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Abstract 

Chakravarti, I.M., Geometric construction of some families of two-class and three-class association 

schemes and codes from nondegenerate and degenerate Hermitian varieties, Discrete Mathematics 

111 (1993) 95-103. 

Taking a nondegenerate Hermitian variety as a projective set in a projective plane PG(2, s2), Mesner 

(1967) derived a two-class association scheme on the points of the affine space of dimension 3, for 

which the projective plane is the plane at infinity. 

We generalize his construction in two ways. We show how his construction works both for 

nondegenerate and degenerate Hermitian varieties in any dimension. 

We consider a projective space of dimension N, partitioned into an affine space of dimension 

N and a hyperplane +F of dimension N - 1 at infinity. 

The points of the hyperplane are next partitioned into 2 or 3 subsets. A pair of points a, b of the 

affine space is defined to belong to class i if the line ab meets the subset i of AD. 
In the first case, the two subsets of the hyperplane are a nondegenerate Hermitian variety and its 

complement. In this case, we show that the classification of pairs of affine points defines a family of 

two-class association schemes. This family of association schemes has the same set of parameters as 

those derived as restrictions of the Hamming association schemes to two-weight codes defined as 

linear spans of coordinate vectors of points on a nondegenerate Hermitian variety in a projective 

space of dimension N - 1. The relations of these codes to orthogonal arrays and difference sets are 
described in [S, 61. 

In the second case, the three subsets are the singular point of the variety, the regular points of the 

variety and the complement of the variety defined by a Hermitian form of rank N - 1. This leads to 
a family of three-class association schemes on the points of the affine space. A geometric construc- 

tion is first given for the case N = 3. 

Using a general algebraic method pointed out by the referee, we have also derived the three-class 
association scheme for general N. 
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1. Introduction 

The geometry of Hermitian varieties in finite-dimensional projective spaces has 

been studied by Jordan [ll], Dickson [9], Dieudonnt [lo], and, recently, among 

others, by Bose [1,2], Segre [13,14], Bose and Chakravarti [3] and Chakravarti [6]. 

In this paper, however, we have used the results given in [3,6]. 

If h is any element of a Galois field GF(s*), where s is a prime or a power of a prime, 

then I?= h” is defined to be conjugate to h. Since h”’ = h, h is conjugate to I% A square 

matrix H=(hij), i,j=O, 1, . . . . N, with elements from GF(s*) is called Hermitian if 

hij=h,i for all i,j. The set of all points in PG(N,s’) whose row vectors xT= 

(x0, x1, . . , xN) satisfy the equation xTHx (‘) = 0 are said to form a Hermitian variety 

vN-l, if H is Hermitian and x(‘) is the column vector whose transpose is 

(xi, x;, , XL). The variety V’,_ 1 is said to be nondegenerate if H has rank N + 1. The 

Hermitian form xTHxCS) where H is of order N + 1 and rank r can be reduced to the 

canonical form yOy, + ... +y,jl by a suitable nonsingular linear transformation 

x = Ay. The equation of a nondegenerate Hermitian variety VN- 1 in PG(N, s2) can 

then be taken in the canonical form x;+l +x?+’ + ... +xsNf ’ =O. 

Consider a Hermitian variety VN- 1 in PG(N, s*) with equation xTHxCS)= 0. A point 

C in PG(N, s*) with row vector cT = (co, cl, . . . , cN) is called a singular point of VN _ 1 if 

cTH = OT or, equivalently, HdS) = 0. A point of V,_ 1 which is not singular is called 

a regular point of VN_ 1. Thus, a nonsingular point is either a regular point of V,_ 1 or 

a point not on VN_ 1. It is clear that a nondegenerate VN_ 1 cannot possess a singular 

point. On the other hand, if VN_ 1 is degenerate and rank H = r < N + 1, the singular 

points of V,_, constitute a (N--)-flat called the singular space of VNwl. 

