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Abstract

We consider quasilinear elliptic variational-hemivariational inequalities involving convex, lower
semicontinuous and locally Lipschitz functionals. We provide a generalization of the fundamen-
tal notion of sub- and supersolutions on the basis of which we then develop the sub—supersolution
method for variational-hemivariational inequalities, including existence, comparison, compactness
and extremality results.
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1. Introduction

Let 2 c RN be a bounded domain with Lipschitz boundasy, and letV = W7 (£2)
andVp = Wc}’p(.o), 1 < p < oo, denote the usual Sobolev spaces with their dual spaces
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V* andVy, respectively. In this paper we deal with the following quasilinear variational—
hemivariational inequality:

uedomy)NVo: (Au— f,v—u)+ (@) — ) +/jo(u; v—u)dx >0,
Q
Yv € W, (1.2)

wherej%(s; r) denotes the generalized directionalidative of the locally Lipschitz func-
tion j:R — R ats in the directiorr given by

Jssr) = |imsupw

(1.2)
y—s,1]0 t

(cf., e.g., [7, Chapter 2])f € V§, andy, . V — R U {400} is a convex, lower semicontin-
uous function such that damy) N Vo # @. Here dontyr) stands for the effective domain
of ¢ defined by dorw) = {v € V | ¥(v) < +o0}. The operatod : V — Vj is a second
order quasilinear differential operator in divergence form

N u du
Au(x):—za—ai(x,Vu(x)), with Vu = (— .. ) (2.3)
X

£ oz, dx1 T o
The above problem (1.1) includes vari@pecial cases such as, e.g., the following:

() For ¢ (u) =0 andj:R — R smooth with its derivative’ : R — R, (1.1) reduces to
the weak formulation of the Dirichlet problem

ueVo: Au+j'w)y=f inVvy.

(i) For ¥ (u) =0, andj:R — R not necessarily smooth, then (1.1) is a hemivariational
inequality of the form

u e Vo (Au—f,v—u>+/j°(u;v—u)dx>o, Yv € Vo.
2

(iii) For j:R — R smooth, (1.1) becomes the variational inequality
uedomy)NVo: (Au+j'(w)— fiv—u)+ ¢ @) —y@) >0, Vvel.

The main goal of this paper is to develop a general framework for the sub—supersolution
method for variational-hemivariational inequalities of the form (1.1) which include, e.g.,
the above special cases. In particular (1.1) includes constraint hemivariational inequalities
as well in case tha{ := Ix, wherelg is the indicator function of some closed convex
setK. Existence, comparison and compactness results for problem (1.1) are given. In par-
ticular, we prove the existence of extremal solutions in the order interval formed by sub-
and supersolutions, and provide applications that demonstrate the applicability of the de-
veloped theory.
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2. Notation and hypotheses

We assume the following hypotheses of Leray—Lions type on the coefficient func-
tionsa;, i =1,..., N, of the operator:

(A1) Eachg;: 2 x RN — R satisfies the Carathéodory conditions, i®(x, &) is mea-
surable inx € £2 forall £ e RN and continuous i for aimost allx € 2. There exist
a constanto > 0 and a functiorkg € L9(£2), 1/p + 1/q = 1, such that

|ai (x, £)] < ko(x) + col€|” 7L,

for a.e.x € £2 and for alle e RV,

(A2) Zf"zl(a,-(x,g) —a;(x,&)(& — &) >0foraex € £2, and for allg, &’ € RN with
E#8.

(A3) vazla,- (x,E)& > v|E|P — ky(x) for a.e.x € £2, and for alls € RN with some con-
stanty > 0 and some functioky € L1(£2).

As a consequence of (A1), (A2) the semilinear farmssociated with the operatarby
al 9
(Au,p) = a(u, ¢) = f > ai(x, Vu)2-dx, Vg e Vo,
i=1 Oxi
o i=

is well defined for any: € V, and the operatod : Vo — Vi is continuous, bounded, and
strictly monotone. For functions), z: £2 — R and setsW and Z of functions defined
on £2 we use the notationsy A z = min{w, z}, w Vz=maXw,z}, WA Z={w A z|
weW,zeZ},WvZ={wvzlweW, zeZ},andwAZ ={w}rZ,wVvZ ={w}VZ.
Next we introduce our basic notion of sub—supersolution.

Definition 2.1. A functionu € V is called asubsolutiorof (1.1) if the following conditions
are fulfilled:

() u<0o0nas2,
(i) u v (dom(y) N Vo) C dom(yr) N Vo,
(ii) there exists a mapping : V — R U {400} and a constarit > 0 such that the follow-
ing holds:
(@) u € dom(y),
() YV + P Aw =P @) =W <& [olw—v)T1? dx, Yu € domy) N Vo,
©) (Au—fiv—w) +9 @) =¥ @+ [ jow; v—w dx >0,Yv € u(domy) N Vo).

