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Abstract

We consider quasilinear elliptic variational–hemivariational inequalities involving convex, l
semicontinuous and locally Lipschitz functionals. We provide a generalization of the funda
tal notion of sub- and supersolutions on the basis of which we then develop the sub–supers
method for variational–hemivariational inequalities, including existence, comparison, compa
and extremality results.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let Ω ⊂ R
N be a bounded domain with Lipschitz boundary∂Ω , and letV = W1,p(Ω)

andV0 = W
1,p

0 (Ω), 1 < p < ∞, denote the usual Sobolev spaces with their dual sp
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V ∗ andV ∗
0 , respectively. In this paper we deal with the following quasilinear variatio

hemivariational inequality:

u ∈ dom(ψ) ∩ V0: 〈Au − f, v − u〉 + ψ(v) − ψ(u) +
∫
Ω

j0(u; v − u) dx � 0,

∀v ∈ V0, (1.1)

wherej0(s; r) denotes the generalized directional derivative of the locally Lipschitz func
tion j :R → R at s in the directionr given by

j0(s; r) = lim sup
y→s, t↓0

j (y + t r) − j (y)

t
(1.2)

(cf., e.g., [7, Chapter 2]),f ∈ V ∗
0 , andψ :V → R ∪ {+∞} is a convex, lower semicontin

uous function such that dom(ψ) ∩ V0 �= ∅. Here dom(ψ) stands for the effective doma
of ψ defined by dom(ψ) = {v ∈ V | ψ(v) < +∞}. The operatorA :V → V ∗

0 is a second
order quasilinear differential operator in divergence form

Au(x) = −
N∑

i=1

∂

∂xi

ai

(
x,∇u(x)

)
, with ∇u =

(
∂u

∂x1
, . . . ,

∂u

∂xN

)
. (1.3)

The above problem (1.1) includes variousspecial cases such as, e.g., the following:

(i) For ψ(u) ≡ 0 andj :R → R smooth with its derivativej ′ :R → R, (1.1) reduces to
the weak formulation of the Dirichlet problem

u ∈ V0: Au + j ′(u) = f in V ∗
0 .

(ii) For ψ(u) ≡ 0, andj :R → R not necessarily smooth, then (1.1) is a hemivariatio
inequality of the form

u ∈ V0: 〈Au − f, v − u〉 +
∫
Ω

j0(u; v − u) dx � 0, ∀v ∈ V0.

(iii) For j :R → R smooth, (1.1) becomes the variational inequality

u ∈ dom(ψ) ∩ V0:
〈
Au + j ′(u) − f, v − u

〉 + ψ(v) − ψ(u) � 0, ∀v ∈ V0.

The main goal of this paper is to develop a general framework for the sub–superso
method for variational–hemivariational inequalities of the form (1.1) which include,
the above special cases. In particular (1.1) includes constraint hemivariational inequ
as well in case thatψ := IK , whereIK is the indicator function of some closed conv
setK. Existence, comparison and compactness results for problem (1.1) are given.
ticular, we prove the existence of extremal solutions in the order interval formed by
and supersolutions, and provide applications that demonstrate the applicability of t
veloped theory.
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2. Notation and hypotheses

We assume the following hypotheses of Leray–Lions type on the coefficient
tionsai , i = 1, . . . ,N , of the operatorA:

(A1) Eachai :Ω × R
N → R satisfies the Carathéodory conditions, i.e.,ai(x, ξ) is mea-

surable inx ∈ Ω for all ξ ∈ R
N and continuous inξ for almost allx ∈ Ω . There exist

a constantc0 > 0 and a functionk0 ∈ Lq(Ω), 1/p + 1/q = 1, such that∣∣ai(x, ξ)
∣∣ � k0(x) + c0|ξ |p−1,

for a.e.x ∈ Ω and for allξ ∈ R
N .

(A2)
∑N

i=1(ai(x, ξ) − ai(x, ξ ′))(ξi − ξ ′
i ) > 0 for a.e.x ∈ Ω , and for allξ, ξ ′ ∈ R

N with
ξ �= ξ ′.

(A3)
∑N

i=1 ai(x, ξ)ξi � ν|ξ |p − k1(x) for a.e.x ∈ Ω , and for allξ ∈ R
N with some con-

stantν > 0 and some functionk1 ∈ L1(Ω).

As a consequence of (A1), (A2) the semilinear forma associated with the operatorA by

〈Au,ϕ〉 := a(u,ϕ) =
∫
Ω

N∑
i=1

ai(x,∇u)
∂ϕ

∂xi

dx, ∀ϕ ∈ V0,

is well defined for anyu ∈ V , and the operatorA :V0 → V ∗
0 is continuous, bounded, an

strictly monotone. For functionsw,z :Ω → R and setsW and Z of functions defined
on Ω we use the notations:w ∧ z = min{w,z}, w ∨ z = max{w,z}, W ∧ Z = {w ∧ z |
w ∈ W, z ∈ Z}, W ∨Z = {w∨z | w ∈ W, z ∈ Z}, andw∧Z = {w}∧Z, w∨Z = {w}∨Z.
Next we introduce our basic notion of sub–supersolution.

Definition 2.1. A functionu ∈ V is called asubsolutionof (1.1) if the following conditions
are fulfilled:

(i) u � 0 on∂Ω ,
(ii) u ∨ (dom(ψ) ∩ V0) ⊂ dom(ψ) ∩ V0,
(iii) there exists a mappinĝψ :V → R ∪ {+∞} and a constant̂c � 0 such that the follow-

ing holds:
(a) u ∈ dom(ψ̂),
(b) ψ(v ∨ u) + ψ̂(v ∧ u) − ψ(v) − ψ̂(u) � ĉ

∫
Ω [(u − v)+]p dx, ∀v ∈ dom(ψ) ∩ V0,

(c) 〈Au−f, v−u〉+ψ̂(v)−ψ̂(u)+∫
Ω

j0(u; v−u) dx � 0,∀v ∈ u∧(dom(ψ)∩V0).