Let C be a point with row vector c T. Then the polar space of C with respect to the 

Hermitian variety V,_ 1 with equation xTHx (‘I = 0 is defined to be the set of points of 

PG(N, s*) which satisfy xTHdS) = 0. 

When C is a singular point of ?‘,,-I, the polar space of C is the whole space 

PG(N,s’). When, however, C is either a regular point of V,_, or an external point, 

xTHdS)=O is the equation of a hyperplane which is called the polar hyperplane of 

C with respect to VN_l. Let C and D be two points of PG(N,s*). If the polar 

hyperplane of C passes through D, then the polar hyperplane of D passes through C. 

Two such points C and D are said to be conjugates to each other with respect to V,- 1. 

Thus, the points lying in the polar hyperplane of C are all the points which are 

conjugates to C. If C is a regular point of VNel, the polar hyperplane of C passes 

through C; C is, thus, self-conjugate. In this case, the polar hyperplane is called the 

tangent hyperplane to V, _ 1 at C. 

When V,_ 1 is nondegenerate, there is no singular point. To every point, there 

corresponds a unique polar hyperplane, and, at every point of VN_ 1, there is a unique 

tangent hyperplane. If C is an external point, its polar hyperplane will be called 

a secant hyperplane. 

The number of points in a nondegenerate Hermitian variety V,_ 1 in PG(N, s2) is 

@(N,s2)=(sN+’ -(- l)N+l)(s‘+-(- l)N)/(s2- 1). 
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A polar hyperplane YN _ 1 of an external point 9 (also called a secant hyperplane) in 

PG(N,s2) intersects a nondegenerate Hermitian variety V&r in a nondegenerate 

Hermitian variety VNd2 of rank N. It has (.sN-(- l)“‘)(sN-‘-(- l)“-‘)/(s2-1) 

points. 

A tangent hyperplane &_ I to a nondegenerate vN_ 1 at a point C intersects 

I& 1 in a degenerate f$+ 2 of rank N - 1. The singular space of & _ 2 consists of the 

single point C. Every point of vV_ 2 lies on a line joining C to the points of 

a nondegenerate VNe3 lying on an (N-2)-dimensional flat disjoint with C. 

The number of points in a degenerate Hermitian variety f+ _ 1 of rank r < N + 1 in 

PG(N,s2)is(s2-l)f(N-r,s2)~(r-1,s2)+f(N-r,s2)+~(r-1,s2),wheref(k,s2)= 

(s 2(k+1)- l)/(s’- 1). Thus, the number of points in a degenerate VNmz of rank N - 1 is 

(~~-l)f(O,s~)@(N-2,s~)+f(O,s~)+@(N-2,s~) 

= 1 +(sN_’ -(- 1)“~‘) (sN-2 -(- 1)‘+2)s2/(s2- 1). 

For the definition of an association scheme and related results, see [4]. 

2. Two-class association scheme from a nondegenerate Hermitian variety 

in PG(N-I, s2) 

Let VN-2 be a nondegenerate Hermitian variety defined by the equation 

x~+‘+x~+‘+~~~+x;tf-‘,=0, 

in 3 = PG(N - 1, s2). Consider Y? as the hyperplane at infinity in a PG(N, s2). Then 

the affine space complementary to 2 in PG(N,s2) is EG(N,s’). 

Suppose do is a point on vN_ 2. The tangent hyperplane r(d,) at do intersects 

VN _ 2 in a degenerate VN j, with do as the point of singularity. Vi _ 3 consists of do and 

all the points on the lines joining do to the points of a nondegenerate Hermitian 

variety f&4. Thus, the number of generator lines through do is the same as the 

number of points on V,V_4, which is 

(s N-2-(_ f)N-2)(sN-3_(_ f)N-3)/(S2_f). 

The number of tangent lines through do is equal to the number of lines in 5(d,,) 

through cl0 minus the number of generator lines through do, i.e. 