Similarly we define a supersolution as follows.

Definition 2.2. A functioni € V is asupersolutiorof (1.1) if the following conditions are
fulfilled:

(i) 2 >00n0as2,
(ii) u A (dom(yr) N Vo) C dom(y) N Vo,



68 S. Carl et al. / J. Math. Anal. Appl. 302 (2005) 65-83

(iii) there exists a mapping : V — R U {+oc} and a constarit > 0 such that the follow-
ing holds:
(a) i@ € dom(y)),
(0) Y AD) +P@VE) =) =¥ @) < [olw—a)t1Pdx, Yo e domy) N Vo,
(©) (Aii— f,v—it)+ ¥ ()= @)+ [, jO; v—it) dx > 0,Yv € it v (dom(y) N Vo).

The above definitions of sub—supersolutions require the existence of functjoaaid
¥ that satisfy conditions (a)—(c) in Definitions 2.1 and 2.2, respectively, which extend the
one for variational inequalities introduceélcently in [9]. In fact one can show that the
above notions of sub—supersolution extend those for inclusions of hemivariational type
introduced in [3,4] and for variational and/or hemivariational inequalities in [5,6,8,9]. Let
us consider a few examples.

Example 2.1. Assumey (1) = 0 and;j : R — R smooth, then as already pointed out in the
Introduction (1.1) reduces to the Dirichlet problem
ueVo: Au+j'w)y=f inVvy.

We shall see that the above definitions contain the usual notion of sub- and supersolution
for the Dirichlet problem. According to Definition 2.1 a functiere V with u <0 ona2

is a subsolution if (ii) and (iii) of Definition 2.1 can be fulfilled. Since dam =V, we

see that by choosing = 0 the conditions (ii) and (iii)(a)—(b) are trivially satisfied. Thus

is only required to satisfy condition (iii)(c), i.e.,

(Aﬂ—f,v—z)Jr/j/(z)(v—z)dx20, YveuAVo.
2

Lety e Vo, thenv eu A Vgisgivenbyv =u A ¢ =u — (u — @)+, which yields

(Au—fi—w—)*)+ / J@(—w—9)T)dx >0, VeV,
2

and thus we obtain withy = (u — @)™ € Vo N L% (2) the inequality

(Au— f, w>+/j’(z)wdx<0, Yw e W,
2

whereW = {w = (u — ¢)* | ¢ € Vp}. Observing thaW is dense invp N Li(.Q) (see [2])
we get the usual notion of weak subsolution of the Dirichlet problem. Similarly Defini-
tion 2.2 contains the usual notion for a supersolution of the above Dirichlet problem.

Example 2.2. Let K C Vp be a closed and convex set, andyet Ig, wherelg :V —
R U {+00} denotes the indicator function relatedth the given closed convex sé&t # ¢
and defined by

0 ifuek,

IK(M):{—i—oo if u g K.
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which is proper, convex, and lower semicontinuous. Problem (1.1) then becomes: Find
u € K such that

(Au—f,v—u)+IK(v)—IK(u)—i—/jO(u;v—u)dx20, Yv € Wo. (2.1)
2

In this cases € V is a subsolution of (2.1) according to Definition 2.1 if the following is
satisfied:

(1) u<0o0nas2,
(2) uvKCK,
(3) (Au—fov—u)+ [ j°w v —wdx>0,Yveunk.

One readily verifies that with (1)—(3) and takigigv) = 0 andé = 0 all the conditions of
Definition 2.1 are fulfilled. Analogous coittbns can be found for a supersolutianof
(2.2):

(1)) 2 >00nas2,
(2) unK CK,
(3) (Ai— f,v—it)+ [, jO;v—it)dx >0,Yvea VK.

Conditions (1)—(3) and (}—(3) which where introduced in [8] to define sub—supersolutions
turn out to be special cases of Definitions 2.1 and 2.2, respectively.

Example 2.3. Given a convex lower semicontinuous functibnR — R, we introduce
g:V —- RU {400} by
o(v) = {fgh(v(x))dx if h(v) € L1(2),
+o0 if h(v) ¢ L1(2),
which is known to be proper, convex and lower semicontinuous. Consider problem (1.1)
with ¢ = g, i.e., findu € dom(g) N Vp such that

(Au— fiv—u)+gv) — g(u) + / O v—u)ydx >0, Vvel. (2.2)
2

Then, e.g., the following conditions on a functiane V imply thatu is a subsolution
according to Definition 2.1:

(1) u<0o0nds,

(2) u v (dom(g) N Vo) C dom(g) N Vo,

(3) u e dom(g), and(Au — f,v —u) +g(v) — gw) + [, j°w; v —u)dx > 0,Yveu A
(dom(g) N Vo).