Similarly we define a supersolution as follows.

Definition 2.2. A function ū ∈ V is asupersolutionof (1.1) if the following conditions are
fulfilled:

(i) ū � 0 on∂Ω ,
(ii) ū ∧ (dom(ψ) ∩ V0) ⊂ dom(ψ) ∩ V0,
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(iii) there exists a mapping̃ψ :V → R ∪ {+∞} and a constant̃c � 0 such that the follow-
ing holds:
(a) ū ∈ dom(ψ̃),
(b) ψ(v ∧ ū) + ψ̃(v ∨ ū) − ψ(v) − ψ̃(ū) � c̃

∫
Ω [(v − ū)+]p dx, ∀v ∈ dom(ψ) ∩ V0,

(c) 〈Aū−f, v− ū〉+ψ̃(v)−ψ̃(ū)+∫
Ω

j0(ū; v− ū) dx � 0,∀v ∈ ū∨(dom(ψ)∩V0).

The above definitions of sub–supersolutions require the existence of functionalsψ̂ and
ψ̃ that satisfy conditions (a)–(c) in Definitions 2.1 and 2.2, respectively, which exten
one for variational inequalities introduced recently in [9]. In fact one can show that th
above notions of sub–supersolution extend those for inclusions of hemivariationa
introduced in [3,4] and for variational and/or hemivariational inequalities in [5,6,8,9]
us consider a few examples.

Example 2.1. Assumeψ(u) ≡ 0 andj :R → R smooth, then as already pointed out in
Introduction (1.1) reduces to the Dirichlet problem

u ∈ V0: Au + j ′(u) = f in V ∗
0 .

We shall see that the above definitions contain the usual notion of sub- and supers
for the Dirichlet problem. According to Definition 2.1 a functionu ∈ V with u � 0 on∂Ω

is a subsolution if (ii) and (iii) of Definition 2.1 can be fulfilled. Since dom(ψ) = V , we
see that by choosinĝψ = 0 the conditions (ii) and (iii)(a)–(b) are trivially satisfied. Thusu

is only required to satisfy condition (iii)(c), i.e.,

〈Au − f, v − u〉 +
∫
Ω

j ′(u)(v − u) dx � 0, ∀v ∈ u ∧ V0.

Let ϕ ∈ V0; thenv ∈ u ∧ V0 is given byv = u ∧ ϕ = u − (u − ϕ)+, which yields

〈
Au − f,−(u − ϕ)+

〉 + ∫
Ω

j ′(u)
(−(u − ϕ)+

)
dx � 0, ∀ϕ ∈ V0,

and thus we obtain withw = (u − ϕ)+ ∈ V0 ∩ L
p
+(Ω) the inequality

〈Au − f,w〉 +
∫
Ω

j ′(u)w dx � 0, ∀w ∈ W,

whereW = {w = (u − ϕ)+ | ϕ ∈ V0}. Observing thatW is dense inV0 ∩ L
p
+(Ω) (see [2])

we get the usual notion of weak subsolution of the Dirichlet problem. Similarly De
tion 2.2 contains the usual notion for a supersolution of the above Dirichlet problem

Example 2.2. Let K ⊂ V0 be a closed and convex set, and letψ = IK , whereIK :V →
R ∪ {+∞} denotes the indicator function relatedwith the given closed convex setK �= ∅
and defined by

IK(u) =
{

0 if u ∈ K,

+∞ if u /∈ K,



S. Carl et al. / J. Math. Anal. Appl. 302 (2005) 65–83 69

: Find

is

ions

(1.1)

ondi-
which is proper, convex, and lower semicontinuous. Problem (1.1) then becomes
u ∈ K such that

〈Au − f, v − u〉 + IK(v) − IK(u) +
∫
Ω

j0(u; v − u) dx � 0, ∀v ∈ V0. (2.1)

In this caseu ∈ V is a subsolution of (2.1) according to Definition 2.1 if the following
satisfied:

(1) u � 0 on∂Ω ,
(2) u ∨ K ⊂ K,
(3) 〈Au − f, v − u〉 + ∫

Ω
j0(u; v − u) dx � 0, ∀v ∈ u ∧ K.

One readily verifies that with (1)–(3) and takinĝψ(v) ≡ 0 andĉ = 0 all the conditions of
Definition 2.1 are fulfilled. Analogous conditions can be found for a supersolutionū of
(2.1):

(1′) ū � 0 on∂Ω ,
(2′) ū ∧ K ⊂ K,
(3′) 〈Aū − f, v − ū〉 + ∫

Ω
j0(ū; v − ū) dx � 0, ∀v ∈ ū ∨ K.

Conditions (1)–(3) and (1′)–(3′) which where introduced in [8] to define sub–supersolut
turn out to be special cases of Definitions 2.1 and 2.2, respectively.

Example 2.3. Given a convex lower semicontinuous functionh :R → R, we introduce
g :V → R ∪ {+∞} by

g(v) =
{∫

Ω
h(v(x)) dx if h(v) ∈ L1(Ω),

+∞ if h(v) /∈ L1(Ω),

which is known to be proper, convex and lower semicontinuous. Consider problem
with ψ = g, i.e., findu ∈ dom(g) ∩ V0 such that

〈Au − f, v − u〉 + g(v) − g(u) +
∫
Ω

j0(u; v − u) dx � 0, ∀v ∈ V0. (2.2)

Then, e.g., the following conditions on a functionu ∈ V imply that u is a subsolution
according to Definition 2.1:

(1) u � 0 on∂Ω ,
(2) u ∨ (dom(g) ∩ V0) ⊂ dom(g) ∩ V0,
(3) u ∈ dom(g), and〈Au − f, v − u〉 + g(v) − g(u) + ∫

Ω j0(u; v − u) dx � 0, ∀v ∈ u ∧
(dom(g) ∩ V0).