(s 2~-4_ l)/(s2_ l)_(g-2_(_ 1)N-2)(s~-3_(_ 1)~-3)/(~2_ 1) 

= 
(s ““~5+(-S)N~3)/(S+ 1). 

The number of secants (lines which are neither tangents nor generators) through do 

is equal to the number of lines through d, in PG(N - 1, s2) minus the number of lines 

through do on Y((clO), i.e. 

(s 2Nm2_ f)/@._ l)_(sZNp4_ l)/@- 1)=s2~-4 
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Each secant line meets V, _ 2 at s + 1 points. 

Suppose d is an external point of 2, that is, a point of 2 which is not on V,_ 2. The 

polar of d intersects VN _ 2 in a nondegenerate Hermitian variety VN _ 3. Each one of the 

points on VN_ 3 is conjugate to d. Hence, the tangent hyperplanes at each one of these 

points will pass through d. Thus, the number of tangent lines through d is the same as 

the number of points conjugate to d, which is 

(S “-‘-(-l)N-1)(sN-2_(_1)N-l)/(s2-1). 

Hence, the number of secant lines through d is 

=S 
N-2 

(S “-‘-(-l)N-l)/(S+l). 

Define two points a and b of EG(N, s2) to befirst associates if the line ab meets 2 at 

a point of f+_ 2, and second associates if the line ab meets L@ at an external point of 3’. 

Then 

p:1(a,b)=(s2-2)+s2(s2-l) 6 N-2_(_1)N-2)(sN-3_(_1)N-3) 

s2-1 

+ s(s- l)s2N-4 

which is independent of the pair of points a and b. 
Also, 

dl(a,b)=s(s+ 1) 
sN-2(sN-1_(_1)N-l) 

s+l 

which is again independent of the pair of points a and b. Thus, this is a two-class 

association scheme with 

V=S2N, n, =(sN-(- l)N)(sN-’ -(- l)“-‘), 

P ~1=s2N-2-(-~)N-1(~-l)-2 and pfl=s2N-2-(-s)N-1. 

We now recall how a two-weight code C in s2 symbols is generated from the 

nondegenerate Hermitian variety f$_, in PG(N- 1,s’). This variety has 

I”‘,;- l)N)(s “-‘-(-l)“-‘)/(s2-l)=n (say) points. Consider a matrix G=(gij), 

) )...) N-l,j=l,..., n, whose columns are the coordinate vectors of the n points 

on VN_2. The code words of C are c’G, where c’=(co,cl, ...,cN_I)l ci~GF(S2). Then 

C is a projective linear code (n, k= N). Since a tangent hyperplane meets vN-2 at 

1 +(sN-l -(- f)N-2)($‘-3 -( - 1)N-3)s2/(s2 - 1) points and a secant hyperplane 
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meets VN_2 at (sN-l -(- 1)N-1)(~N-2 -( - 1)N-2)/(~2 - 1) points, the code C has only 

two distinct nonzero weights w~=s’~-~ and w~=s~~-~+(-s)~-~ with respective 

frequencies 

fW,=(~N-(-l)N)(~N-l-(-l)N-l) and fW,=(~-l)(~2N-1+(-~)N-1). 

(For details, see [S, 71.) 

Now, from a result due to Delsarte [S], it follows that the projective linear code C in 

s2 symbols determines a projective linear code C’ in s symbols, with parameters n’ = 

(SN-(- l)N)(s”_’ -(-l)N-l)/(s-l), k=2N, w;=s~~-~, ,;=~~~-~-(-s)~-‘, 

f_,; =(sN-(- l)N)(sN_’ -(-l)N-l) andf,;=(s-l)(~~~-~+(-s)~-~). 

The graph on s2N vertices corresponding to the code words of C’ over GF(s) 

is strongly regular, that is, it is the graph of a two-class association scheme with 

parameters [7] 

u=sZN, nl=(sN-(-l)N)(sN-l-(-l)N-l), 

pi1 ,s2N-2 -(-s)~-‘(s- l)-2 and pfl =s’~-~-(-s)~-~. 

