Expression of Tob by Human Coronary Arteries and BMP-Mediated Stimulation of Coronary Artery Endothelial Cell Proliferation


Cedars-Sinai Medical Center, Los Angeles, CA, David Geffen School of Medicine at UCLA, Los Angeles, CA

Background: Little is known regarding the role of bone morphogenetic protein (BMP) signaling that control vascular cell growth during normal homeostasis and in arterial pathologies, notably atherosclerosis and arterial calcification. Here we tested the hypothesis that Tob, an antiproliferative protein that negatively regulates BMP signaling, is expressed in human coronary arteries and in cultured human coronary artery endothelial cells (ECs) and that BMP2 stimulates proliferation in cultured ECs.

Methods and Results: Immunohistochemical localization showed abundant expression of Tob in ECs of normal human arteries. We therefore determined expression of Tob and BMP receptor stimulation (BMPR-IIA, -IA, -II) in cultured ECs at baseline and stimulated with BMP2 (300 ng/mL for 6 hr). Experiments were also performed in the presence of the proteasome inhibitor epoxomicin that enhances BMP signaling by preventing degradation of BMP signaling proteins. Stimulation of Tob expression of Tob and BMP receptor (BMPR-IA-II, BMPR-II-A, BMPR-II-IA, and BMPRII-B). Stimulation of other BMP2 or epoxomicin resulted in a significant increase in expression of BMPRIIAA and BMPRII (ρ < 0.01 for both BMP2 and epoxomicin), but there was no change in Tob mRNA. Stimulation of ECs with either BMP2 or epoxomicin significantly increased proliferation measured by both a colorimetric proliferation assay (ρ < 0.001 for both BMP2 and epoxomicin; n = 5) and by proliferating cell nuclear antigen (PCNA) assay (ρ < 0.005 and 0.006; n = 3) after 48 hr in a dose-dependent manner. Toxicity was observed at high doses of epoxomicin. Conclusions: The antiproliferative BMP pathway affects both BMP and BMPR-IA and II are abundantly expressed by human coronary artery ECs both in vitro and in vivo. Expression of BMPRII is not inhibited by Tob transcripts are affected by both BMP2 and epoxomicin. BMP2 may regulate EC proliferation, suggesting a possible role in the growth of ECs during normal homeostasis and in arterial pathologies. Further experiments involving cell migration or proliferation. Since Tob has been implicated as an antiproliferative regulator in many other cell types, it may also regulate EC proliferation via a mechanism that is not dependent on altered transcription of Tob in response to BMP stimulation.

Atherogenic Low-Density Lipoprotein Impairs Vascular Endothelial Cell Survival by Disrupting the FGF2-FGFR3-Akt Autoregulatory Loop


Baylor College of Medicine, Houston, TX, The University of Texas M. D. Anderson Cancer Center, Houston, TX

Background: Atherogenic LDL, such as circulating electronegative LDL and oxidized LDL (oxLDL), can inhibit proliferation and induce apoptosis in vascular endothelial cells (EC). Fibroblast growth factor 2 (FGF2) stimulates phosphatidylinositol 3-kinase (PI3K), which in turn activates Akt, a protein kinase that regulates cell survival. This study was designed to investigate how oxLDL interferes with signal transduction along the FGF2-FGFR3-Akt pathway.

Methods: The interrelationship between FGF2 and Akt was examined in cultured bovine aortic EC (BAEC). To investigate further the role of endogenous FGF2 in EC survival, BAEC(FGF2(+)) and BAEC(FGF2(-)) cell lines were established by stable transfection of BAEC with FGF2 sense and antisense cDNAs.

Results: In cultured BAEC, oxLDL (50 μM) inhibited FGF2 transcription and Akt phosphorylation on Ser473 compared to untreated EC. Consistent with the cell-survival properties of A1, PI3K inhibitor wortmannin (25-200 nM) also inhibited FGF2 expression and induced apoptosis in a concentration-dependent manner. Stable overexpression of FGF2 in BAEC(FGFR2(-)) greatly enhanced Akt phosphorylation, rendering the cells resistant to oxLDL-induced apoptosis. Expression of endogenous FGF2 in BAEC(FGFR2(-)) led to increased Akt phosphorylation and enhanced spontaneous apoptosis. Inhibition of FGF2 protein synthesis by the antisense RNA also led to inhibition of FGF2 transcription in BAEC(FGFR2(-)), suggesting that endogenously produced FGF2 may be the most important stimulator of its own induction in the low-serum, mitogen-free culture system. Furthermore, G2/M transition in the cell cycle and DNA synthesis were severely inhibited in BAEC(FGFR2(-)) on limiting proliferation. In contrast, unlike the parental BAEC, BAEC(FGFR2(-)) were resistant to the inhibitory effects of oxLDL on G2/M transition and DNA synthesis.

Conclusion: EC survival depends on continuous activation of the PI3K-Akt pathway by endogenous FGF2, which is required for its own induction in the manner of an autocrine. Maintenance of the integrity of the FGF2/PI3K-Akt autoregulatory loop is essential for EC survival in the presence of atherogenic lipoproteins including oxLDL.

