
Theoretical Computer Science 292 (2003) 639–652
www.elsevier.com/locate/tcs

An e cient deterministic parallel algorithm for two
processors precedence constraint scheduling�

Hermann Junga ; 1, Maria Sernab, Paul Spirakisc; ∗
aHumboldt University, Germany

bDept. de Llentguatges i Sistemes Inform�atics. Universitat Polit�ecnica de Catalunya, Pau Gargallo 5,
08028 Barcelona, Spain

cComputer Technology Institute, Riga Fereou 61, 26110 Patras, Greece

Received 17 March 1995; received in revised form 22 November 2000; accepted 16 January 2001
Communicated by J. D23az

Abstract

We present here a new deterministic parallel algorithm for the two-processor scheduling prob-
lem. The algorithm uses only O(n3) processors and takes O(log2n) time on a CREW PRAM.
In order to prove the above bounds we show how to compute in NC the lexicographically ;rst
matching for a special kind of convex bipartite graphs. c© 2002 Elsevier Science B.V. All rights
reserved.

Keywords: Scheduling; Parallel algorithms; PRAM

1. Introduction

A classical problem in scheduling theory is to ;nd an optimal nonpreemptive sched-
ule for a collection of unit length tasks subject to precedence constraints. We are given
n tasks to be executed on m processors. Each task requires exactly one unit of execution
time and can run on any processor. A directed acyclic graph speci;es the precedence
constraints where an edge from task x to task y means task x must be completed before
task y begins. A solution to the problem is a schedule of shortest length indicating

� A preliminary version of our paper, titled “A parallel algorithm for the two Processors Precedence
Constraint Scheduling” appeared in the 18th ICALP (1991), Springer-Verlag, Vol. 510, pp. 417–428. This
work was partially supported by the ESPRIT II BRA No. 3075 (project ALCOM II) and by the IST FET
Program ALCOM-FT.

∗ Corresponding author.
E-mail addresses: mjserna@lsi.upc.es (M. Serna), spirakis@cti.gr (P. Spirakis).
1 Formerly at Humboldt University, Germany.

0304-3975/03/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00120 -7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81964536?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

640 H. Jung et al. / Theoretical Computer Science 292 (2003) 639–652

when each task is started. When the number of processors m is arbitrary the problem
is NP-complete [8]. For any m ¿ 3, the complexity is open [6]. Here we study
the case m=2. For two processors a number of e cient algorithms has been given.
For sequential algorithms see [4, 2, 5] among others. The ;rst deterministic parallel
algorithm was given by Helmbold and Mayr [7], thus establishing membership in the
class NC. Previously [9] gave a randomized NC algorithm for the problem.
We present here a new parallel algorithm for the two-processor scheduling problem

that takes time O(log2 n) and uses O(n3) processors on a CREW PRAM. Our algorithm
improves the number of processors of the algorithm given in [7] from O(n7L(G)2),
where L(G) is the number of levels in the precedence graph, to O(n3). Both algo-
rithms compute a level schedule that has a lexicographically ;rst jump sequence (see
de;nitions below).
The Helmbold and Mayr algorithm is based on a technique to compute the schedule

length in parallel. By running the above in parallel many times over diNerent graphs,
they ;nd which levels in a given graph end with a task that is scheduled together with
an empty slot, we call them jumps to level 0. By computing those levels they are able
to compute a lexicographically ;rst jump sequence. Then the last step is just to ;nd a
way to assign a task to each jump (when possible).
Our algorithm behaves quite diNerently. We also use an algorithm to compute sched-

ule length, but at the same time we record a graph decomposition that allows us to
compute jumps to level 0 as well. We run the length algorithm (on an adequate graph)
only once, so that all the information needed in the recursive phase of the algorithm
could be built in. In the recursive phase we divide the graph in three parts, tasks in
level i, the central part, tasks in higher levels, the lower part, and tasks in lower levels,
the upper part. Then our problem is to show how to match jumps from levels in the
lower part with tasks in the upper part. Note that our algorithm never computes the
whole jump sequence, only those jumps that are needed in each division. Then an
algorithm to match such jumps, together with an adequate graph decomposition, gives
the desired result.
To match jumps with tasks, we consider the problem of computing the lexicograph-

ically ;rst matching for a special type of convex bipartite graphs, (called here as
full convex bipartite graphs). A geometric interpretation of this problem leads to the
discovery of an e cient parallel algorithm to solve it.