This is the restriction of the Hamming association scheme A?,,,(s) to the code C’, which 

has the same parameters as the one derived earlier by a Mesner-type construction. 

3. Three-class association scheme from a degenerate Hermitian variety 

in PG(3, s2) 

Let V2 be a nondegenerate Hermitian variety in PG(3,s’). Let VT denote the 

degenerate Hermitian variety which is derived as an intersection of V2 with one of its 

tangent planes, say, Y=PG(2,s2) at the point C on V,. Then C is the point of 

singularity of Vy. V(: consists of C and the points on lines joining C to the points of 

a nondegenerate VO, which has s+ 1 points. Thus, the number of points on Vy is 

1 +?(s+ 1)= 1 +s2+s3. 

The points on PG(3,s2) which are not on Y form a 3-dimensional affine space 

EG(3, s’), which has s6 points. Every line of EG(3, s2) meets r (the plane at infinity) 

exactly at one point. 

Two points a and b of EG(3, s2) are defined to be$rst associates if the line ab joining 

u and b meets F at a regular point of Vy, second associates if the line ab meets Y at 

a point external to Vy, and third associates if the line ab passes through the point of 

singularity C. To show that this defines a three-class association scheme, we do 

enumerations and use geometric arguments similar to those of Mesner [12]. 

Since there are s3 + s2 + 1 points on V’f, of which only one point C is singular, the 

remaining s3 + s2 are regular points. Thus, the number of first associates of a given 

point is 

n, =(s3+s2)(s2- 1). 
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Now the number of points on F which are external to Vy is (s4 + s2 + 1) - (s3 + sz + 1) = 

s4-s3. Thus, the number of second associates of a given point is 

n2=(s4-S3)(S2- 1). 

The number of third associates of a given point a is equal to the number of affine 

points (other than a) on the line joining a to C; hence, n3 = s* - 1. 

The following results, which we need for proving the constancy of the parameter 

p$(a, b), can be found in [3,6]. 

(i) There are s+ 1 lines through C, the point of singularity, which are generators, 

that is, each line intersects Vy at s* points other than C. The remaining s* - s lines on 

F-, passing through C, are tangent lines at C, that is, each line meets V(: only at C. 

(ii) Suppose D is a regular point on V t, that is, D#C. Then there is exactly one 

generator through D, DC, which meets Vy at s* + 1 points and there are s2 lines 

through D and r, which are secants, that is, each line meets Vy at s+ 1 points. 

(iii) Suppose D is a point on the plane F, but external to Vy. Then DC is a tangent 

to Vy at C, that is, it meets Vy only at C. The remaining s* lines through D on 9 are 

all secants, that is, each line meets Vy at s+ 1 points. 

Let fD(u) denote the number of lines on F passing through D, each one of which 

meets Vy at exactly u points, u=O, 1, . . ..s*+ 1. 

Suppose a and b are first associates, that is, the line ab meets Vy at a regular point 

D (DZC). Then 

where s2 - 1 is the number of affine points on the line ub, (s2 - l)(s* - 2) is the number 

of ordered pairs of points (e, f) that one can form from the s2 - 1 points (other than 

C and D) on the generator C, D. The intersection of the lines ZZ and bf is an affine 

point which is a first associate of both a and b. Similarly, each secant contributes 

s(s- 1) affine points which are first associates of both a and b. But there is only one 

generator through D and s* secants through D. Thus, 

fD(s2+1)= 1 and fD(s+ l)=s’. 

Hence, 

p;1(a,b)=s2-2+(s2- l)(s*-Z)+s(s- 1)s’ 

=s2(2s2-s-2) 

which is independent of a and b. 

Suppose now that the line ab meets F at a point D not on Vy. Then a and b are 

second associates. Let us calculate p:r (a, b). Through D, there are (s* + 1) lines, of 

which one, namely CD, is a tangent to Vy and the other s2 lines are secants to Vy, that 

is, each line meets V? at s+ 1 points. 
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Hence, 

which is independent of a and b. 

