofA is sufficient for exponential stability under arbitrary switching. This fact can be easily understood by converting all the
matrices to their common triangular form and solving the resulting system starting from the last state vector component up
to the first one (see, e.g., [6]). Thus, a number of simultaneous triangularizability conditions have been investigated in the
literature concerning switched systems including the well-known Lie-type algebraic ones [5,6,10]. Moreover, the reader
can consult [11] for a comprehensive treatise on simultaneous triangularizability of matrices where a great number of
criteria along with their proofs are collected. However, it is of interest to calculate a common Lyapunov function (eventually
quadratic) for such a system (1). In [6], the problem of obtaining such a common Lyapunov function is treated. Nevertheless,
the construction performed in [6] has an important drawback concerned with the complexity of the explicit calculation
of the Lyapunov function which requires evaluating the principal minors of a (generally) n × n matrix. The technique
developed in [6] is also used in [5] to prove the stability of mixed continuous–discrete-time systems and in [4] to discuss
the convergence rate of exponentially stable switched systems. Additionally, a similar technique is used in [8] related to the
joint spectral radius calculation for a family of simultaneously triangularizable matrices.
In this note, a mathematical construction alternative to that included in [5,6,8,4] for a common quadratic Lyapunov

function for a set of simultaneously triangularizable switched system is presented. To this end, the set of matrices is
represented in a special basis where simultaneous triangularizability with all the off-diagonal elements as small as desired
is achieved. Apart from the intrinsic mathematical interest of the easy calculation of a common Lyapunov function, the
approach allows us to estimate the worst case convergence rate for the exponential stability of the switched system.
Moreover, the method presented goes one step further since it provides not only an estimate of the convergence rate but
also a complete upper bounding to the norm of the state whence an estimate of the maximum amplitude of the transient
behavior of the output can be extracted.
The note is organized as follows. Section 2 establishes the existence of a particular basis where the upper triangular

matrices satisfy a certain property. Exponential stability results are introduced and proved in Section 3 on the basis of the
facts presented in Section 2. Robustness issues are considered in Section 4 while a simulation example is commented on in
Section 5. Finally, conclusions end the note.
Throughout the note, A∗ denotes the conjugate transpose of A and λi(∗) the i-th eigenvalue of (*).

2. Simultaneous triangularization

This section establishes the concept of a set of simultaneously triangularizable matrices and introduces the special basis
used for subsequent developments. Despite the definitions and results being quite standard, they are summarized in this
section in order to make the note self-contained.

Definition 1. LetA =
{
Ap; p ∈ P

}
be a set of matrices. Then,A is said to be simultaneously triangularizable if there exists

an (in general) complex nonsingular transformation T such that Ãp = TApT−1 is upper triangular for all p ∈ P ,

Ãp =

λ1(Ap) · · · ã(p)ij
...

. . .
...

0 · · · λn(Ap)

 (2)

where λi(Ap); i = 1, . . . , n, denote the eigenvalues of Ap. �

Note that the common triangularization property does not ensure either that the absolute values of all the nonzero
entries of the off-diagonal lie below a prescribed upper bound or that all the associated dynamic systems (1) via (2) possess
a common Lyapunov function. The following linear algebra proposition, proved here for convenience, is the starting point
of the subsequently presented results:

Proposition 1. Let A =
{
Ap; p ∈ P

}
be a compact set of simultaneously triangularizable matrices and ε > 0 arbitrary. Then,

there exists a complex nonsingular transformation T = T (ε) such that Ãp = TApT−1 is upper triangular with
∣∣∣ã(p)ij ∣∣∣ < ε for j > i

and all p ∈ P .

Proof. If A is simultaneously diagonalizable, then the proposition is true with ε = 0. Thus, consider the nontrivial case
when it is simultaneously triangularizable but not diagonalizable. Hence, there exists a nonsingular complex transformation
matrix Q and a basis V = {v1, . . . , vn} such that Āp = QApQ−1 is upper triangular for all p ∈ P . Now, define a new basis
W = {w1, . . . , wn} by wi = vi/r i with r ∈ R, r 6= 0, for the case n ≥ 2. The matrix of each linear transformation Ãp with
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respect to this basis can be calculated for all p ∈ P as

Ãpwi = Ãp
vi

r i
=
1
r i
Ãpvi =

1
r i

(
λivi +

i−1∑
j=1

a(p)ij vj

)
= λiwi +

i−1∑
j=1

a(p)ij
1
r i−j

wj

for i = 2, 3, . . . , n. It can be seen that the above equation defines the elements of (2) with ã(p)ij = a
(p)
ij

1
r i−j
. It is clear that the

choice |r| > max1 ≤ i, j ≤ n
p ∈ P

∣∣∣a(p)ij ∣∣∣
ε
would lead to off-diagonal entries being smaller than any prescribed ε for all p ∈ P . �

The property of ε being as small as desired will allow us to construct a common Lyapunov function and to obtain an
estimate of the upper bounding to the state of the switched system in the following Section 3 in an easy way.