2. De�nitions and remarks

The two-processor scheduling problem is de;ned by a directed acyclic graph (dag)
G=(V; E). The vertices of the graph represent unit time tasks, and the edges specify
precedence constraints among the tasks. If there is an edge from node x to node y
then x is an immediate predecessor of y. Predecessor is the transitive closure of the
relation immediate predecessor, and successor is its symmetric counterpart. A two-
processor schedule is an assignment of the tasks to time units 1; : : : ; t so that each task

H. Jung et al. / Theoretical Computer Science 292 (2003) 639–652 641

is assigned exactly one time unit, at most two tasks are assigned to the same time unit,
and if x is a predecessor of y then x is assigned to a lower time unit than y. The
length of the schedule is t. A schedule having minimum length is an optimal schedule.
We will assume that tasks are partitioned into levels as follows:
(i) every task will be assigned to only one level,
(ii) tasks having no successors will be assigned to level 1 and
(iii) for each level i, all tasks which are immediate predecessors of tasks in level i

will be assigned to level i + 1.
Clearly topological sort will accomplish the above partition, and this can be done by
an NC algorithm that uses O(n3) processors and O(log n) time, see [3]. Thus, from
now on, we will assume that a level partition is given as part of the input. For the sake
of convenience we add two special tasks, t0 and t∗, so that the original graph could be
taught as the graph formed by all tasks that are successors of t0 and predecessors of t∗.
Thus, t0 is a predecessor of all tasks in the system (actually an immediate predecessor
of tasks in level the highest level L(G)) and t∗ is a successor of all tasks in the system
(an immediate successor of level 1 tasks).
Notice that if two tasks are at the same level they can be paired. But when x and y

are at diNerent levels, they can be paired only when neither of them is a predecessor of
the other. Let L(G) denote the number of levels in a given precedence graph G. A level
schedule schedules tasks level by level. More precisely, suppose levels L(G); : : : ; i+ 1
have already been scheduled and there are k unscheduled tasks remaining on level i.
If k is even, we pair the tasks with each other. If k is odd we pair k − 1 of the tasks
with each other and the remaining task may (but not necessarily) be paired with a
task from a lower level. Given a level schedule we say that level i jumps to level i′

(i′¡i) if the last timestep containing a task from level i also contains a task from
level i′. If the last task from level i is scheduled with an empty slot, we say that level
i jumps to level 0. The jump sequence of a level schedule is the list of levels jumped
to. A lexicographically :rst jump schedule is a level schedule whose jump sequence is
lexicographically greater than any other jump sequence resulting from a level schedule.
The following result is well known (it is due to Gabow ([5]), see also [7]).

Theorem 1 (Gabow [5]). Every lexicographically :rst jump schedule is optimal.

Given a graph G a level partition of G is a partition of the nodes in G into two sets
in such a way that levels 0; : : : ; k are contained in one set (the upper part) denoted by
U , and levels k + 1; : : : ; L in the other (the lower part) denoted by L.
Given a graph G and a level i, the i-partition of G (or the partition at level i) is

formed by the graphs Ui and Li de;ned as Ui contains all nodes x such that level(x)¡i
and Li contains all nodes x with level(x)¿i. Note that each i-partition determines two
diNerent level partitions depending on whether level i nodes are assigned to the upper
or the lower part.
We say that a task x∈Ui is free with respect to a partition at level i if x has no

predecessors in Li.