Takingy = ¢ andé any nonnegative constant one can see that in view of (1)—(3) all condi-
tions of Definition 2.1 are satisfied. This is because fovaldom(g) N Vg the following
equation holds for the integral functiongal

gwvu)+glwnu)—gw) —gu)=0. (2.3)



70 S. Carl et al. / J. Math. Anal. Appl. 302 (2005) 65-83

The identity (2.3) can easily be proved by splitting2pnto 2 = 21 U £2,, where
2r={xe2v) <u@}  22={xe2]v() >u)},

and by considering the resulting integrals. Thus, for examplﬁa’fLP*’(Q) (with p* the
critical Sobolev exponent) and(x,0) =0 fori =1,..., N, thenu = 0 is a subsolution if
for somet € 9k (0) the following inequality holds:

f(x)=—j%0;-1)+&, foraexes.
The corresponding conditns for a supersolutioi are obvious and can be omitted.
Remark 2.1. It should be noted that in specific situations the functiomialg: allow much
flexibility for the constructio of sub—supersolutions. Weqvide a construction of sub—
supersolutions for more specific problems in the last section.

Letdj:R — 2R\ {#} denote Clarke’s generalized gradientjadefined by

3j(s):={¢ eR | j%s;r) = ¢r, Vr eR}. (2.4)
We assume the following hypothesis ffir
(H) The functionj:R — R is locally Lipschitz and its Clarke’s generalized gradiént

satisfies the following growth conditions:
(i) there exists a constant > 0 such that

£1< & +ci(s2—sp)P 7t

forall & €9j(s;), i =1, 2, and for allsy, s2 with s1 < s2,
(i) there is a constant, > 0 such that

£€dj(s): |El<ca(l+[sP7h), VseR.

Let L?(£2) be equipped with the natural partial ordering of functions defined kyw

if and only if w — u belongs to the positive cong, (2) of all nonnegative elements of
L?(£2). This induces a corresponding partial ordering also in the subgpaxfel.” (£2),
and ifu, w € V with u < w then

[u,wl={zeV]u<z<w}

denotes the order interval formed byandw.
In the proofs of our main results we make use of the cut-off funchiof2 x R — R
related with an ordered pair of functions< iz, and given by

(s —a(x)P 1 ifs>ia(x),
b(x,s)=10 if u(x) <s <ux), (2.5)
—(ux) =P~ if s <u(x).

One readily verifies thdi is a Carathéodory function sding the growth condition

|b(x, 5)| < k(x) +czls|P~t (2.6)
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fora.e.x € £2, for all s € R, with some functiork € Li(.Q) and a constantz > 0. More-
over, one has the following estimate:

f b(x, u(0))u(x)dx > callully, g, = cs, Vi € LP($2), (2.7)
2

wherecs and cs are some positive constants. In view of (2.6) the Nemytskij operator
B:LP(2) — L1($2) defined by

Bu(x) = b(x, u(x))

is continuous and bounded, and thus due to the compact embadding” (£2) it follows
thatB: Vo — Vj is compact.

3. Preliminaries

In this section we briefly recall a surjectivitgsult for multivalued mappings in reflexive
Banach spaces (cf., e.g., [10, Theorem 2.12]) which among others will be used in the proof
of our main result in this section.

Theorem 3.1. Let X be a real reflexive Banach space with dual space @ : X — 2X°

a maximal monotone operator, ang € dom(®). LetA: X — 2X* be a pseudomonotone
operator, and assume that eithat,, is quasi-bounded o®, is strongly quasi-bounded.
Assume further thatt : X — 2X" is ug-coercive, i.e., there exists a real-valued function
c¢:Ry — R with ¢(r) - 400 asr — +oo such that for all(u, u*) € grapi(A) one has
(u*, u —ug) = c(Jlullx)llullx. ThenA + @ is surjective, i.e.rangéA + @) = X*.

The operatorst,, and®,,, that appear in the theorem above are defined py(v) :=
A(uo + v) and similarly for®,,. As for the notion ofquasi-bounde@ndstrongly quasi-
boundedwe refer to [10, p. 51]. In particular, oreas that any bounded operator is quasi-
bounded and strongly quasi-bounded as well. Bieding proposition provides sufficient
conditions for an operatot : X — 2X" to be pseudomonotone, which is suitable for our
purpose.

Proposition 3.1. Let X be a real reflexive Banach space, and assume shat — 2X°
satisfies the following conditions

(i) Foreachu € X we have thatd (1) is a nonempty, closed and convex subseXof
(i) A:X — 2% is bounded.
(i) If up, = wuin X andu’ — u* in X* with u}} € A(u,) and if limsup(u}:, u, —u) <0,
thenu* € A(w) and (u);, u,) — (u*, u).

