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Let C be a closed convex subset of a Banach space E, and let T: C - C be 
nonexpansive (that is, j TX - Ty 1 < 1 N - y 1 for all x and y in C). J.-B. 
Baillon [l] has recently shown that if E = D, 1 < p < co, and T has a fixed 
point, then for each x in C the Cesaro means of the iterates [T”s} convegre 
weakly to a fixed point of T. The purpose of this note is to point out that his 
ideas also lead to the following results. Recall that a sequence {x,} C E is weakly 
almost convergent (cf. [9]) toy E E if (~~~~ xick)/n - y uniformly in k, and that 
an operator A C E x E is said to be m-accretive if R(.Z + -4) = E and 
/.x-x~] <~~~-~~+v(y,-y~)~ for ally,EAZx,, i=l,2, andr>O. 

THEOREM 1. Let C be a closed convex subset of a uniformly convex Banach 
space E with a Frechet differentiable norm. If T: C + C is a nonexpansive map- 
ping with a$xed point, then (T*x} is weakly almosf convergent to a fixed point of T. 

THEOREM 2. Let C be a closed convex subset of a uniformly convex Banach 
space E with a Frechet dt&nentiable norm, T: C -+ C a nonexpansive mapping 
with a fixed point, and {cn} a real sequence such that 0 < c,~ < 1 and 
xyBl c,( 1 - c,) = 00. If x1 E C and x,+~ = c,Tx, + (1 - c,,) s, for n > 1, 
then {xn} converges weakly to a$xed point of T. 

THEOREM 3. Let E be a unaformly convex Banach space with a Frechet differen- 
tiable norm, J,. (r > 0) the resolvent of an m-accrefive operator A C E >( E with 
0 E R(A), and {r,} a positive sequence. Suppose that either 

(a) {r,} is bounded away from zero, or 

(b) the modulus of convexity of E satisfies S(E) 3 I@’ for some K > 0 and 
p > 2, and Cz=‘=, r,P = 00. 

IfxlE Eandx,,, = Jr,x, for n > 1, then {xn} converges weakly to a zero of A. 

Theorem 1 has been known so far only in Hilbert space (cf. [S, 121) while 
Theorems 2 and 3 have been known for those uniformly convex Banach spaces 
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that satisfy Opial’s condition (cf. [S, 10, 71). Theorem I implies (cf. [9]) that 
{T”xj is weakly summed by every strongly regular matrix to a fixed point of T, 
and that T”s - T”i &v - 0 if and only if (T”x) converges weakly to a fixed 
point of T (cf. [3, 5, 12, 2, l] for p revious results in this direction). It was 
originally obtained (in collaboration with R. E. Bruck) by modifying Baillon’s 
arguments. \\-c omit the details because Bruck [6] has since found a much 
simpler proof. -4nalogous results hold for semigroups of nonexpansive mappings 
(cf. [2, 1 I]). In order to prove Theorems 2 and 3 we first establish a Proposition 
which also has other applications. For s # 0 and J in a smooth Banach space 
we denote lim t-,,l(! s + ty i - 1 x 1)/t by (x, F). 

PROPOSITIOX. Let C be a closed convex subset of a uniformly convex Ranach 
space with N Frkcchet dij$rentiable norm, and let (T, : I < n -: CD} be a famdy of 
nonespansire self-mappings of C with a nonempty common $xed point set F. If 
x1 E C and Y,( ,.1 m= T,x,, for n >z 1, then lim,~.,r(fl - f2 , s,,) exists for all fi + 
f2 in F. 

Propf. Let a,, = a,(t) = 1 ts, -t (1 - t) fi - fz (0 .g t c.; I), S the modu- 
lus of convexity of the space, M = 1 .rr - fi 1 , Y(Y) = (M/2) 8(&/M), S,,,,, 
I. I ,l+,,r-lT,c.rir 1 .. T,, and&,,, = I zw(t-rn 7 (1 - t)f1) - (t.~,t-tn + (1 - t)fJ 
Note that n,,. ,,, -: b,,,,, +- a, . After some manipulation we see that r(! T(cs i 
(l-~)~~)~~rT?~-(l-~)T~~)~~,v--y’-~T.~-T~v~forallO~~~~~l, 
j x ~~. y 

I %l-,i:-fl 

.II, and nonexpansive T: C - C. Hence y(b,,,,,) -< ~ s,, -- fi ~ 
. . tn -n..r 0. Consequently, lim sup,!- ,.,, a, -g lim inf,? .,,., a,, and 

lim ,!--I a,,(t) =-- u(f) exists. Let d,, = (fi - fi , x,, - fi). Given E :> 0 there is 
0 .I. f : I such that 0 < a,(t)/t - d, < E for all n .;> 1. Therefore 
lim sup,, , d,, .:: a(t)/t, lim inf,-,, d, > a(t)/t - E, and the result follows. 

Proof of Theorem 2. Since Cl=, c,(l -- c,) = co, (x, - TX,} converges 
strongly to zero. Therefore every weak subsequential limit of {x,) is a fixed point 
of T [4]. Let fi and fz be two such limits. By the Proposition (with T,, mm= 

c, T,, (1 - c,,)I), (fl -.f2 ,fi) m= (fi -fz ,$A, so thatf, =f!. 

Proof of Theorem 3. Let ~,+r = (s,~ - s,, +#r, In both cases v,~ d 0. 
Since ,v,, - Jr.vn -:: y,, i , every subsequential weak limit of [,Y~: is a zero of 
A3. Again the result now follows from the Proposition (with T,, Jr,,). 

Remark 1 . In the setting of the Proposition, let the space be uniformi! 
convex and P the nearest point projection onto F. Then the strong lim,.,, Ps,, 
exists (cf. [I I]). 

Remark 3. In the setting of Theorem 3, let E be uniformly convex with a 
uniformly Gateaux differentiable norm, and suppose that 0 $ R(d). Then 
lim+, , A,, -=: x. The same conclusion can be reached in the setting of 
Th eorem 2 if 7’ is fixed point free and we assume, for example, that C = E 
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and the sequence {c,,} is bounded away from 0 and 1. We do not know however 
if @It 7%)/n I --+n-,r co when T is fixed point free. This is known to be 
true in Hilbert space. 
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Note added in proof. 1. In the setting of Theorem 2, assume that 0 K. C, -1 1 and 
that c, + 1. Then {x,] is weakly almost convergent to a fixed point of T. Proofs of this 
result and of Theorem 1 can be found in my ANL Report entitled “Nonlmear ergodic 
theory in Banach spaces.” 2. In Theorem 3, (a) can be replaced by (a’) [r,l does not 
converge to zero. 3. In the setting of Remark 2, the condition x,“_, c,(l - c,) = m also 
implies that 1 X, 1 + io if and only if T is fixed point free. This follows from the ideas 
of my note entitled “On infinite products of resolvents,” Atti Accad. Nas. Lincei 63 
(1977), 338-340. 
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