642 H. Jung et al. / Theoretical Computer Science 292 (2003) 639–652

3. Computing the schedule length

In this section we construct an algorithm to compute the optimal schedule length
together with an adequate task decomposition. We compute the number of steps that
must intervene between any two tasks and thus determine the number of time steps
that must intervene between t0 and t∗. A schedule with precisely this length is clearly
a shortest schedule. We de;ne the schedule distance between tasks x and x′, d(x; x′) as
the minimum number of timesteps required to schedule all tasks that are both successors
of x and predecessors of x′ when x is a predecessor of x′, otherwise unde;ned. We
will denote by G(x; x′) the subgraph of the precedence graph containing all tasks that
are both successors of x and predecessors of x′.
In [2] it is shown how to construct sets of tasks X0; X1; : : : ; Xk , for any precedence

graph, such that those tasks in any Xi+1 are predecessors of all tasks in Xi, and the
length of an optimal schedule equals

∑
i�|Xi|=2�. Our algorithm will compute for any

pair of tasks x and x′ such that x is a predecessor of x′ a set, S(x; x′), that contains
one of such decompositions for the precedence graph G(x; x′).
Our algorithm Length below is similar to the corresponding algorithm of [7] as

far as the length computation of an optimal schedule is concerned. However, it also
computes more information, which is exactly the set S(x; x′) for any pair of tasks x
and x′.
In the algorithm Length, let L(A; B; : : :) be the list of the concatenation of the lists

A; B; : : : .

Algorithm Length
d0(∗; ∗) := 0
S0(∗; ∗) := ∅
for i := 1 to �log n� do

for all x, x′ with x¡x′ do in parallel (loop 1)
for all z such that x¡z¡x′ do in parallel (loop 2)

S(z)= {y |di−1(x; y)¿ di−1(x; z) and di−1(y; x′)¿ di−1(z; x′)}
end of loop 2
di(x; x′) :=maxz{di−1(x; z) + di−1(z; x′) + � |S(z)|

2 �}
Note: The above line produces a speci;c z0 which maximizes the
expression to be assigned to di(x; x′).

Si(x; x′) :=L(S(z0))
Note: This list has one element, the set S(z0).

Let B(z0; x′) be the set of all tasks y such that (1) y
∈ S(Z0) (2) y
= x′

and (3) y is in between (in the predecessor relation) any of the tasks
in S(z0) and x′.
If there are t; t′ such that t is a predecessor of all tasks in S(z0) and
t′ is a predecessor of all tasks in B(z0; x′),

then Si(x; x′)=L(Si−1(x; t); S(z0); Si−1(t′; x′))
end of loop 1

H. Jung et al. / Theoretical Computer Science 292 (2003) 639–652 643

d(∗; ∗) :=d�log n�(∗; ∗)
S(∗; ∗) := S�log n�(∗; ∗)
end of algorithm Length

Algorithm length has a straightforward implementation on a CREW PRAM using
O(n3) processors and O(log2 n) time.
By following the schedule distance proof of Lemma 3 of [7] exactly, and by the

way Si(x; x′) is composed as a list of sets we have

Lemma 2. Algorithm Length correctly computes d(x; x′) for all tasks x and x′ such
that x is a predecessor of x′. Furthermore;

∑
X∈S(x; x′) �|X |=2�=d(x; x′).

Thus the length of an optimal schedule for G is d(t0; t∗). Our second result relies
on the task decomposition obtained for a graph G(x; x′). Our aim is to use this decom-
position to compute which levels jump to level 0. To do this we have only to consider
those sets that have an odd number of tasks. In such a case the lower level in the set
will jump to level 0 if and only if there are no tasks outside the decomposition that
can be scheduled together. In order to preserve lexicographically ;rst jump sequences,
we have only to match (when possible) a level with a task in the highest possible
level. Thus we have

Lemma 3. There is a deterministic parallel algorithm to compute those levels that
jump to level 0 for a given precedence graph; that uses O(n3) processors and O(log2 n)
time.