Then the operaton : X — 2X" is pseudomonotone.

As for the proof of Proposition 3.1 we refer, e.g., to [10, Chapter 2].
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4. Existence and comparison result

The main result of this section is given liye following theorem which provides an
existence and comparison result for the variational-hemivariational inequality (1.1).

Theorem 4.1. Let & and u be super- and subsolutions ¢1.1), respectively, satisfying
u < i. Then under hypothesés1)—(A3) and (H), there exist solutions ofL.1)within the
order interval[u, u].

Proof. Consider the variational-hemivariational inequality (1.1): Rind dom(y,) N Vo
such that

(Au—f,v—u)+1ﬁ(v)—w(u)+/j0(u;v—u)dx>0, Yv € V. 4.1
Q

Since we are looking for solutions of (4.1) withiim, iz], we consider the following auxil-
iary problem: Find« € dom(yr) N Vp such that

(Au— £ 438w, =) + 0@ @+ [ Pwiv =y >0
2
Vo e Vo, 4.2)

whereB is the cut-off operator introduced in Section 2, ang 0 is some parameter to be
specified later.

We proceed in two steps.

Stepl. Existence fo(4.2). Let us introduce the functiondl: L” (£2) — R defined by

J(v):/j(v(x))dx, Yv e LP(2),
2

which by hypothesis (H) is locally Lipschitz, and moreover, by Aubin—Clarke theorem (see
[7, p. 83]) for each: € L7 (£2) we have

£€dJ) = £e€LI(2) with§(x)€dj(ux))foraexe 2.
Consider now the multivalued operator
A+2B+0(J|vp) + 0y, : Vo — 20,

whereJ |y, andy |y, denote the restriction af andy, respectively, tdVp, anda(y|v,)

is the subdifferential ofy|y, in the sense of convex analysis. It is well known that=
oWlvy) : Vo — 2Y5 is a maximal monotone operator, cf., e.g., [11]. Siacelp — V{7

is strictly monotone, bounded, and continuous, amt Vo — V' is bounded, continu-
ous and compact, it follows that + 1B : Vo — V is a (singlevalued) pseudomonotone,
continuous, and bounded operator. In [5] it has been shownditvdi,) : Vo — 2% is

a (multivalued) pseudomonotone operator, which, due to (H), is bounded. Agus
A+AB+0(Jlvy):Vo— 2% is a pseudomonotone and bounded operator. Hence, it fol-
lows by Theorem 3.1 that rangéy + @) = V5 provided Ag is up-coercive for some
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uo € dom(d(v¥|v,)), which can readily be seen as follows: For ame Vo and any
w € 3(J|v,)(v) we obtain by applying (A3), (H)(ii) and (2.7) the estimate

(Av +AB(W) +w,v — uo)

N
:/Za[(x,Vv)%dx+A<B(U),v>+/wvdx—(Av+kB(v)+w,u0>

2 =1 2
> [ 1900 dx ~ Wl + earlol g — esh = ca [ (L ol Yol
2 2
— |(AU+AB(U) +w,uo)‘
1
> vlollf, - C(L+ [0l Y), 4.3)

for some constanf > 0, by choosing the constaitin such a way thatsx > c2. Since

p > 1, the coercivity ofAq follows from (4.3). In view of the surjectivity of the operator
Ap + @ there exists: e dom(@) c dom(y) N Vp such thatf € Ag(u) + @ (u), i.e., there
i€ €d(J|yy)(u) with &£ € L4(£2) and&(x) € 9/ (u(x)) for a.e.x € §2, andn € ¢ (u) such
that

Au— f+ABw)+&+n=0 inV{, (4.4)
where
(&, 0)= /é(x)qv(x) dx, Vg€V, (4.5)
2
and
vy Z2yvw)+{n,v—u), Yvel. (4.6)
By definition of Clarke’s generalized gradieht from (4.5) we get
&, 9)= /é(x)w(x) dx < /jo(u(x); ¢(x))dx, Ve e Vo (4.7)
2 2

Thus from (4.4)—(4.7) witlp replaced by — u we obtain (4.2), which proves the existence
of solutions of problem (4.2).