3. Common Lyapunov function calculation

In this section we concentrate on applying Proposition 1 to explicitly construct a common Lyapunov function in a
mathematical setting alternative to that investigated in [5,6,4] which also allows us to obtain an explicit bound to the norm
of the solutions to (1).

Theorem 1. Let A =
{
Ap; p ∈ P

}
be a compact set of simultaneously triangularizable strictly stable real n × n matrices and

ε ∈
(
0, 2µ

(n−1)

)
with µ = min p ∈ P

1 ≤ i ≤ n

∣∣Reλi (Ap)∣∣ > 0. Then,A possesses a common Lyapunov function and there exists a real
constant k = k(ε) > 0 such that any solution of (1) satisfies ‖x(t)‖ ≤ ke−(µ−

ε
2 (n−1))t = k′e−(µ−

ε
2 (n−1))t ‖x(0)‖ under any

switching rule.

Proof. Firstly, it will be proved that there exists a function V (t) = zT(t)Pz(t) such that it is a common Lyapunov function
for the complete family:

ż(t) = Ãpz(t); p ∈ P (3)

with Ãp being defined by Proposition 1 through the nonsingular time-invariant state transformation z(t) = T (ε)x(t).
Without loss of generality, let Ãp be the matrix with the largest absolute eigenvalue for p ∈ P . The time derivative of V

is V̇ (t) = zT(t)
(
Ã∗pP + PÃp

)
z(t). As is well-known (see, e.g., [12]) the Lyapunov equation

Ã∗pP + PÃp = −I (4)

provides a tighter estimate of the convergence rate for the exponential stability of Ãp than any other choice for the negative
definite matrix in the right-hand side of (4). Then, according to Proposition 1,

Wp = Ãp − Dp =


0 ã(p)12 · · · ã(p)1n
...

. . .
...

...
. . . ã(p)n−1,n

0 · · · · · · 0


with

∣∣∣ã(p)ij ∣∣∣ < ε where Dp = diag(λ1(Ãp), . . . , λn(Ãp)).
Therefore, the left-hand side of (4) becomes(

D∗p +W
∗

p

)
P + P

(
Dp +Wp

)
=
(
D∗pP + PDp

)
+
(
W ∗p P + PWp

)
(5)

Now, consider the solution to the auxiliary Lyapunov equation D∗pP + PDp = −I ,

P =
∫
∞

0
eD
∗
p teD

t
pdt =

∫
∞

0
e(D
∗
p+Dp)tdt = diag

(
1

2
∣∣Reλ1(Dp)∣∣ , . . . , 1

2
∣∣Reλn(Dp)∣∣

)
> 0 (6)

due to
[
Dp,D∗p

]
= 0, since they are diagonal matrices and every matrix is strictly stable. The original Lyapunov equation (5)

becomes

Ã∗pP + PÃp ≤ −I + λmax(P)
(
W ∗p +Wp

)
= −I + λmax(P)

 0 · · · ã(p)ij
...

. . .
...

ã(p)∗ij · · · 0

 ≤ −I + ελmax(P)∆ (7)
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with∆ =

0 · · · 1
.
.
.

. . .
.
.
.

1 · · · 0

. This matrix possesses two distinct eigenvalues, namely,−1 with multiplicity (n− 1) and (n− 1)
with multiplicity unity. Hence, (7) is written as

Ã∗pP + PÃp ≤ −I + λmax(P) (n− 1) εI (8)

so for ε < 1
(n−1)λmax(P)

the right-hand side of (8) is still negative definite. Furthermore, if ε is arbitrarily small, which can
be easily achieved according to Proposition 1, the left-hand side of (8) is arbitrarily near to the negative identity matrix.
Furthermore, it will be shown that V is indeed a Lyapunov function for any Aq ∈ A. For this, consider

