JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 67, 274–276 (1979)

Weak Convergence Theorems for Nonexpansive Mappings in Banach Spaces

SIMEON REICH

Department of Mathematics, University of Southern California, Los Angeles, California 90007

Submitted by Ky Fan

Let C be a closed convex subset of a Banach space E, and let $T: C \to C$ be nonexpansive (that is, $|Tx - Ty| \leq |x - y|$ for all x and y in C). J.-B. Baillon [1] has recently shown that if $E = L^p$, 1 , and T has a fixed $point, then for each x in C the Cesàro means of the iterates <math>\{T^nx\}$ convegre weakly to a fixed point of T. The purpose of this note is to point out that his ideas also lead to the following results. Recall that a sequence $\{x_n\} \subset E$ is weakly almost convergent (cf. [9]) to $y \in E$ if $(\sum_{i=0}^{n-1} x_{i+k})/n \to y$ uniformly in k, and that an operator $A \subset E \times E$ is said to be *m*-accretive if R(I + A) = E and $|x_1 - x_2| \leq |x_1 - x_2 + r(y_1 - y_2)|$ for all $y_i \in Ax_i$, i = 1, 2, and r > 0.

THEOREM 1. Let C be a closed convex subset of a uniformly convex Banach space E with a Fréchet differentiable norm. If $T: C \rightarrow C$ is a nonexpansive mapping with a fixed point, then $\{T^nx\}$ is weakly almost convergent to a fixed point of T.

THEOREM 2. Let C be a closed convex subset of a uniformly convex Banach space E with a Fréchet differentiable norm, T: $C \rightarrow C$ a nonexpansive mapping with a fixed point, and $\{c_n\}$ a real sequence such that $0 \leq c_n \leq 1$ and $\sum_{n=1}^{\infty} c_n(1-c_n) = \infty$. If $x_1 \in C$ and $x_{n+1} = c_n T x_n + (1-c_n) x_n$ for $n \geq 1$, then $\{x_n\}$ converges weakly to a fixed point of T.

THEOREM 3. Let E be a uniformly convex Banach space with a Fréchet differentiable norm, J_r (r > 0) the resolvent of an m-accretive operator $A \subseteq E \times E$ with $0 \in R(A)$, and $\{r_n\}$ a positive sequence. Suppose that either

(a) $\{r_n\}$ is bounded away from zero, or

(b) the modulus of convexity of E satisfies $\delta(\epsilon) \ge K\epsilon^p$ for some K > 0 and $p \ge 2$, and $\sum_{n=1}^{\infty} r_n^{\ p} = \infty$.

If $x_1 \in E$ and $x_{n+1} = J_{r_n} x_n$ for $n \ge 1$, then $\{x_n\}$ converges weakly to a zero of A.

Theorem 1 has been known so far only in Hilbert space (cf. [5, 12]) while Theorems 2 and 3 have been known for those uniformly convex Banach spaces that satisfy Opial's condition (cf. [8, 10, 7]). Theorem 1 implies (cf. [9]) that $\{T^nx\}$ is weakly summed by every strongly regular matrix to a fixed point of T, and that $T^nx - T^{n+1}x \rightarrow 0$ if and only if $\{T^nx\}$ converges weakly to a fixed point of T (cf. [3, 5, 12, 2, 1] for previous results in this direction). It was originally obtained (in collaboration with R. E. Bruck) by modifying Baillon's arguments. We omit the details because Bruck [6] has since found a much simpler proof. Analogous results hold for semigroups of nonexpansive mappings (cf. [2, 11]). In order to prove Theorems 2 and 3 we first establish a Proposition which also has other applications. For $x \neq 0$ and y in a smooth Banach space we denote $\lim_{t\to 0} (|x + ty| - |x|)/t$ by (x, y).

PROPOSITION. Let C be a closed convex subset of a uniformly convex Banach space with a Fréchet differentiable norm, and let $\{T_n : 1 \le n < \infty\}$ be a family of nonexpansive self-mappings of C with a nonempty common fixed point set F. If $x_1 \in C$ and $y_{n+1} = T_n x_n$ for $n \ge 1$, then $\lim_{n\to\infty} (f_1 - f_2, x_n)$ exists for all $f_1 \neq f_2$ in F.