Step2. u < u < u for any solutioru of (4.2). Let us first show < iz. By definition the
supersolutior: satisfiesii € dom(y/), & >0 onds2, and

(A~ fov =)+ 50) = § @) + [ 20 - dx >0,
2
Yv € i v (dom(y) N Vo). (4.8)
Letu be any solution of (4.2). We apply the special test functieai v u =it + (u — i) "

(e v (domiy)NVp))in(4.8)andv =i Au=u— (u—u)t (e dom(yy) N Vo, due to the
hypothesis) in (4.2), and get by addingtfesulting inequalities the following one:
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(A — Au, (u — D))+ MB), = — @) T) + ¥ @ v u) — ¥ (@)

a0 =g+ [ (O = 7) + s - 7)) dx >0
2

which yields due to

(Au— A, u—)*) >0,
the inequality

MB), (=) <P (@ V) — Y@+ @nu) — )

+ /(jo(ﬁ; w—i)") + j%%u; —(u —))) dx. (4.9)
2

By using (H) and the properties off anddj we get for certairé (x) € 9/ (it (x)) and
&(x) € 3j (u(x)) the following estimate of the second term on the right-hand side of (4.9):

/(jo(zz; w—i)t) + jOu; —(u —i)")) dx
2
= / (7OGas u — ity + jO(us —(u — ))) dx
{u>u}
= / (& () (u(x) — (x)) + &) (—(u(x) — i(x)))) dx
{u>u}
= / (E) — &) (ux) —i(x)) dx < / ca(u(x) —i(x))” dx. (4.10)
{u>u} {u>it}
Since
(Bw), w—i)t)= / (uw—i)?dx,
{u>u}

we get from (4.9), (4.10) and due to the definition of the supersolution the estimate

(A—c1—20) / (u—u)Pdx <0. (4.11)
{u>u}

Selecting the paramet@r in addition, such that — ¢1 — ¢ > 0 then (4.11) yields

/((u —i)")"dx <0,
2
which implies(u — &)™ = 0 and thus: < u.
The proof for the inequality <« can be carried out in a similar way. By definition the
subsolutior satisfiesu € dom(yr), u <0 onds2, and
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(Au— f,v—u) + 9 (v) —1&@+/j°(g; v—u)dx >0,
2
Vv € u A (dom(y) N Vo). (4.12)

Using the test functions =u A u =u — (u — u) (€ u A (dom(xr) N Vo)) in (4.12) and
v=uVu=u-+ @u—u)T (edomQ) N Vp) in (4.2), respectively, we get by adding the
resulting inequalities the following one:

(Au— Au, (w —w) )+ A(B), (@ —u)") + 9w A u) — 9 ()

YWV ) — ) + /(jo(z; —w—w)*) + O w— w"))dx > 0.
2
Following the same lines as above we arrive at

(A—c1—20) / (u—u)Pdx <0.
{u>u}

Choosingh — ¢1 — ¢ > 0 impliesu < u. This completes the proof of the theorent

5. Compactness and existence of extremal solutions

Let S denote the set of all solutions of (1.1) within the interjealiz] of an ordered pair
of sub- and supersolutions. The smallest and greatest elemeherefcalled thextremal
solutionsof (1.1) within[u, u].

Theorem 5.1. Under the hypotheses of Theordmi the solution sef is compact inVp.

Proof. First we prove thatS is bounded inVy. Since anyu € S belongs to the interval
[u, u] it follows thatS is bounded inL”(£2). Moreover, any: € S solves (1.1), i.ey sat-
isfies
uedomy)NVo: (Au— f,v—u)+ (@) —¥u) +/j0(u; v—u)dx >0,
2
Yv € V.

Let ug be any (fixed) element of dopyr) N Vp. By takingv = ug in the above inequality
we get

(Au,u) < (Au,uo) + (f, u —uo) + v (uo) — ¥ (u) + / JOu; uo — u)dx. (5.1)
2

Sincey is bounded below by an affine function dhwe get the following estimate for
some nonnegative constaft

¥ () = —d(lullv +1),
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which yields by applying Young’s ineqgliy and the equivalence of the norfju|y ~
IVullLr o) foru € Vp,

> _Lyvu? D
Y(u) > _EH M”Lp(g) — U,
for some constanD > 0 not depending om. By means of the last inequality and by
applying (A3), (H)(ii), and Young’s inguality we obtain the following estimate:
vV
SIVHlLp o) < Tkallzagy +e@(I1F Iy, +1) +ellully,
+a(lulliere) +lull} o) + 1), (5.2)
foranye > 0 and a constamt > 0. Hence, the boundednessdin Vy follows by choosing
¢ sufficiently small and by taking into account titais bounded inL? (£2).
Let (u,) C S. From the above boundedness®in Vy, we can choose a subsequence
(uy) of (u,) such that
ur —u inV, up—u inLP(2), and
ur(x) - u(x) a.e.ing2. (5.3)

Obviouslyu € [u, i]. Sinceuy solve (1.1), we can put=u € Vg in (1.1) (withu; instead
of u) and get