4. The matching problem

A full convex bipartite graph G is a triple (V;W; E), where V = {v1; : : : ; vk} and
W = {w1; : : : ; wk′} are disjoint sets of vertices. Furthermore, the edge set E satis;es the
following property: if (vi; wj)∈E then (vq; wj)∈E for all q¿ i. We also assume that
the graph is connected. Fig. 1 gives an example of a full convex bipartite graph.
A set F ⊆E is a matching in the graph G=(V;W; E) iff no two edges in F have a

common endpoint. We want to compute the lexicographically ;rst maximal matching
in G. This matching can be computed by the following sequential algorithm:

Lexicographically �rst matching
M := ∅
for i := 1 to k do
Find the ;rst node w in W with (vi; w)∈E
if w exists then
M :=M ∪{(vi; w)}
W :=W − {w}

Fig. 2 gives the lexicographically ;rst matching for the graph of Fig. 1.

644 H. Jung et al. / Theoretical Computer Science 292 (2003) 639–652

Fig. 1. A full convex bipartite graph.

Fig. 2. The lexicographically ;rst matching.

Before describing the parallel algorithm let us visualize in the plane our matching
problem. Each index i of the sequence (v1; : : : ; vk) of nodes in V corresponds to the
y-coordinate i, while each index j of a node in the sorted sequence (w1; : : : ; wk′)
corresponds to the x-coordinate j. Furthermore, we have k ′ intervals, one for each node
in W . Every interval is parallel to the y-axis and has one endpoint on the k-value, the

H. Jung et al. / Theoretical Computer Science 292 (2003) 639–652 645

Fig. 3. Geometric representation of the matching problem.

second endpoint for the interval corresponding to wj is de;ned by the minimal index i
of a node vi ∈V such that (vi; wj)∈E. Our matching problem can now be formulated
as follows:
Starting with 1, remove subsequently the ;rst interval which can be seen on
the horizontal ray emanating from i, one per each y-coordinate (if possible). The
removed intervals form the sequence of nodes in W matched with the nodes in V .

In Fig. 3 we can see the graphic representation corresponding to the graph in Fig. 1,
arrows point to the matched intervals or to in;nity, if there is no interval to be matched
with.
To compute the lexicographically ;rst matching, we start by de;ning two matrices

A and B. Let aij (16 i 6 k; 16 j 6 k ′) be the number of nodes vi′ with i′¡i which
are matched with nodes wj′ with j′¿j or which cannot be matched, and let bij be the
number of intervals wj′ (j′ 6 j), hit, by the horizontal ray i. We ;rst show that all
that we need to do to solve our matching problem is to compute matrices A (i.e. all
aij) and B (i.e. all bij) both matrices. In Figs. 4 and 5 the values of matrices A and B
are given for the graph in Fig. 1.
Note that aij + bij ¿ i− 1 for all i; j values. To simplify notation we say that vi hits

wj when aij + bij = i and j is the smallest over all indices k such that aik + bik = i. An
easy counting argument taking into account the de;nition of matrices A and B shows

Lemma 4. Node vi matches
before j if and only if aij + bij¿i; or aij + bij = i and vi does not hit wj;
with j if and only if aij + bij = i; and vi hits wj;
behind j if and only if aij + bij = i − 1.

Once we have computed matrices A and B, the corresponding matched pairs can be
computed as follows: ;rst note that for a ;xed i we only need the row i of matrices

646 H. Jung et al. / Theoretical Computer Science 292 (2003) 639–652

Fig. 4. Matrix A.

Fig. 5. Matrix B.

aij , bij . Thus we can do the computation independently for each i. Let us ;x i and
consider a matrix Di (Fig. 6) such that Di[j] = 1 when aij = i − bij and 0 otherwise.
Compute pre;x sums of D in a matrix Ci (Fig. 7) (now Ci[k] =Di[1] + · · ·+ Di[k]),
and there is a unique j such that Di[j] =Ci[j] = 1 (the one we look for).
The matching is indicated in heavy squares where Di[j] =Ci[j] = 1.

H. Jung et al. / Theoretical Computer Science 292 (2003) 639–652 647

Fig. 6. Matrix Di[j].