Takingψ̂ = g andĉ any nonnegative constant one can see that in view of (1)–(3) all c
tions of Definition 2.1 are satisfied. This is because for allv ∈ dom(g) ∩ V0 the following
equation holds for the integral functionalg:

g(v ∨ u) + g(v ∧ u) − g(v) − g(u) = 0. (2.3)
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The identity (2.3) can easily be proved by splitting upΩ into Ω = Ω1 ∪ Ω2, where

Ω1 = {
x ∈ Ω | v(x) < u(x)

}
, Ω2 = {

x ∈ Ω | v(x) � u(x)
}
,

and by considering the resulting integrals. Thus, for example, iff ∈ Lp∗ ′
(Ω) (with p∗ the

critical Sobolev exponent) andai(x,0) = 0 for i = 1, . . . ,N , thenu = 0 is a subsolution if
for someξ ∈ ∂h(0) the following inequality holds:

f (x) � −j0(0;−1) + ξ, for a.e.x ∈ Ω.

The corresponding conditions for a supersolution̄u are obvious and can be omitted.

Remark 2.1. It should be noted that in specific situations the functionalsψ̂, ψ̃ allow much
flexibility for the construction of sub–supersolutions. We provide a construction of sub
supersolutions for more specific problems in the last section.

Let ∂j :R → 2R \ {∅} denote Clarke’s generalized gradient ofj defined by

∂j (s) := {
ζ ∈ R | j0(s; r) � ζ r, ∀r ∈ R

}
. (2.4)

We assume the following hypothesis forj :

(H) The functionj :R → R is locally Lipschitz and its Clarke’s generalized gradient∂j

satisfies the following growth conditions:
(i) there exists a constantc1 � 0 such that

ξ1 � ξ2 + c1(s2 − s1)
p−1

for all ξi ∈ ∂j (si), i = 1,2, and for alls1, s2 with s1 < s2,
(ii) there is a constantc2 � 0 such that

ξ ∈ ∂j (s): |ξ | � c2
(
1+ |s|p−1), ∀s ∈ R.

Let Lp(Ω) be equipped with the natural partial ordering of functions defined byu � w

if and only if w − u belongs to the positive coneLp
+(Ω) of all nonnegative elements o

Lp(Ω). This induces a corresponding partial ordering also in the subspaceV of Lp(Ω),
and ifu,w ∈ V with u � w then

[u,w] = {z ∈ V | u � z � w}
denotes the order interval formed byu andw.

In the proofs of our main results we make use of the cut-off functionb :Ω × R → R

related with an ordered pair of functionsu � ū, and given by

b(x, s) =



(s − ū(x))p−1 if s > ū(x),

0 if u(x) � s � ū(x),

−(u(x) − s)p−1 if s < u(x).

(2.5)

One readily verifies thatb is a Carathéodory function satisfying the growth condition∣∣b(x, s)
∣∣ � k(x) + c3|s|p−1 (2.6)
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for a.e.x ∈ Ω , for all s ∈ R, with some functionk ∈ L
q
+(Ω) and a constantc3 � 0. More-

over, one has the following estimate:∫
Ω

b
(
x,u(x)

)
u(x) dx � c4‖u‖p

Lp(Ω) − c5, ∀u ∈ Lp(Ω), (2.7)

wherec4 and c5 are some positive constants. In view of (2.6) the Nemytskij oper
B :Lp(Ω) → Lq(Ω) defined by

Bu(x) = b
(
x,u(x)

)
is continuous and bounded, and thus due to the compact embeddingV ⊂ Lp(Ω) it follows
thatB :V0 → V ∗

0 is compact.

3. Preliminaries

In this section we briefly recall a surjectivityresult for multivalued mappings in reflexiv
Banach spaces (cf., e.g., [10, Theorem 2.12]) which among others will be used in the
of our main result in this section.

Theorem 3.1. Let X be a real reflexive Banach space with dual spaceX∗, Φ :X → 2X∗

a maximal monotone operator, andu0 ∈ dom(Φ). LetA :X → 2X∗
be a pseudomonoton

operator, and assume that eitherAu0 is quasi-bounded orΦu0 is strongly quasi-bounded
Assume further thatA :X → 2X∗

is u0-coercive, i.e., there exists a real-valued funct
c :R+ → R with c(r) → +∞ as r → +∞ such that for all(u,u∗) ∈ graph(A) one has
〈u∗, u − u0〉 � c(‖u‖X)‖u‖X . ThenA + Φ is surjective, i.e.,range(A + Φ) = X∗.

The operatorsAu0 andΦu0 that appear in the theorem above are defined byAu0(v) :=
A(u0 + v) and similarly forΦu0. As for the notion ofquasi-boundedandstrongly quasi-
boundedwe refer to [10, p. 51]. In particular, onehas that any bounded operator is qua
bounded and strongly quasi-bounded as well. The following proposition provides sufficien
conditions for an operatorA :X → 2X∗

to be pseudomonotone, which is suitable for
purpose.

Proposition 3.1. Let X be a real reflexive Banach space, and assume thatA :X → 2X∗

satisfies the following conditions:

(i) For eachu ∈ X we have thatA(u) is a nonempty, closed and convex subset ofX∗.
(ii) A : X → 2X∗

is bounded.
(iii) If un ⇀ u in X andu∗

n ⇀ u∗ in X∗ with u∗
n ∈ A(un) and if lim sup〈u∗

n,un − u〉 � 0,
thenu∗ ∈ A(u) and〈u∗

n,un〉 → 〈u∗, u〉.

Then the operatorA :X → 2X∗
is pseudomonotone.