(Aug — fou—up) + ) — ¥ (ug) + / jo(uk; u—up)dx =0,
2
and thus

(Aug, ug —u) < (fyup —u) + @) — ¥(up) + / JOCur; u — ug) dx. (5.4)
2

Due to (5.3) and due to the fact that r) — jO(s; r) is upper semicontinuous we get by
applying Fatou’s lemma

lim sup/ O u — up)dx < / lim Supjo(uk; u—uyg)dx =0. (5.5)
ko PO
In view of (5.5) we thus obtain from (5.3), (5.4) and becaysis weakly lower semicon-
tinuous

limsup{Aug, ux —u) <0. (5.6)
k

Since the operatot has the (S)-property, the weak convergence(af,) in Vg along with

(5.6) imply the strong convergengg — u in Vp, see, e.g., [1, Theorem D.2.1]. Moreover,
the limit u belongs taS as can be seen by passing to the lim sup on the left-hand side of
the following inequality:

(Aug — f,v —ug) + ¥ (v) — ¥ (ug) +/j°(uk; v—u)dx >0, (5.7)
2
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where we have used Fatou’s lemma, the lower semicontinuitly ahd the strong conver-
gence of(uy) in V. This completes the proof.O

As for the existence of extremal solutionsShlet us introduce the following notion.

Definition 5.1. Let (P, <) be a partially ordered set. A subgkof P is said to beupward
directedif for each pairx, y € C there isz € C such thatr < z andy < z, andC is down-
ward directedif for each pairx, y € C there isw € C such thatw < x andw < y. If Cis
both upward and downward directed it is caltiicected

We are now ready to prove our extremality result.

Theorem 5.2. Let the hypotheses of Theordn be satisfied, and assume, moreover,

dom(y) Adom(yy) cdom(yy) and dom(y) v dom(y) C dom(yr). (5.8)

If there is a constant > 0 such that

Y(w Vo) —yw) +ywAav) ¢ <c / (v —w)’dx, (5.9)

{v>w}

for all w, v € dom(vr), then the solution se&f possesses extremal elements.

Proof. Stepl.S is a directed setAs a consequence of Theorem 4.1, we h&we @. Given

ui, uz € S, let us show that there ise S such thaty, <u, k =1, 2, which meanss is up-
ward directed. To this end we consider the following auxiliary variational-hemivariational
inequality: Findu € dom(yr) N Vg such that

(Au— f+ArBu),v—u)+ ) —¥@u) +/j°(u; v—u)dx >0,
2
Y e Vo, (5.10)

wherei > 0 is a free parameter to be chosen later. Unlike in the proof of Theorem 4.1 the
operatorB is now given by the following cut-off functioh: 2 x R — R:

(s —u(x))P~t if s> i(x),
b(x,s)=10 if ug(x) <s <i(x), (5.11)
—(uo(x) —s)P~1 if s < uo(x),
whereug = max(u1, u). By arguments similar to those in the proof of Theorem 4.1 we
get the existence of solutions of (5.10) (see Step 1 in the proof of Theorem 4.1). The set
is shown to be upward directed provided that any solutio (5.10) satisfies; < u <1,
k=1,2, because theBu = 0 and thusu € S exceeding«;. Becauseas;, € S, we have
uy € dom(y) N VoN[u, ] and

(Aug — f,v—ug) + v (v) — P (ug) —i—/jo(uk; v—up)dx >0, VYveVy (5.12)
2
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Note that (5.8) implies that
u+ (ux —u)t =uvur edomy) NV
and
ur — (ug — )T = u Aug € domiyr) N Vo.
Therefore, one can take as special functions u + (ux — u)* in (5.10) andv = u; —
(ur —u)™ in (5.12). Adding the resulting inequalities we obtain
(Aup — Au, (e —uw)*) — AB), (ux —u)™)
SY @ Vur) =Y + ¢ Aug) — ¥ (ur)
+/(j°(u; (uk —)") + jO(urs —(ux — u)™)) dx. (5.13)
2

Arguing as in (4.10), we have for the second term on the right-hand side of (5.13) the
estimate

/ (70(us e —w)*) + j°(uxs —(ux —w)*)) dx
2
< / c1(ur(x) —u(x))’ dx. (5.14)
{ur>u}
For the terms on the left-hand side of (5.13) we have
(Auk — Au, (up — u)+> >0 (5.15)
and (5.11) yields

(B, wx —w)*)=— / (uo(x) — M(X))p_l(uk(X) —u(x))dx

{ug>u}

< - / (uk(x) — u(x))pdx. (5.16)
{ug>u}

By means of (5.14)—(5.16) and the assumption we get from (5.13) the inequality

(A—c1—0) / (ur(x) —u(x))” dx <O0. (5.17)
{up>u}

Selectingh such that. > ¢1 + ¢ from (5.17) it followsu, < u.