Fig. 7. Matrix Ci[j].

As pre;x sums can be computed in time O(log n) using O(n=log n) processors, and
we can ;nd the corresponding j for all values of i in parallel, we can compute the
matching in time O(|w|) using O(|V ||w|=log |w|}) processors.
Since bi; j can be easily computed (for 1 6 i 6 k, 1 6 j 6 k ′) in parallel time

O(log(|V |+ |W |)) using O(|V ||W |) processors, the matching problem is then reduced
to the problem of computing matrix A. Furthermore looking at the columns of matrix

648 H. Jung et al. / Theoretical Computer Science 292 (2003) 639–652

A, ai+1; j will be aij +1 only when node vi matches behind j. Thus from Lemma 4 we
get

Lemma 5. Matrix A can be computed independently for each column j applying the
following rule: a1; j =0 for j=1; : : : ; k ′ and

ai+1;j =
{
ai;j if ai;j + bi;j ¿ i;
ai;j + 1 if ai;j + bi;j¡i:

In other words, there are thresholds ci; j for each (i; j) such that: ai+1; j = ai; j when
ai; j ¿ ci; j or ai+1; j = ai; j + 1 otherwise. Furthermore ci; j = i − bi; j.
In order to compute the matrix A we associate an array Ai; j[0 · · · k − 1] of pointers

to each pair (i; j). Ai; j[x] points to Ai+1; j[x] if x ¿ ci; j, and it points to Ai+1; j[x + 1]
if x¡ci; j. Only Ai; j[k − 1] points in any case to Ai+1; j[k − 1]. Thus each column of
matrix A consists of a k×k pointer matrix that can be thought of being a set of disjoint
trees with roots in the last row of the matrix. If Ak; j[x] is the root of the tree with
leaf element A1; j[0] then x is the correct value of ak; j. Moreover, the indices of the
nodes on the path from A1; j[0] to Ak; j[x] are the values of the corresponding variables
ai; j (1 6 i 6 k) (that is a consequence of the above observation about the matrix
A=(ai; j)).
It remains to compute the chain of indices on such a path. This can be done by

pointer doubling, simultaneously over the whole k × k pointer matrix. This yields
an O(|V |2|W |=log |V |) processors implementation on a CREW PRAM computing all
values ai; j. Hence, we can conclude:

Lemma 6. The lexicographically :rst matching of full convex bipartite graphs can be
computed in time O(log n) on a CREW PRAM with O(n3=log n) processors; where
n is the number of nodes.

5. An outline of the algorithm

Before describing the algorithm let us study the jump’s structure for a partition at
level i. Consider the decomposition into Li and Ui. We consider only the possible
jumps between levels in the diNerent parts, we have three cases:
(1) Some levels in Li should be paired (when possible) with tasks in Ui,
(2) Some levels in Li may have to be paired with tasks in level i and
(3) Level i may have to be paired with a task in Ui.
Clearly, these levels can be obtained by computing the jumps to level 0 for the graphs
Li and Li ∪{nodes in level i}. All these levels have to be paired (when possible) with
tasks that have no predecessor in Li, except for the last level in Li or level i. Our
algorithm starts by ;nding a “central” level, that is a level such that the corresponding
lower and upper part have at most half of the size of the original graph. Then we solve
the above mentioned jumps from the lower part levels. To keep all the information

H. Jung et al. / Theoretical Computer Science 292 (2003) 639–652 649

needed we start by a preprocessing step to keep all the information needed in the
remaining steps of the algorithm. We consider the following algorithm (see details in
Sections 6 and 7):

Algorithm Schedule
0. Preprocessing.
1. Find a level i such that |Ui|6 n=2 and |Li|6 n=2.
2. Match levels that jump to free tasks in level i.
3. Match levels that jump to free tasks in Ui.
4. If level i (or i + 1) remain unmatched try to match it with a nonfree task.
5. Delete all tasks used to match jumps.
6. Apply (1)–(5) in parallel to Li and the modi;ed Ui.