As for the proof of Proposition 3.1 we refer, e.g., to [10, Chapter 2].
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4. Existence and comparison result

The main result of this section is given bythe following theorem which provides a
existence and comparison result for the variational–hemivariational inequality (1.1).

Theorem 4.1. Let ū and u be super- and subsolutions of(1.1), respectively, satisfyin
u � ū. Then under hypotheses(A1)–(A3) and (H), there exist solutions of(1.1)within the
order interval[u, ū].

Proof. Consider the variational–hemivariational inequality (1.1): Findu ∈ dom(ψ) ∩ V0
such that

〈Au − f, v − u〉 + ψ(v) − ψ(u) +
∫
Ω

j0(u; v − u) dx � 0, ∀v ∈ V0. (4.1)

Since we are looking for solutions of (4.1) within[u, ū], we consider the following auxil
iary problem: Findu ∈ dom(ψ) ∩ V0 such that

〈
Au − f + λB(u), v − u

〉 + ψ(v) − ψ(u) +
∫
Ω

j0(u; v − u) dx � 0,

∀v ∈ V0, (4.2)

whereB is the cut-off operator introduced in Section 2, andλ � 0 is some parameter to b
specified later.

We proceed in two steps.
Step1. Existence for(4.2). Let us introduce the functionalJ :Lp(Ω) → R defined by

J (v) =
∫
Ω

j
(
v(x)

)
dx, ∀v ∈ Lp(Ω),

which by hypothesis (H) is locally Lipschitz, and moreover, by Aubin–Clarke theorem
[7, p. 83]) for eachu ∈ Lp(Ω) we have

ξ ∈ ∂J (u) ⇒ ξ ∈ Lq(Ω) with ξ(x) ∈ ∂j
(
u(x)

)
for a.e.x ∈ Ω.

Consider now the multivalued operator

A + λB + ∂(J |V0) + ∂(ψ|V0) :V0 → 2V ∗
0 ,

whereJ |V0 andψ|V0 denote the restriction ofJ andψ , respectively, toV0, and∂(ψ|V0)

is the subdifferential ofψ|V0 in the sense of convex analysis. It is well known thatΦ :=
∂(ψ|V0) :V0 → 2V ∗

0 is a maximal monotone operator, cf., e.g., [11]. SinceA :V0 → V ∗
0

is strictly monotone, bounded, and continuous, andλB :V0 → V ∗
0 is bounded, continu

ous and compact, it follows thatA + λB :V0 → V ∗
0 is a (singlevalued) pseudomonoton

continuous, and bounded operator. In [5] it has been shown that∂(J |V0) :V0 → 2V ∗
0 is

a (multivalued) pseudomonotone operator, which, due to (H), is bounded. ThusA0 :=
A + λB + ∂(J |V0) :V0 → 2V ∗

0 is a pseudomonotone and bounded operator. Hence, i
lows by Theorem 3.1 that range(A0 + Φ) = V ∗ providedA0 is u0-coercive for some
0
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u0 ∈ dom(∂(ψ|V0)), which can readily be seen as follows: For anyv ∈ V0 and any
w ∈ ∂(J |V0)(v) we obtain by applying (A3), (H)(ii) and (2.7) the estimate〈

Av + λB(v) + w,v − u0
〉

=
∫
Ω

N∑
i=1

ai(x,∇v)
∂v

∂xi
dx + λ

〈
B(v), v

〉 + ∫
Ω

wv dx − 〈
Av + λB(v) + w,u0

〉

� ν

∫
Ω

|∇v|p dx − ‖k1‖L1(Ω) + c4λ‖v‖p

Lp(Ω) − c5λ − c2

∫
Ω

(
1+ |v|p−1)|v|dx

− ∣∣〈Av + λB(v) + w,u0〉
∣∣

� ν‖v‖p
V0

− C
(
1+ ‖v‖p−1

V0

)
, (4.3)

for some constantC > 0, by choosing the constantλ in such a way thatc4λ > c2. Since
p > 1, the coercivity ofA0 follows from (4.3). In view of the surjectivity of the operat
A0 + Φ there existsu ∈ dom(Φ) ⊂ dom(ψ) ∩ V0 such thatf ∈ A0(u) + Φ(u), i.e., there
is ξ ∈ ∂(J |V0)(u) with ξ ∈ Lq(Ω) andξ(x) ∈ ∂j (u(x)) for a.e.x ∈ Ω , andη ∈ Φ(u) such
that

Au − f + λB(u) + ξ + η = 0 in V ∗
0 , (4.4)

where

〈ξ,ϕ〉 =
∫
Ω

ξ(x)ϕ(x) dx, ∀ϕ ∈ V0, (4.5)

and

ψ(v) � ψ(u) + 〈η, v − u〉, ∀v ∈ V0. (4.6)

By definition of Clarke’s generalized gradient∂j from (4.5) we get

〈ξ,ϕ〉 =
∫
Ω

ξ(x)ϕ(x) dx �
∫
Ω

j0(u(x);ϕ(x)
)
dx, ∀ϕ ∈ V0. (4.7)

Thus from (4.4)–(4.7) withϕ replaced byv−u we obtain (4.2), which proves the existen
of solutions of problem (4.2).