The proof foru < i follows arguments similar to the ones in Step 2 of the proof of
Theorem 4.1, and thuS is upward directed.

By obvious modifications of the auxilig problem one can show analogously ti¥ais
also downward directed.

Step2. Existence of extremal solutiond/e show the existence of the greatest element
of S. SinceVy is separable we have th&tc Vy is separable too, so there exists a countable,
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dense subset = {z, | n € N} of S. From Step 1S is upward directed, so we can construct
an increasing sequence,) C S as follows. Letu; = z1. Selectu,+1 € S such that

max{z,, up} <upy1 < U.

The existence ofi,,+1 is established in Step 1. From the compactnesS atcording to
Theorem 5.1, we can choose a subsequence,0f denoted agaiiiu,, ), and an element

u € S such thatu, — u in Vp, andu,(x) — u(x) a.e. inf2. This last property ofu,)
combined with its increasing monotonicity implies that the entire sequence is convergent
in Vo and, moreovel = sup, u,. By construction, we see that

max{z1,22,...,2n} SUpr1 < U, Vo,
thusZ C [u, u]. Since the intervdlu, u] is closed inVp, we infer
ScZcu ul=I[u,ul,
which in conjunction with: € S ensures thai is the greatest solution of (1.1).

The existence of the least solution of (1.1) can be proved in a similar way.

Remark 5.1. We note that for the proof of Theorem 5.2 it is enough to assume instead of
(5.8) the following condition:

dom(yr) A (dom(w) N [u, b't]) C dom(yr)
and

dom(y) v (dom(y) N [u, &) C dom(y).

Remark 5.2. The question may arise whether there are cases of functionals in which con-
dition (5.9) is satisfied witle > 0. We illustrate such a case by the following functional. Let

¥ : Vo — R be the function) = 1|y, with ¥1: L?(£2) — R differentiable and convex.

The differential at« € Vo is denoted)’(u) € Vi and is equal tay' (u) = i*y(u) in V{,

with 7 (u) € L9(82) and the inclusion map: Vo — L7 (£2). We assume that there exists

a constant > 0 such that whenever, w € Vg one has

Vi) — Yi(w) <cv—w)P~L fora.e. onfw < v}.
For all w, v € Vg we find that
Y(w V) —yw) + Y (wAv) —¢(v)
g/Wi(w\/v)(w \/v—w)dx+/1//i(w/\v)(w/\v—v)dx
2 2

= /(l/fi(w +@-—w))—yi(v—@—-—w)T))w—w)Tdx

2

B / (V1) — Y1 (w)) (v —w)dx < ¢ / (v —w)?dx.

{w<v} {w<v}
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6. Applications

Example6.1. Assumef € L°°(£2) C V', and letk C Vg represent the following obstacle
K={veVolv(x)<¢(x) fora.ex e 2}, (6.1)

with ¢ : 2 — R measurable. Leg: V — R U {+o0} be the integral functional introduced
in Example 2.3 of Section 2 ankk : V — R U {+o0} the indicator function related with
K given by (6.1) and assuni€ # (). Then the functional : V — R U {+o0} defined by

v=Ik+g
is proper, convex and lower semicontinuous with d¢gim= K Nndom(g). We consider the

variational-hemivariational inequality (1.1) with and, as specified above, i.e., we are
looking foru € K N dom(g) such that

ue K ndom(g): (Au—f,v—u)—l—w(v)—w(u)—i-/jo(u;v—u)dx20,
Q
Yv € V. (6.2)

The following theorem provides conditions that ensure the existence of an ordered pair
of constant sub- and supersolutions of (6.2).

Theorem 6.1. Leta; (x,0)=0forall 1<i < N, and let the constants < 0, 8 > 0 satisfy
the following conditions

(i) ¢ <¢p(x)fora.exes.
(i) For somet € dh(a), n € dh(B) the following inequality is satisfied

% D+ ES FO)<j%B; )+ foraexes. (6.3)

Then the constant functioms= « andu = g form an ordered pair of sub- and supersolu-
tions of (6.2).

Proof. First let us verify that«(x) = « is a subsolution according to Definition 2.1. As
already noted above we have dam = K N dom(g). Sincea € dom(g) anda < 0 and
due tox < ¢ (see (i)) we getx v (dom(y) N Vo) € dom(y) N Vp, and thus (i) and (ii)

of Definition 2.1 are satisfied. To verify (iii) of Definition 2.1 we need to construct an
appropriate functional that satisfies (a)—(c) of Definition 2.1. To this end weget g.
Then (a) is satisfied, becauge dom(g). Forv e dom(y) N Vo = K Ndom(g) we obtain