Now suppose that the line ab meets V? at C. Thus, a and b are third associates. 

Through C, there are S + 1 generator lines each one of which meets Vy at s2 + 1 points 

including C. The remaining sz -s lines through C on .Y are tangents. That is, each line 

meets V’f only at C. Thus, 

In this manner, using the geometric results quoted before, we have calculated all the 

&(a, b), i,j, k = 1,2,3 parameters and these are independent of the pair of points a 

and b. Hence, this is a three-class association scheme. The parameters are 

n3=s2- 1, L’=.P, n, =(s3+s2)(s2- l), n2=(s4-s3)(s2- l), 

P1 =(Pili)= 

[ 

2s4-s3-2s2 s5-s4 s2-1 

s5-s4 s3(s2 -s- l)(s- 1) 0 

s2-1 0 0 

; 

s3(s+ 1) ?(s+ l)(s2-s-l) 0 

P,=(P~j)= S2(S+1)(S2-S-1) S2(S2-2)+(S’-S-l)(S2-S-2)S2 S2-1 ) 

0 s2-1 0 1 

s2(? 

[ 

- l)(s+ 1) 0 0 

P3=(P,?j)= 0 s3(s2 -l)(s-1) 0 . 

0 0 s2-2 1 

The linear span of the coordinate vectors of the points of the degenerate Hermitian 

variety Vy provides a three-weight projective code with s6 code words and 

n= 1 +s2+s3 (see [7]). The questions whether the restriction of the Hamming 

association scheme H,,(s) to this code provides a three-class association scheme and, if 

yes, whether the three-class association already derived is related to this code, are still 

unsettled. 

4. Three-class association scheme from a degenerate Hermitian variety 

in PG(N- I, s’) 

The association scheme in the previous section, has been derived using geometry. 

Here we use a general algebraic method pointed out by the referee, to construct 

a three-class association scheme on the points of EG(N,s’). 

Let A be the set of points {a =(x1, . . . , xN_i)}ofEG(N-1,s’)andBbetheelements 

of GF(s’). Then A x B= {(a, b)=(x 1, . . . , xN- 1; xN)} is the set of points of EG(N, s’). 
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The two-class association scheme on A defined in Section 2, is then extended to 

a three-class scheme on A x B as follows: 

(i) {(a, b), (a, b’)} are defined to be third associates if b # b’; 

(4 {(a, b), (a’, b’)} are ith associates if a # a’ and (a, a’) are ith associates, i= 1,2, in 

the scheme on A. It is easy to check that this is a three-class association scheme with 

parameters 

v=s2N, n, =s2(F1 _(_l)N-1)(sN-2_(_l)N-2), 

n2=(s-l)sN(sN-1-(-1)N-1), n3=s2-1, 

p;1 =S2(S2~-4 -(-$+2(S-1)-2), pi2 =(s- l)sZN-2, 

p:3=s2-1, p:2=(s-l)(szN-‘-s2N-2+(-s)N), 

P:J=o=P:,, 

p:l xs2N-2_(_4N, p:2=s~(1-(-s)N-2)((-s)N-i+(-s)~-2-1), 

p:2=sZ[((-s)N-1-2)+((-s)N-1+(-S)N~2-1)((-s)N-1+(-S)N-2-2)], 

PL =o, p;3=s2-1, P233 =o, 

Pf1 =b d2=n2, p:3=s2-1, 

p:2=p:3=p:3=o. 

It is not difficult to verify that this scheme is the same as the one that will be 

obtained by Mesner-type construction applied to a Hermitian variety defined by 

a Hermitian form of rank N- 1 in a PG(N - 1, s’). Three-weight codes C and C’ in s2 

and s symbols, respectively, derived from this degenerate Hermitian variety are given 

in [7]. 
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