Step2. u � u � ū for any solutionu of (4.2). Let us first showu � ū. By definition the
supersolution̄u satisfies:ū ∈ dom(ψ̃), ū � 0 on∂Ω , and

〈Aū − f, v − ū〉 + ψ̃(v) − ψ̃(ū) +
∫
Ω

j0(ū; v − ū) dx � 0,

∀v ∈ ū ∨ (
dom(ψ) ∩ V0

)
. (4.8)

Let u be any solution of (4.2). We apply the special test functionv = ū∨u = ū+ (u− ū)+
(∈ ū ∨ (dom(ψ) ∩ V0)) in (4.8) andv = ū ∧ u = u − (u − ū)+ (∈ dom(ψ) ∩ V0, due to the
hypothesis) in (4.2), and get by adding the resulting inequalities the following one:
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〈
Aū − Au, (u − ū)+

〉 + λ
〈
B(u),−(u − ū)+

〉 + ψ̃(ū ∨ u) − ψ̃(ū)

+ ψ(ū ∧ u) − ψ(u) +
∫
Ω

(
j0(ū; (u − ū)+

) + j0(u;−(u − ū)+
))

dx � 0,

which yields due to〈
Au − Aū, (u − ū)+

〉
� 0,

the inequality

λ
〈
B(u), (u − ū)+

〉
� ψ̃(ū ∨ u) − ψ̃(ū) + ψ(ū ∧ u) − ψ(u)

+
∫
Ω

(
j0(ū; (u − ū)+

) + j0(u;−(u − ū)+
))

dx. (4.9)

By using (H) and the properties onj0 and ∂j we get for certainξ̄ (x) ∈ ∂j (ū(x)) and
ξ(x) ∈ ∂j (u(x)) the following estimate of the second term on the right-hand side of (4∫

Ω

(
j0(ū; (u − ū)+

) + j0(u;−(u − ū)+
))

dx

=
∫

{u>ū}

(
j0(ū;u − ū) + j0(u;−(u − ū)

))
dx

=
∫

{u>ū}

(
ξ̄ (x)

(
u(x) − ū(x)

) + ξ(x)
(−(

u(x) − ū(x)
)))

dx

=
∫

{u>ū}

(
ξ̄ (x) − ξ(x)

)(
u(x) − ū(x)

)
dx �

∫
{u>ū}

c1
(
u(x) − ū(x)

)p
dx. (4.10)

Since〈
B(u), (u − ū)+

〉 = ∫
{u>ū}

(u − ū)p dx,

we get from (4.9), (4.10) and due to the definition of the supersolution the estimate

(λ − c1 − c̃)

∫
{u>ū}

(u − ū)p dx � 0. (4.11)

Selecting the parameterλ, in addition, such thatλ − c1 − c̃ > 0 then (4.11) yields∫
Ω

(
(u − ū)+

)p
dx � 0,

which implies(u − ū)+ = 0 and thusu � ū.
The proof for the inequalityu � u can be carried out in a similar way. By definition t

subsolutionu satisfies:u ∈ dom(ψ̂), u � 0 on∂Ω , and
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〈Au − f, v − u〉 + ψ̂(v) − ψ̂(u) +
∫
Ω

j0(u; v − u) dx � 0,

∀v ∈ u ∧ (
dom(ψ) ∩ V0

)
. (4.12)

Using the test functionsv = u ∧ u = u − (u − u)+(∈ u ∧ (dom(ψ) ∩ V0)) in (4.12) and
v = u ∨ u = u + (u − u)+ (∈ dom(ψ) ∩ V0) in (4.2), respectively, we get by adding t
resulting inequalities the following one:〈

Au − Au, (u − u)+
〉 + λ

〈
B(u), (u − u)+

〉 + ψ̂(u ∧ u) − ψ̂(u)

+ ψ(u ∨ u) − ψ(u) +
∫
Ω

(
j0(u;−(u − u)+

) + j0(u; (u − u)+
))

dx � 0.

Following the same lines as above we arrive at

(λ − c1 − ĉ)

∫
{u>u}

(u − u)p dx � 0.

Choosingλ − c1 − ĉ > 0 impliesu � u. This completes the proof of the theorem.�

5. Compactness and existence of extremal solutions

Let S denote the set of all solutions of (1.1) within the interval[u, ū] of an ordered pai
of sub- and supersolutions. The smallest and greatest elements ofS are called theextremal
solutionsof (1.1) within [u, ū].

Theorem 5.1. Under the hypotheses of Theorem4.1 the solution setS is compact inV0.

Proof. First we prove thatS is bounded inV0. Since anyu ∈ S belongs to the interva
[u, ū] it follows thatS is bounded inLp(Ω). Moreover, anyu ∈ S solves (1.1), i.e.,u sat-
isfies

u ∈ dom(ψ) ∩ V0: 〈Au − f, v − u〉 + ψ(v) − ψ(u) +
∫
Ω

j0(u; v − u) dx � 0,

∀v ∈ V0.

Let u0 be any (fixed) element of dom(ψ) ∩ V0. By takingv = u0 in the above inequality
we get

〈Au,u〉 � 〈Au,u0〉 + 〈f,u − u0〉 + ψ(u0) − ψ(u) +
∫
Ω

j0(u;u0 − u) dx. (5.1)

Sinceψ is bounded below by an affine function onV we get the following estimate fo
some nonnegative constantd :

ψ(u) � −d
(‖u‖V + 1

)
,



76 S. Carl et al. / J. Math. Anal. Appl. 302 (2005) 65–83

y

ce

y

-

er,
de of
which yields by applying Young’s inequality and the equivalence of the norm‖u‖V ∼
‖∇u‖Lp(Ω) for u ∈ V0,

ψ(u) � −ν

2
‖∇u‖p

Lp(Ω) − D,

for some constantD > 0 not depending onu. By means of the last inequality and b
applying (A3), (H)(ii), and Young’s inequality we obtain the following estimate:

ν

2
‖∇u‖p

Lp(Ω) � ‖k1‖L1(Ω) + c(ε)
(‖f ‖q

V ∗
0

+ 1
) + ε‖u‖p

V0

+ α̃
(‖u‖Lp(Ω) + ‖u‖p

Lp(Ω) + 1
)
, (5.2)

for anyε > 0 and a constant̃α > 0. Hence, the boundedness ofS in V0 follows by choosing
ε sufficiently small and by taking into account thatS is bounded inLp(Ω).