YV )+ P Aw) — Y ) — P
=gwva)+gvra)—g) —gl@ =0, (6.4)

which shows that (b) of Definition 2.1 is satisfied with= 0. The second equality of (6.4)
can easily be shown to be true by splitting up the donsaiimto 2 = 21U 22 = {x € 2 |
v(x) > a}U{x € 2 | v(x) < a}, and by evaluating the individual integrals. To see that also
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(c) of Definition 2.1 is valid leb € @ A (K Ndom(g)). Thenv — a < 0 in £2 and by (6.3)
we get (note thak : R — R is the integrand of the functionglgiven in Example 2.3)

(Aa — fiv—a) +g(v) — g(a) +/j°(a; v(x) — ) dx
2

2/(]’0(01; D+ f(x) =€) (e —v(x))dx >0, (6.5)
2

which proves tha is a subsolution.

Let us show thap is a supersolution of (6.2). One readily sees that K ¢ K and
B A dom(g) C dom(g) holds, and thus (i) and (ii) of Definition 2.2 are satisfied. It remains
to verify (iii) of Definition 2.2. To this end we show that with = ¢ and applying (6.3)
the conditions (a)—(c) of Definition 2.2 can be fulfilled. We have dom(g) and forv
K Nndom(g) the following equalities are satisfied:

Y@ AR) + 9@ Vi) — ) — (i)
=gwAB) +gVvp) —g) —g(B)=0, (6.6)

which shows that (b) of Definition 2.2 holds with= 0. Finally, to verify (c) letv
BV (K Nndom(g)); thenv > B and we obtain by means of (6.3),

(AB— fiv—PB)+ () —g(B) + / JO(B: v(x) — B) dix

2

> [(°6: 0= 004 n) 0 - prax >0,
2
which proves that the constafit= 0 is a supersolution. O

Corollary 6.1. Let the hypotheses of Theoréi, (A1)—(A3)and(H) be satisfied. Then the
variational-hemivariational inequality6.2) possesses extremal solutions within the order
interval [, 8] and the solution sef of all solutions of(6.2) within [«, 8] is compact.

Proof. By Theorem 6.1 the constantsand 8 form an ordered pair of sub- and super-
solutions, respectively, and thus Theorems 4.1 and 5.1 can be applied which provide the
existence of solutions withifw, 8] and the compactness&f For the existence of extremal
solutions we apply Theorem 5.2. To this end we only need to verify conditions (5.8) and
(5.9) for the specific functional = Ix + g considered here. It can easily be seen that the
followingis true:K v K C K, K A K C K, dom(g) v dom(g) Cc dom(g), and donfg) A

dom(g) c dom(g), and hence condition (5.8) holds (note d@m = K N dom(g)). For

w, v € K Ndom(g) we have

Y(w Vo) —Yw) + ¥ (wAv) — Y ()
=gwVvv)—gw)+gwAv) —g) =0,

and thus also (5.9) is satisfied witk= 0. This completes the proof.0
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Example 6.2. Assume as in Example 6.1 that the operatasatisfiess; (x, 0) = 0 for all
1<i < N.Lety:Vop— R be given by
A
Y(v)=— / [v|Pdx, Yve Vo,
P 2
then the following corollary provides a sufficient condition for zero to be a subsolution of

problem (1.1). In the proof we will demonstrate the flexibility in the choice of the auxiliary
functionaly.

Corollary 6.2. Let f € L' (£2) (p* the critical Sobolev exponensuch that f (x) >
—j9%0; —1) for a.e.x € 2, wherej:R — R verifies assumptio(H). Thenu =0 is a
subsolution of probler(iL.1)with ¢ as specified above.

Proof. We need to verify the conditions of Definition 2.1. Since dgm= Vj, (i) and (ii)
qf Definition 2.1 are trivially satisfied. Toheck condition (iii) we may choose the function
¥ :V — Rinthe form

A mA
w(v)z—/lvV’dx, YveV,
p
Q

wherem € [0, co). Condition (iii)(a) is evident. Coritlon (iii)(b) is verified, because we
have

YT+ P (—v7) = ¥(v) — ¥ (0)

A
:—|:/|v+|pdx+m/|v|pdx— </|v+|pdx+/|v|pdx>]
p
2 2

2 2
— DA — DA
= M/W—de _(m—Da /‘(—U)+‘pdx, Vo e Vo
P P
2
and thus condition (iii)(b) is satisfied with = 0 for m € [0, 1], and a positivec =
(m — DA/p form > 1. It remains to verify condition (iii)(c), that is

A
(A0 — f,v) + m_/ |v|pdx+/j0(0; v)dx >0, YveOA V.
P 2
Writing v = —w™ with w € Vp, this reads

/<f + 2wyt 4 0; —1))w‘ dx >0,
p
2

which in view of our assumptions is true for amye [0, c0). O
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