Ã∗qP + PÃq =
(
D∗qP + PDq

)
+
(
W ∗q P + PWq

)
(9)

since Ãq = Dq +Wq. Thus,

D∗qP + PDq = PD
∗

q + PDq = diag

 Reλ1(Ãq)∣∣∣Reλ1(Ãp)∣∣∣ , . . . ,
Reλn(Ãq)∣∣∣Reλn(Ãp)∣∣∣

 = −Qq < 0 (10)

for all q ∈ P since all the matrices inA are strictly stable. Then,

Ã∗qP + PpÃ = −Qq +
(
W ∗q P + PWq

)
≤ −Qp + λmax(P)

(
W ∗q +Wq

)
≤ −Qp + µε∆. (11)

As before, for the so defined ε, the right-hand side of (11) is still negative definite and V is a common Lyapunov function for
A. In conclusion, it has been proved that (3) possesses a common Lyapunov functions since the above result holds for any
q ∈ P . Finally,

− V̇ ≥ (1− λmax(P) (n− 1) ε) zTz ≥
1− λmax(P) (n− 1) ε

λmax(P)
zTPz = γ V (12)

with γ = 1−λmax(P)(n−1)ε
λmax(P)

> 0 for 0 < ε < 1
(n−1)λmax(P)

. Thus,

− V̇ ≥ γ V ⇔ V̇ + γ V ≤ 0⇒ V (t) ≤ V (0)e−γ t . (13)

Note that λmax(P) = 1
2min1≤i≤n|Reλi(Ãp)|

and, therefore, γ2 = min1≤i≤n
∣∣∣Reλi(Ãp)∣∣∣− ε

2 (n− 1) in (13). Hence, since Ãp is the

matrix corresponding to the largest (negative) eigenvalue, µ = min1 ≤ i ≤ n
p ∈ P

∣∣∣Reλi(Ãp)∣∣∣ which is well-defined due to the
compactness ofAand γ

2 = µ−
ε
2 (n− 1). Finally, undoing the state transformation

x(t)TT TPTx(t) ≤ V (0)e−γ t ⇒ ‖x(t)‖2 ≤
(
x(0)T TPTx(0)
λmin(T TPT )

)1/2
e−

γ
2 t .

where T = T (ε) and, finally, using the fact that all the norms in a finite dimensional space are equivalent, the desired result
is obtained. �

Remarks. 1. Note that the current explicit construction of the Lyapunov function for the original system (1) relies on the
knowledge of the transformation matrix T . However, if the set of matrices is simultaneously triangularizable, then the
convergence rate is calculated by routinely numerical dominant eigenvalue computation since the convergence rate
depends on such an eigenvalue but not on T .

2. The method goes one step further since the constant k(ε) upper bounding the norm of the state is explicitly given by

k(ε) =
(
x(0)T TPTx(0)
λmin(T TPT )

)1/2
(14)

which depends on the transformationmatrix. Taking into account that y(t) = CTx(t) implies |y(t)| ≤ ‖C‖2 ‖x(t)‖2, then
the knowledge of the transformation matrix along with the proposed approach permits us to obtain an estimate of the
maximum amplitude of the transient response of the output (which does not depend on the specific choice for the basis
of the state variables). In fact, the maximum amplitude of the output is given by |y(0)| ≤ ‖C‖2 ‖x(0)‖2 ≤ ‖C‖2 k(ε) due
to the exponential convergence of the norm of the state to zero. Therefore, a tight estimate of the maximum amplitude
can be obtained by minimizing k(ε). Hence, this explicit construction of the Lyapunov function allows obtaining this
extra information for system (1) which is not available from the mathematical approaches in [5,6,4].
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3. Note that the upper bounding of the state normgiven by Theorem1 also holds if ε > 2µ
n−1 . However, the upper bounding is

divergent in that case since it corresponds to an exponential with positive exponent and it is not adequate for calculating
a convergence rate for the system’s trajectories.

4. The compactness assumption on A can be relaxed to a boundedness one. In this case, the maximum and minimum
operators are substituted by the supremum and infimum ones, respectively, in the above equations. �

Note that the approach presented does not require evaluating all the minors of the matrices Ãp for all p ∈ P , in contrast
to the method presented in [6,4], to obtain a solution to the Lyapunov equation (4). Since calculating the determinant of an
m×mmatrix involves the sum ofm! terms, the saving in computationwith the proposed approach is apparent. Additionally,
the so constructed Lyapunov function provides us easily with an estimate of the upper bound for the state norm, which is
difficult to obtain following the guidelines in [6,4]. Furthermore, the skeleton proof of Theorem 1 suggests the following
result on exponential stability of switched systems, whose conditions are easy to verify a priori.