Let (un) ⊂ S. From the above boundedness ofS in V0, we can choose a subsequen
(uk) of (un) such that

uk ⇀ u in V0, uk → u in Lp(Ω), and

uk(x) → u(x) a.e. inΩ. (5.3)

Obviouslyu ∈ [u, ū]. Sinceuk solve (1.1), we can putv = u ∈ V0 in (1.1) (withuk instead
of u) and get

〈Auk − f,u − uk〉 + ψ(u) − ψ(uk) +
∫
Ω

j0(uk;u − uk) dx � 0,

and thus

〈Auk,uk − u〉 � 〈f,uk − u〉 + ψ(u) − ψ(uk) +
∫
Ω

j0(uk;u − uk) dx. (5.4)

Due to (5.3) and due to the fact that(s, r) �→ j0(s; r) is upper semicontinuous we get b
applying Fatou’s lemma

lim sup
k

∫
Ω

j0(uk;u − uk) dx �
∫
Ω

lim sup
k

j0(uk;u − uk) dx = 0. (5.5)

In view of (5.5) we thus obtain from (5.3), (5.4) and becauseψ is weakly lower semicon
tinuous

lim sup
k

〈Auk,uk − u〉 � 0. (5.6)

Since the operatorA has the (S+)-property, the weak convergence of(uk) in V0 along with
(5.6) imply the strong convergenceuk → u in V0, see, e.g., [1, Theorem D.2.1]. Moreov
the limit u belongs toS as can be seen by passing to the lim sup on the left-hand si
the following inequality:

〈Auk − f, v − uk〉 + ψ(v) − ψ(uk) +
∫

j0(uk; v − uk) dx � 0, (5.7)
Ω
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where we have used Fatou’s lemma, the lower semicontinuity ofψ and the strong conve
gence of(uk) in V0. This completes the proof.�

As for the existence of extremal solutions inS, let us introduce the following notion.

Definition 5.1. Let (P,�) be a partially ordered set. A subsetC of P is said to beupward
directedif for each pairx, y ∈ C there isz ∈ C such thatx � z andy � z, andC is down-
ward directedif for each pairx, y ∈ C there isw ∈ C such thatw � x andw � y. If C is
both upward and downward directed it is calleddirected.

We are now ready to prove our extremality result.

Theorem 5.2. Let the hypotheses of Theorem4.1be satisfied, and assume, moreover,

dom(ψ) ∧ dom(ψ) ⊂ dom(ψ) and dom(ψ) ∨ dom(ψ) ⊂ dom(ψ). (5.8)

If there is a constantc � 0 such that

ψ(w ∨ v) − ψ(w) + ψ(w ∧ v) − ψ(v) � c

∫
{v>w}

(v − w)p dx, (5.9)

for all w,v ∈ dom(ψ), then the solution setS possesses extremal elements.

Proof. Step1.S is a directed set. As a consequence of Theorem 4.1, we haveS �= ∅. Given
u1, u2 ∈ S, let us show that there isu ∈ S such thatuk � u, k = 1,2, which meansS is up-
ward directed. To this end we consider the following auxiliary variational–hemivariat
inequality: Findu ∈ dom(ψ) ∩ V0 such that

〈
Au − f + λB(u), v − u

〉 + ψ(v) − ψ(u) +
∫
Ω

j0(u; v − u) dx � 0,

∀v ∈ V0, (5.10)

whereλ � 0 is a free parameter to be chosen later. Unlike in the proof of Theorem 4
operatorB is now given by the following cut-off functionb :Ω × R → R:

b(x, s) =



(s − ū(x))p−1 if s > ū(x),

0 if u0(x) � s � ū(x),

−(u0(x) − s)p−1 if s < u0(x),

(5.11)

whereu0 = max(u1, u2). By arguments similar to those in the proof of Theorem 4.1
get the existence of solutions of (5.10) (see Step 1 in the proof of Theorem 4.1). TheS
is shown to be upward directed provided that any solutionu of (5.10) satisfiesuk � u � ū,
k = 1,2, because thenBu = 0 and thusu ∈ S exceedinguk . Becauseuk ∈ S, we have
uk ∈ dom(ψ) ∩ V0 ∩ [u, ū] and

〈Auk − f, v − uk〉 + ψ(v) − ψ(uk) +
∫

j0(uk; v − uk) dx � 0, ∀v ∈ V0. (5.12)
Ω
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Note that (5.8) implies that

u + (uk − u)+ = u ∨ uk ∈ dom(ψ) ∩ V0

and

uk − (uk − u)+ = u ∧ uk ∈ dom(ψ) ∩ V0.

Therefore, one can take as special functionsv = u + (uk − u)+ in (5.10) andv = uk −
(uk − u)+ in (5.12). Adding the resulting inequalities we obtain〈

Auk − Au, (uk − u)+
〉 − λ

〈
B(u), (uk − u)+

〉
� ψ(u ∨ uk) − ψ(u) + ψ(u ∧ uk) − ψ(uk)

+
∫
Ω

(
j0(u; (uk − u)+

) + j0(uk;−(uk − u)+
))

dx. (5.13)

Arguing as in (4.10), we have for the second term on the right-hand side of (5.1
estimate∫

Ω

(
j0(u; (uk − u)+

) + j0(uk;−(uk − u)+
))

dx

�
∫

{uk>u}
c1

(
uk(x) − u(x)

)p
dx. (5.14)

For the terms on the left-hand side of (5.13) we have〈
Auk − Au, (uk − u)+

〉
� 0 (5.15)

and (5.11) yields

〈
B(u), (uk − u)+

〉 = −
∫

{uk>u}

(
u0(x) − u(x)

)p−1(
uk(x) − u(x)

)
dx

� −
∫

{uk>u}

(
uk(x) − u(x)

)p
dx. (5.16)

By means of (5.14)–(5.16) and the assumption we get from (5.13) the inequality

(λ − c1 − c)

∫
{uk>u}

(
uk(x) − u(x)

)p
dx � 0. (5.17)

Selectingλ such thatλ > c1 + c from (5.17) it followsuk � u.
The proof foru � ū follows arguments similar to the ones in Step 2 of the proo

Theorem 4.1, and thusS is upward directed.
By obvious modifications of the auxiliary problem one can show analogously thatS is

also downward directed.
Step2. Existence of extremal solutions. We show the existence of the greatest elem

of S. SinceV0 is separable we have thatS ⊂ V0 is separable too, so there exists a counta
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dense subsetZ = {zn | n ∈ N} of S. From Step 1,S is upward directed, so we can constru
an increasing sequence(un) ⊂ S as follows. Letu1 = z1. Selectun+1 ∈ S such that

max{zn,un} � un+1 � ū.

