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Let C be a closed convex subset of a Banach space E, and let T: C — C be
nonexpansive (that is, | 7o — Ty | < |x — y | for all ¥ and y in C). J.-B.
Baillon [1] has recently shown that if E =L?, 1 <p < o0, and T has a fixed
point, then for each x in C the Cesaro means of the iterates {7"x} convegre
weakly to a fixed point of 7. The purpose of this note is to point out that his
ideas also lead to the following results. Recall that a sequence {x,} C E is weakly
almost convergent (cf. [9]) toy € E if (22:01 X;,x)/n — y uniformly in &, and that
an operator ACE x E is said to be m-accretive if R(I + 4) = E and
Py — oy | << | &y — xp + #(yy — )| for all y,e Ax, , i =1,2, and » > 0.

THeOREM 1. Let C be a closed convex subset of a uniformly convex Banach
space E with a Fréchet differentiable norm. If T: C — C is a nonexpansive map-
ping with a fixed point, then {T"x} is weakly almost convergent to a fixed point of T.

THEOREM 2. Let C be a closed convex subset of a uniformly convex Banach
space E with a Fréchet differentiable norm, T: C — C a nonexpansive mapping
with a fixed point, and {c,} a real sequence such that 0 < ¢, <1 and
Sl —c)=00. If %, €C and x,,4 = c,Tx, + (1 —c,) x, for n>1,
then {x,} converges weakly to a fixed point of T.

THEOREM 3. Let E be a uniformly convex Banach space with a Fréchet differen-
tiable norm, J. (r > Q) the resolvent of an m-accretive operator 4 C E ¥ E with
0 € R(A), and {r,;} a positive sequence. Suppose that either

(a) {r,} is bounded away from zero, or

(b) the modulus of convexity of E satisfies 8(c) == Ke? for some K > 0 and
p>=2 and Yo 17,7 = 0.

If x, € Eand x,,, = J, %, forn 2> 1, then {x,} converges weakly to a zero of A.

Theorem 1 has been known so far only in Hilbert space (cf. [5, 12]) while
Theorems 2 and 3 have been known for those uniformly convex Banach spaces
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that satisfv Opial’s condition (cf. [8, 10, 7]). Theorem | implies (cf. [9]) that
{Tx} is weakly summed by every strongly regular matrix to a fixed point of T,
and that 7x — 771y — 0 if and only if {T"x} converges weakly to a fixed
point of T (cf. [3, 5, 12, 2, 1] for previous results in this direction). It was
originally obtained (in collaboration with R. E. Bruck) by modifying Baillon’s
arguments. We omit the details because Bruck [6] has since found a much
simpler proof. Analogous results hold for semigroups of nonexpansive mappings
(cf. [2, 11]). In order to prove Theorems 2 and 3 we first establish a Proposition
which also has other applications. For v %0 and y in a smooth Banach space
we denote lim, (' x + ty | — | ¥ {)/f by (x, ¥).

ProposttioN. Let C be a closed convex subset of a uniformly convex Banach
space with a Fréchet differentiable norm, and let {T, : | <. n << 0} be a family of
nonexpansice self-mappings of C with a nonempty common fixed point set F. If
xyeCand v, 4 =Tx, forn =1, then lim,_ . (f, — f,,x,) exists for all f; -
foin k.

Proof. Leta,=ay(t) =|tx, (1 —t)f1 —f, (0 Lt <21), 3 the modu-
lus of convexity of the space, M = | x, — f; |, p(r) = (M/2) 8(4r[M), S, . -
Tn e /1Tn N Tn , and bn,m = ‘ Sn.m(lxn - (1 - t)fl) - (txm-m + (l - f) 1)"
Note that a,,.,, “Z b, ., + a, . After some manipulation we see that y{(! T(cx +

I—y)—cIx—{1—)Ty) < |x—y' —1Tx—Ty|forall0 <c -1,
{a— 1y - M, and nonexpansive T:C— C. Hence v(b,,) <'x, - f1.
| &pom — J1 - €n—>nx 0. Consequently, limsup,_. @, <{liminf,,, @, and

lim, ., a,(t) == a(t) exists. Let d, = (f; — fo, x, — f1)- Given € >> 0 therc is
0-7¢-71 such that 0 <a,(t)t —d, <e for all n2=1. Therefore
lim sup, , d, <a(#)/t, iminf, ., d, > a(t)/t — ¢, and the result follows.

Proof of Theorem 2. Since Y._, ¢, (1 — ¢,) = o0, {x, — Tx,} converges
strongly to zero. Therefore every weak subsequential limit of {x,} is a fixed point
of T [4]. Let f; and f, be two such limits. By the Proposition (with T,

& - (I =)D (i —fo s /i) = (i — fos fo)ysothat fy =, .

Proof of Theorem 3. Let v, , = (x,— x,,)7,. In both cases v, —0.
Since ' v, — Jix, ' .= ' v, |, every subsequential weak limit of {x,} is a zero of
4. Again the result now follows from the Proposition (with 7', - - J,. ).

Remark 1. In the setting of the Proposition, let the space be uniformly
convex and P the nearest point projection onto F. Then the strong lim,_., Px,
exists (ct. [11]).

Remark 2. 1n the setting of Theorem 3, let E be uniformly convex with a
uniformly Gateaux differentiable norm, and suppose that O ¢ R(d). Then
lim, ., 1, = oc. The same conclusion can be reached in the setting of
Theorem 2 if T is fixed point free and we assume, for example, that C = E
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and the sequence {c,} is bounded away from 0 and 1. We do not know however
if I(Z::(,l Tix)/n | ~>,.. o0 when T is fixed point free. This is known to be
true in Hilbert space.
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Note added in proof. 1. In the setting of Theorem 2, assume that 0 ~ ¢, -~ | and
that ¢, — 1. Then {x,} is weakly almost convergent to a fixed point of T. Proofs of this
result and of Theorem 1 can be found in my ANL Report entitled “Nonlnear ergodic
theory in Banach spaces.” 2. In Theorem 3, (a) can be replaced by (a’) !7,] does not
converge to zero. 3. In the setting of Remark 2, the condition Z:il co(1 —¢,) = oo also
implies that | x, | — o if and only if T is fixed point free. This follows from the ideas
of my note entitled “‘On infinite products of resolvents,” Atti Accad. Naz. Lincei 63
(1977), 338-340.
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