Algorithm Schedule stops whenever the corresponding graph has only one level.

6. The preprocessing step

The ;rst step in algorithm Schedule is intended to compute all information needed
in the remaining steps. Our aim is to run only once the algorithm that computes the
schedule length in an adequate precedence graph obtained from the original precedence
graph. Let us analyze the requirements of the algorithm Schedule.
We have to compute which levels in a lower part (for all possible lower parts)

jump to levels in the upper part. Notice that after splitting the graph a “lower” part L
neither corresponds exactly to levels L(G); : : : ; i for some i, nor contains all nodes in
the corresponding levels. However, when i is the lowest level in L the jumps to level 0
of levels included in L are still the jumps to level 0 for this part in the lexicographically
;rst schedule. Thus we have to compute jumps to level 0 in the lower part of a partition
at level i for all possible values of i. To do this we modify the precedence graph G by
adding a node ti for i=1; : : : ; L(G). Node ti will be a successor of all nodes in level i,
thus we add an edge (x; ti) for all x in level i. Clearly the jumps to level 0 (for each
partition) can be obtained from the graph decomposition corresponding to the nodes
G(t0; ti).
In step (4) we need to know whether a task in level i−1 can be scheduled together

with a task in level i (for some values of i). We can compute this information for all
levels modifying the graph as follows: We add a task tx for each task x in G, tx will
be a successor of x and a successor of all tasks in level level(x) + 1. Suppose that
level(x)= i − 1. Now whenever the schedule length of the graph G(t0; ti) equals the
schedule length of the graph G(t0; tx) task x can be scheduled together with level i.
Thus we can conclude

Theorem 7. Given a precedence graph G; we can compute all levels that jump to level
0 in the graph Li and all tasks in level i − 1 that can be scheduled together with a

650 H. Jung et al. / Theoretical Computer Science 292 (2003) 639–652

task in level i; for i=1; : : : ; L(G); in parallel using O(n3) processors and O(log2 n)
time.

7. Computing the schedule

Let us show now how to compute the remaining steps of algorithm Schedule. In
steps (2) and (3) we have to match (when possible) levels that jump to level 0 with
free tasks, sometimes we have to choose between diNerent tasks at the same level. Thus
we need to de;ne some task order, inside a level, that preserves lexicographically ;rst
jump sequences. We assign a number to each task at a given level i. Let l(x) be the
length of the longest path ending at x. The correctness of the use of l-values to solve
ties follows from a result of [7]:

Lemma 8 (Helmbold and Mayr [7]). Let l1; l2; : : : ; lr be the levels jumping to level l
in descending order. Assume we have a collection of tasks x1; : : : ; xr from level l; and
each xi has l(xi) ¿ li. Then there is an lexicographically :rst schedule such that xi
is used for the jump from li.

Thus in step (2) we only have to sort the set of free tasks in increasing order of
l-values and assign jumps to tasks in order.
To solve the assignment problem of step (3) we give a reduction to the problem

of computing a lexicographically ;rst matching for a full convex bipartite graph. The
reduction is the following:
In our application we are given a level partition together with a number of levels in

which one task remains to be matched with some other task in the upper part of the
graph (say levels l1¿l2¿ · · ·¿lk). To each of the levels in the lower part that has to
be matched (l1¿l2¿ · · ·¿lk) we assign a vertex v (v1¿v2¿ · · ·¿vk). Furthermore
we consider all free tasks in the upper part and assign a vertex to each one. These
tasks are the candidates for matching the vertices in the lower part. Thus we have two
sets of vertices: one for levels in the lower part and one for free tasks in the upper
part.
We assign a new number to each vertex. Let V denote the set of vertices coming

from the lower part, and let W denote the set of vertices assigned to tasks in the upper
part. For all v∈V let h(v)=L(G)−level(v). For all w∈W let h(w)=L(G)−level(w).
Now we sort all vertices in V according to increasing h-values, and all nodes in W
according to increasing h-values and increasing l-values (for nodes with the same
h-value).
In order to assign to each level the corresponding task (if any) we have to compute

the lexicographically ;rst matching in the bipartite graph H =(V;W; E) where (v; w)∈E
if and only if l(w)6 l(v)= h(v)6 h(w). Note that h(v) is less than h(w) for all v; w
in the graph thus H is a full convex bipartite graph.