The existence ofun+1 is established in Step 1. From the compactness ofS according to
Theorem 5.1, we can choose a subsequence of(un), denoted again(un), and an elemen
u ∈ S such thatun → u in V0, andun(x) → u(x) a.e. inΩ . This last property of(un)

combined with its increasing monotonicity implies that the entire sequence is conv
in V0 and, moreover,u = supn un. By construction, we see that

max{z1, z2, . . . , zn} � un+1 � u, ∀n,

thusZ ⊂ [u,u]. Since the interval[u,u] is closed inV0, we infer

S ⊂ Z̄ ⊂ [u,u] = [u,u],
which in conjunction withu ∈ S ensures thatu is the greatest solution of (1.1).

The existence of the least solution of (1.1) can be proved in a similar way.�
Remark 5.1. We note that for the proof of Theorem 5.2 it is enough to assume inste
(5.8) the following condition:

dom(ψ) ∧ (
dom(ψ) ∩ [u, ū]) ⊂ dom(ψ)

and

dom(ψ) ∨ (
dom(ψ) ∩ [u, ū]) ⊂ dom(ψ).

Remark 5.2. The question may arise whether there are cases of functionals in which
dition (5.9) is satisfied withc > 0. We illustrate such a case by the following functional.
ψ :V0 → R be the functionψ = ψ1|V0 with ψ1 :Lp(Ω) → R differentiable and convex
The differential atu ∈ V0 is denotedψ ′(u) ∈ V ∗

0 and is equal toψ ′(u) = i∗ψ ′
1(u) in V ∗

0 ,
with ψ ′

1(u) ∈ Lq(Ω) and the inclusion mapi :V0 → Lp(Ω). We assume that there exis
a constantc > 0 such that wheneverv,w ∈ V0 one has

ψ ′
1(v) − ψ ′

1(w) � c(v − w)p−1 for a.e. on{w < v}.
For allw,v ∈ V0 we find that

ψ(w ∨ v) − ψ(w) + ψ(w ∧ v) − ψ(v)

�
∫
Ω

ψ ′
1(w ∨ v)(w ∨ v − w)dx +

∫
Ω

ψ ′
1(w ∧ v)(w ∧ v − v) dx

=
∫
Ω

(
ψ ′

1

(
w + (v − w)+

) − ψ ′
1

(
v − (v − w)+

))
(v − w)+ dx

=
∫

{w<v}

(
ψ ′

1(v) − ψ ′
1(w)

)
(v − w)dx � c

∫
{w<v}

(v − w)p dx.
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6. Applications

Example 6.1. Assumef ∈ L∞(Ω) ⊂ V ∗
0 , and letK ⊂ V0 represent the following obstac

K = {
v ∈ V0 | v(x) � φ(x) for a.e.x ∈ Ω

}
, (6.1)

with φ :Ω → R measurable. Letg :V → R ∪ {+∞} be the integral functional introduce
in Example 2.3 of Section 2 andIK :V → R ∪ {+∞} the indicator function related wit
K given by (6.1) and assumeK �= ∅. Then the functionalψ :V → R ∪ {+∞} defined by

ψ = IK + g

is proper, convex and lower semicontinuous with dom(ψ) = K ∩dom(g). We consider the
variational–hemivariational inequality (1.1) withf andψ as specified above, i.e., we a
looking foru ∈ K ∩ dom(g) such that

u ∈ K ∩ dom(g): 〈Au − f, v − u〉 + ψ(v) − ψ(u) +
∫
Ω

j0(u; v − u) dx � 0,

∀v ∈ V0. (6.2)

The following theorem provides conditions that ensure the existence of an ordere
of constant sub- and supersolutions of (6.2).

Theorem 6.1. Letai(x,0) ≡ 0 for all 1� i � N , and let the constantsα � 0, β � 0 satisfy
the following conditions:

(i) α � φ(x) for a.e.x ∈ Ω .
(ii) For someξ ∈ ∂h(α), η ∈ ∂h(β) the following inequality is satisfied:

−j0(α;−1) + ξ � f (x) � j0(β;1) + η for a.e.x ∈ Ω. (6.3)

Then the constant functionsu = α and ū = β form an ordered pair of sub- and supersol
tions of (6.2).