Theorem 2. Let A =
{
Ap; p ∈ P

}
be a set of strictly stable real n×nmatrices satisfying Ap = Aq+εΛpq for a sufficiently small

ε > 0 with
∥∥Λpq∥∥ <∞ for all p, q ∈ P . Then, (1) is exponentially stable under any switching law.

Proof. It is now proven that all the members of A possess, at least, a common Lyapunov function. For this, fix p ∈ P and
solve the Lyapunov equation ATpPp + PpAp = −I . Then, Vp = x

TPpx is a Lyapunov equation for any other q ∈ P since

ATqPp + PpAq = A
T
pPp + PpAp + ε(Λ

T
pqPp + PpΛpq) = −I + ε(Λ

T
pqPp + PpΛpq). (15)

Thus, for a sufficiently small ε, the right-hand side of (16) is negative definite and Vp is a common Lyapunov function for
all matrices inA. Thus, the exponential stability of (1) under any switching rule is proved. �

4. Robustness issues

Consider now the casewhen the system is affected by parametric uncertainty. In this case, the exponential stability of the
system can still be guaranteed by merging the previously presented Theorems 1 and 2. For this, the following uncertainty
sets are defined:

Bp =

{
M ∈ Rn×n :

∣∣∣∣max1≤i≤n
Reλi(Ap)− max

1≤i≤n
Reλi(M)

∣∣∣∣ ≤ εp, εp ≥ 0} (16)

for every matrix Ap ∈ A and some fixed εp ≥ 0. These sets are composed of all the matrices whose maximum eigenvalue is
nearer than the prescribed bound εp to the maximum eigenvalue of Ap and corresponds to the presence of an uncertainty in
each matrix Ap ∈ A. Hence, the setA constitutes the set of nominal matrices andBp denotes the uncertainty in the matrix
Ap ∈ A. Note, in particular, that Ap ∈ Bp and all the matrices in Bp are strictly stable. Then, the extended uncertainty set
can be defined by B = ∪p∈P Bp which is a covering of the original nominal set A?. Hence, the system parameterizations
(1) in the presence of uncertainty turn out to be Aσ(t) ∈ B. Thus, with the above notation:

Theorem 3. Let A =
{
Ap; p ∈ P

}
be a compact set of simultaneously triangularizable strictly stable real n × n matrices,

ε ∈
(
0, 2µ

(n−1)

)
with µ = min p ∈ P

1 ≤ i ≤ n

∣∣Reλi (Ap)∣∣ > 0 and B defined above. Define ε∗ = maxp∈P εp. Then, there exists a

real constant k(ε) > 0 such that any solution to (1) with Aσ(t) ∈ B satisfies ‖x(t)‖ ≤ ke−(µ−
ε
2 (n−1)−ε

∗)t ‖x(0)‖ under any
switching rule provided that ε∗ < µ− ε

2 (n− 1). �

The proof can be sketched by following the same steps as are given in the proof of Theorem 1 and the result presented
in Theorem 2 and, therefore, it is omitted here.

5. Simulation example

Consider the switched linear system (1) with simultaneously triangularizable parameterizations Ap = Q ÃpQ−1, p = 1,
2, 3 with CT =

[
1 0 0

]
and

Ã1 =

(
−1 2 3
0 −2 −1
0 0 −3

)
, Ã2 =

(
−1.5 6 4
0 −1.5 1
0 0 −5

)
,

Ã3 =

(
−2.5 1 −2
0 −2.4 0
0 0 −3

)
and Q =

( 1 −1 3
−2 1 1
−1 −1 10

)
.

In this case, the set of potential parameterizations of the system is composed of three different constant matrices indexed
by the discrete index p = 1, 2, 3. The switching sequence is arbitrary. The evolution of the state of the switched system (1)
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Fig. 1. Upper bounding of the state norm.