Homocysteine Induced Endothelial Cell Damage Through NF-κB Activation and Monocyte Chemoattractant Protein-1 and Vascular Cell Adhesion Molecule-1 Expression

Hae-Young Lee, Dae-Gyun Park, Hyo-Soo Kim, Young-Bae Park.

Seoul National University College of Medicine, Seoul, South Korea

Background & Aim: Homocysteine is known to damage endothelial cells by oxidative stress, most studies were however performed with excessively high concentration. In order to evaluate the action mechanism of homocysteine in clinically relevant concentration, S-adenosylhomocysteine (SAH) was induced intracellularly and NF-κB, the important transcriptional regulator for oxidative stress, and its downstream mediators, MCP-1 and VCAM-1 expressions, were evaluated.

Methods: SAH was formed in human umbilical vein endothelial cells (HUVECs) by administering homocysteine, adenosine, and ethyl-9-(2-hydroxy-3-nonyl) adenine to the culture media and HUVECs were incubated for 72 hours. Intracellular reactive oxygen species (ROS) formation was quantified by fluorescent intensity of dichlorofluorescin (DCF) with confocal microscopy. The proliferation and survival of HUVECs were evaluated by the Th(1)-Thymidine uptake and MIT assay. NF-κB activity, MCP-1 secretion and VCAM-1 expression were assayed by EMSA, ELISA and Western blot respectively.

Results: HUVECs showed atrophic change after intracellular SAH injection and the determination to time progression according to intracellular ROS production evaluated by DCF fluorescence increased. The cell proliferation rates evaluated by Th(1)-Thymidine uptake were decreased both in 40μM SAH group (148 ± 47 CPM) and 200μM SAH group (139 ± 50 CPM) (control=207 ± 22 CPM) and the cell survival rates evaluated by MIT uptake were decreased both in lower and higher SAH groups (156 ± 12 CPM and 106 ± 13 CPM) compared with control (185 ± 10 CPM).

NF-κB was activated by SAH induction, which was followed by increased MCP-1 secretion and VCAM-1 expression.

Conclusion: We have shown that homocysteine damaged endothelial cells even in clinically relevant concentrations through sustained exposure with intracellular SAH formation. And intracellular ROS production and NF-κB activity were observed and MCP-1 secretion and VCAM-1 expression might lead to inflammatory responses in SAH-treated endothelial cells. These data identified novel mechanism of homocysteine inducing endothelial cell damage.

Changes in Innate and Adaptive Humoral Immune Responses and Indices of Atherosclerosis in Aging

Kuang-Yuh Chyu, Paul C. Dimayuga, Stephanie M. Babbridge, Juliana Yano, Odette Reyes, Bojan Cercek, Prediman K. Shah, Cedars-Sinai Medical Center, Los Angeles, CA

Background: Immunization against atherosclerosis is a promising therapy but the natural course of immune responses against oxLDL during aging is not known. We hypothesized that aging alters innate or adaptive immune responses to oxLDL modulating the progression of atherosclerosis and plaque phenotype in apoE-/- mice. Methods: Mice on Western diet were sacrificed at 15-17, 36 or 50 weeks of age. Descending aorta was stained en-face for lipids. Plaque lipid, macrophage and collagen content were evaluated in the aortic sinus. Innate immune response was assessed using anti Cu-oxLDL, and anti-phosphocholine (PC) IgM and adaptive immune response to oxLDL was assessed using anti MDA-LDL and Cu-oxLDL IgG. Splenic cytokines were evaluated by RT-PCR. Result: (Table) Aging was associated with increased atherosclerotic burden and collagen content with decreased macrophage and plaque lipid. MDA-LDL IgG increased in the 36 weeks group but reduced in mice >52 weeks. Cu-oxLDL and PC-IgG increased significantly with age. Cross-reactivity to each descriptor (Cu-oxLDL) increased with age with no isotype specificity. Splenic T-helper cytokine mRNA expression also increased with age. Conclusion: Innate immune response as indicated by antibody titers to CuoxLDL and PC is associated with increased plaque sizes and a more stable phenotype.

Thrombin and Histidine Stimulate Phosphorylation of Endothelial Nitric Oxide-Synthase via an Akt-Independent, AMP-Activated Kinase-Dependent Pathway

Brynghild Thors, Haralur Haldorsson, Gudmundur Thorpejón, Institute of Pharmacy, Pharmacology and Toxicology, University of Iceland, Reykjavik, Iceland.

Background: The protein kinase Akt is involved in vascular development and several endothelial functions, including activation of endothelial nitric oxide synthase (eNOS) and promotion of endothelial cell survival. Recently we have found that although Akt-phosphorylation is induced by the G-protein activators thrombin and histamine these agonists stimulate phosphorylation of eNOS in Sen1179. The purpose of this study was to examine the role of other protein kinases in mediating this Akt-independent phosphorylation of eNOS.