H. Jung et al. / Theoretical Computer Science 292 (2003) 639–652 651

Theorem 9. Given a level partition of a graph G together with the levels in the lower
part in which one task remains to be matched with some other task in the upper
part of the graph. We can compute the corresponding tasks in time O(log n) using
n3=log n processors.

Finally step (4) can be solved using the information built in the preprocessing step.
Simply the algorithm ;nds a task that can be paired together with such a level (note
that the corresponding task must be nonfree). The correctness of the algorithm after
the removal of such a task is obtained from the following. First, the jump structure is
computed at the beginning of the algorithm and second, such a task can only be in a
lower part in the decomposition created by algorithm Schedule.
Thus at the end of algorithm Schedule, we have a task partition and the only thing

that we need is a scheduling policy. The ;rst time step assigned to each partition can
be computed by using list ranking. Once we know this timestep, each partition can be
scheduled independently.
For those sets in which a jump is matched, we have to choose the task to be paired

with the task from the other level, whatever task can be used when the jumped task
was a free task. When the jumped task was nonfree, the jump is only possible if (at
least) one of the other tasks is not a predecessor of the jumped task. Once we have
this pair of task we assign to them the last timestep. The rest of the tasks will be
assigned as follows: sort all tasks in increasing order of degree and assign in order
pairs to timesteps. Clearly this policy can be implemented in parallel, using fewer than
O(n3) processors, thus we have

Theorem 10. There is an NC algorithm which :nds an optimal two processors sched-
ule for any precedence graph in time O(log2 n) using O(n3) processors.

8. Conclusions and open problems

We have presented a new parallel deterministic algorithm for the two processors
scheduling problem. Our algorithm improves the number of processors of the
Helmbold and Mayr algorithm for the problem. However, the complexity bounds are far
from optimal: recall that the sequential algorithm given in [5] uses time O(e+ n+(n)),
where e is the number of edges in the precedence graph and +(n) is an inverse Acker-
mann’s function. We suspect that such an optimal algorithm must have quite a diNerent
approach, in which the levelling algorithm is not used.
Interestingly enough we have shown that computing the lexicographically ;rst match-

ing for full convex bipartite graphs is in NC; in contraposition with the results given in
[1] which show that many problems de;ned through a lexicographically ;rst procedure
in the plane are P-complete. We conjecture that all these problems fall in NC when
they are convex.

652 H. Jung et al. / Theoretical Computer Science 292 (2003) 639–652

References

[1] M. Attallah, P. Callahan, M. Goodrich, P-complete geometric problems, Internat. J. Comput. Geom. Appl.
3 (4) (1993) 443–462.

[2] E.G. CoNman, R.L. Graham, Optimal scheduling for two processors systems, Acta Inform. 1 (1972)
200–213.

[3] E. Dekel, D. Nassimi, S. Sahni, Parallel matrix and graph algorithms, SIAM J. Comput. 10 (1981)
657–675.

[4] M. Fujii, T. Kasami, K. Ninomiya, Optimal sequencing of two equivalent processors, SIAM J. Comput.
17 (1969) 784–789.

[5] H.N. Gabow, An almost linear time algorithm for two processors scheduling, J. ACM 29 (3) (1982)
766–780.

[6] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the theory of NP completeness,
Freeman, San Francisco, 1979.

[7] D. Helmbold, E. Mayr, Two processor scheduling is in NC, SIAM J. Comput. 16 (4) (1987).
[8] J.D. Ullman, NP-complete scheduling problems, J. Comput. System Sci. 10 (1975) 384–393.
[9] U. Vazirani, V. Vazirani, Two-processor scheduling problem is in random NC, SIAM J. Comput. 18 (4)
(1989) 1140–1148.