Proof. First let us verify thatu(x) ≡ α is a subsolution according to Definition 2.1. A
already noted above we have dom(ψ) = K ∩ dom(g). Sinceα ∈ dom(g) andα � 0 and
due toα � φ (see (i)) we getα ∨ (dom(ψ) ∩ V0) ⊂ dom(ψ) ∩ V0, and thus (i) and (ii)
of Definition 2.1 are satisfied. To verify (iii) of Definition 2.1 we need to construc
appropriate functional̂ψ that satisfies (a)–(c) of Definition 2.1. To this end we setψ̂ = g.
Then (a) is satisfied, becauseα ∈ dom(g). Forv ∈ dom(ψ) ∩ V0 = K ∩ dom(g) we obtain

ψ(v ∨ u) + ψ̂(v ∧ u) − ψ(v) − ψ̂(u)

= g(v ∨ α) + g(v ∧ α) − g(v) − g(α) = 0, (6.4)

which shows that (b) of Definition 2.1 is satisfied withĉ = 0. The second equality of (6.4
can easily be shown to be true by splitting up the domainΩ into Ω = Ω1 ∪Ω2 = {x ∈ Ω |
v(x) � α}∪ {x ∈ Ω | v(x) < α}, and by evaluating the individual integrals. To see that a
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(c) of Definition 2.1 is valid letv ∈ α ∧ (K ∩ dom(g)). Thenv − α � 0 in Ω and by (6.3)
we get (note thath :R → R is the integrand of the functionalg given in Example 2.3)

〈Aα − f, v − α〉 + g(v) − g(α) +
∫
Ω

j0(α; v(x) − α
)
dx

�
∫
Ω

(
j0(α;−1) + f (x) − ξ

)(
α − v(x)

)
dx � 0, (6.5)

which proves thatα is a subsolution.
Let us show thatβ is a supersolution of (6.2). One readily sees thatβ ∧ K ⊂ K and

β ∧ dom(g) ⊂ dom(g) holds, and thus (i) and (ii) of Definition 2.2 are satisfied. It rema
to verify (iii) of Definition 2.2. To this end we show that with̃ψ = g and applying (6.3)
the conditions (a)–(c) of Definition 2.2 can be fulfilled. We haveβ ∈ dom(g) and forv ∈
K ∩ dom(g) the following equalities are satisfied:

ψ(v ∧ ū) + ψ̃(v ∨ ū) − ψ(v) − ψ̃(ū)

= g(v ∧ β) + g(v ∨ β) − g(v) − g(β) = 0, (6.6)

which shows that (b) of Definition 2.2 holds with̃c = 0. Finally, to verify (c) letv ∈
β ∨ (K ∩ dom(g)); thenv � β and we obtain by means of (6.3),

〈Aβ − f, v − β〉 + g(v) − g(β) +
∫
Ω

j0(β; v(x) − β
)
dx

�
∫
Ω

(
j0(β;1) − f (x) + η

)
(v(x) − β)dx � 0,

which proves that the constantβ � 0 is a supersolution. �
Corollary 6.1. Let the hypotheses of Theorem6.1, (A1)–(A3)and(H) be satisfied. Then th
variational–hemivariational inequality(6.2)possesses extremal solutions within the or
interval [α,β] and the solution setS of all solutions of(6.2)within [α,β] is compact.

Proof. By Theorem 6.1 the constantsα andβ form an ordered pair of sub- and sup
solutions, respectively, and thus Theorems 4.1 and 5.1 can be applied which prov
existence of solutions within[α,β] and the compactness ofS. For the existence of extrem
solutions we apply Theorem 5.2. To this end we only need to verify conditions (5.8
(5.9) for the specific functionalψ = IK + g considered here. It can easily be seen that
following is true:K ∨ K ⊂ K, K ∧ K ⊂ K, dom(g) ∨ dom(g) ⊂ dom(g), and dom(g) ∧
dom(g) ⊂ dom(g), and hence condition (5.8) holds (note dom(ψ) = K ∩ dom(g)). For
w,v ∈ K ∩ dom(g) we have

ψ(w ∨ v) − ψ(w) + ψ(w ∧ v) − ψ(v)

= g(w ∨ v) − g(w) + g(w ∧ v) − g(v) = 0,

and thus also (5.9) is satisfied withc = 0. This completes the proof.�
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Example 6.2. Assume as in Example 6.1 that the operatorA satisfiesai(x,0) ≡ 0 for all
1 � i � N . Let ψ :V0 → R be given by

ψ(v) = λ

p

∫
Ω

|v|p dx, ∀v ∈ V0,

then the following corollary provides a sufficient condition for zero to be a subsolutio
problem (1.1). In the proof we will demonstrate the flexibility in the choice of the auxi
functionalψ̂ .

Corollary 6.2. Let f ∈ Lp∗ ′
(Ω) (p∗ the critical Sobolev exponent) such thatf (x) �

−j0(0;−1) for a.e.x ∈ Ω , wherej :R → R verifies assumption(H). Thenu = 0 is a
subsolution of problem(1.1)with ψ as specified above.

Proof. We need to verify the conditions of Definition 2.1. Since dom(ψ) = V0, (i) and (ii)
of Definition 2.1 are trivially satisfied. Tocheck condition (iii) we may choose the functi
ψ̂ :V → R in the form

ψ̂(v) = mλ

p

∫
Ω

|v|p dx, ∀v ∈ V,

wherem ∈ [0,∞). Condition (iii)(a) is evident. Condition (iii)(b) is verified, because w
have

ψ(v+) + ψ̂(−v−) − ψ(v) − ψ̂(0)

= λ

p

[∫
Ω

|v+|p dx + m

∫
Ω

|v−|p dx −
(∫

Ω

|v+|p dx +
∫
Ω

|v−|p dx

)]

= (m − 1)λ

p

∫
Ω

|v−|p dx = (m − 1)λ

p

∫
Ω

∣∣(−v)+
∣∣p dx, ∀v ∈ V0,

and thus condition (iii)(b) is satisfied witĥc = 0 for m ∈ [0,1], and a positiveĉ =
(m − 1)λ/p for m > 1. It remains to verify condition (iii)(c), that is

〈A0− f, v〉 + mλ

p

∫
Ω

|v|p dx +
∫
Ω

j0(0; v) dx � 0, ∀v ∈ 0∧ V0.

Writing v = −w− with w ∈ V0, this reads∫
Ω

(
f + mλ

p
(w−)p−1 + j0(0;−1)

)
w− dx � 0,

which in view of our assumptions is true for anym ∈ [0,∞). �
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