Fig. 2. Graphical representation of k(ε).

defined by the above matrices through time is upper bounded by the function x̄(t) = 2 × 104e−0.9t with ε = 0.1 as
shown in Fig. 1 where, according to Theorem 1, the estimate of the worst case convergence rate is slightly smaller than the
maximum eigenvalue of the set Ap, p = 1, 2, 3. Note that the selection of ε satisfies the requirements of Theorem 1 since
ε = 0.1 < 2µ

(n−1) = 1 from the eigenvalues of Ap, p = 1, 2, 3, above. Furthermore, from Fig. 2 it can be appreciated how the
selection of ε near zero implies a large estimate of themaximumamplitude of the transient responsewhich is of about 20000
in the example. Along with the convergence rate, the proposed approach permits obtaining an estimate of the maximum
transient amplitude. For this, the value of k(ε) is to be minimized with respect to ε. This can be done analytically, since
the transformation matrix is known, or it can be easily performed by numerical optimization. Fig. 2 shows the graphical
representation of k(ε). It can be appreciated that the function possesses a minimum at about ε ≈ 1.74 corresponding
to a value of k(ε) ≈ 2520. Hence, the maximum amplitude for the state for any switching law (which would lead to a
correspondingmaximum amplitude in the output in this example) corresponds to 2520. Note that themaximum amplitude
for the output in the example is smaller that the presented bound. In conclusion, the proposed novelmathematical approach
provides simultaneously an explicit, easy-to-calculate, Lyapunov function, the estimate of the worst case convergence rate
and an estimate of the maximum amplitude of the output. Note that the minimization is performed on ε ∈ [0,∞). This
can be done because the selection of ε does not threaten stability, which implies that the maximum is still at t = 0, while
Remark 3 holds.
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6. Conclusions

In this note, an explicit calculation of a common quadratic Lyapunov function for a continuous-time switched system is
developed. The calculation is based on a new approach and consequently allows calculating not only the convergence rate,
but also an estimate of the maximum amplitude of the transient response in the worst case (for arbitrary switching signal).
Finally, the proposed method is extended to the presence of parametric uncertainties.

Acknowledgements

The authors are grateful to the Spanish Ministry of Science and Technology for its partial support of this work through
grants DPI2007-63356, DPI2006-00714 and to the Basque Government by its support of this work via grant no. IT-269-07.

References

[1] D Liberzon, A.S Morse, Basic problems in stability and design of switched systems, IEEE Control Syst. Mag 19 (10) (1999) 59–70.
[2] C.Z. Wu, K.L. Teo, V. Rehbock, Well-posedness of bimodal state-based switched systems, Appl. Math. Lett. 21 (8) (2008) 835–839.
[3] A. Ibeas, M. de la Sen, Robustly stable adaptive control of a tandem of master–slave robotic manipulators with force reflection by using a
multiestimation scheme, IEEE Trans. on Sys., Man and Cyb., Part B 36 (5) (2006) 1162–1179.

[4] Z. Sun, R. Shorten, On convergence rates for simultaneous triangularizable switched systems, IEEE Trans. Automat. Control 50 (8) (2005) 1224–1228.
[5] G. Zhai, D. Liu, J. Imae, T. Kobayashi, Lie algebraic stability analysis for switched systems with continuous-time and discrete-time subsystems,
IEEE Trans. Circuits and Sys.—II: Express Briefs 53 (2) (2006) 152–156.

[6] D. Liberzon, J.P. Hespanha, A.S. Morse, Stability of switched systems: A Lie algebraic condition, Systems and Control Letters 37 (1999) 117–122.
[7] R. Shorten, K.S. Narendra, O. Mason, A result on common quadratic Lyapunov functions, IEEE Trans. Automat. Control 48 (1) (2003) 110–113.
[8] J. Theys, Joint spectral radius: Theory and approximations, Ph.D. Dissertation, Université Catholique de Louvain, 2005.
[9] Changzhi Wu, Kok Lay Teo, Rui Li, Yi Zhao, Optimal control of switched systems with time delay, Appl. Math. Lett. 19 (10) (2006) 1062–1067.
[10] A.A. Agrachev, D. Liberzon, Lie-algebraic stability criteria for switched systems, SIAM J. Control Optim. 40 (2001) 253–269.
[11] H. Radjavi, P. Rosenthal, Simultaneous Triangularization, Springer-Verlag, 2000.
[12] J.J. Slotine, W. Li, Applied Nonlinear Control, Prentice-Hall, 1991.


	Exponential stability of simultaneously triangularizable switched systems with explicit calculation of a common Lyapunov function
	Introduction
	Simultaneous triangularization
	Common Lyapunov function calculation
	Robustness issues
	Simulation example
	Conclusions
	Acknowledgements
	References