Proof. Let $a_n = a_n(t) = |tx_n + (1-t)f_1 - f_2|$ $(0 \le t \le 1)$, δ the modulus of convexity of the space, $M = |x_1 - f_1|$, $\gamma(r) = (M/2) \,\delta(4r/M)$, $S_{n,m} = T_{n+m-1}T_{n+m-2} = T_n$, and $b_{n,m} = |S_{n,m}(tx_n + (1-t)f_1) - (tx_{n+m} + (1-t)f_1)$. Note that $a_{n+m} \le b_{n,m} + a_n$. After some manipulation we see that $\gamma(|T(cx + (1-c)y) - cTx - (1-c)Ty|) \le |x - y| - |Tx - Ty|$ for all $0 \le c \le 1$, $|x - y| \le M$, and nonexpansive $T: C \to C$. Hence $\gamma(b_{n,m}) \le |x_n - f_1| - |x_{n+m} - f_1| = \epsilon_n \to_{n+\infty} 0$. Consequently, $\limsup_{n \to \infty} a_n \le \limsup_{n \to \infty} a_n$ and $\lim_{n \to \infty} a_n(t) = a(t)$ exists. Let $d_n = (f_1 - f_2, x_n - f_1)$. Given $\epsilon > 0$ there is $0 \le t \le 1$ such that $0 \le a_n(t)/t - d_n < \epsilon$ for all $n \ge 1$. Therefore $\limsup_{n \to \infty} a_n \le a(t)/t$, $\limsup_{n \to \infty} a_n \le a(t)/t$, $\lim_{n \to \infty} a_n(t) = a(t)/t$, $\lim_{n \to \infty} a_n \ge a(t)/t - \epsilon$, and the result follows.

Proof of Theorem 2. Since $\sum_{n=1}^{\infty} c_n(1-c_n) = \infty$, $\{x_n - Tx_n\}$ converges strongly to zero. Therefore every weak subsequential limit of $\{x_n\}$ is a fixed point of T [4]. Let f_1 and f_2 be two such limits. By the Proposition (with $T_n = c_n T_n - (1-c_n) I$), $(f_1 - f_2, f_1) = (f_1 - f_2, f_2)$, so that $f_1 = f_2$.

Proof of Theorem 3. Let $y_{n+1} = (x_n - x_{n+1})/r_n$. In both cases $y_n \to 0$. Since $|x_n - J_1 x_n| \le |y_n|$, every subsequential weak limit of $\{x_n\}$ is a zero of A. Again the result now follows from the Proposition (with $T_n = J_{r_n}$).

Remark 1. In the setting of the Proposition, let the space be uniformly convex and P the nearest point projection onto F. Then the strong $\lim_{n \to \pm} Px_n$ exists (cf. [11]).

Remark 2. In the setting of Theorem 3, let E be uniformly convex with a uniformly Gâteaux differentiable norm, and suppose that $0 \notin R(A)$. Then $\lim_{n \to +\infty} x_n = \infty$. The same conclusion can be reached in the setting of Theorem 2 if T is fixed point free and we assume, for example, that C = E

SIMEON REICH

and the sequence $\{c_n\}$ is bounded away from 0 and 1. We do not know however if $|(\sum_{i=0}^{n-1} T^i x)/n| \rightarrow_{n \to \infty} \infty$ when T is fixed point free. This is known to be true in Hilbert space.

ACKNOWLEDGMENT

I am grateful to J.-B. Baillon for providing me with a copy of [1], and to R. E. Bruck for helpful conversations.

Note added in proof. 1. In the setting of Theorem 2, assume that $0 < c_n < 1$ and that $c_n \to 1$. Then $\{x_n\}$ is weakly almost convergent to a fixed point of T. Proofs of this result and of Theorem 1 can be found in my ANL Report entitled "Nonlinear ergodic theory in Banach spaces." 2. In Theorem 3, (a) can be replaced by $(a') \{r_n\}$ does not converge to zero. 3. In the setting of Remark 2, the condition $\sum_{n=1}^{\infty} c_n(1 - c_n) = \infty$ also implies that $|x_n| \to \infty$ if and only if T is fixed point free. This follows from the ideas of my note entitled "On infinite products of resolvents," Atti Accad. Naz. Lincei 63 (1977), 338-340.

References

- 1. J.-B. BAILLON, preprint.
- 2. J.-B. BAILLON, R. E. BRUCK, AND S. REICH, On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces, *Houston. J. Math.*, in press.
- 3. H. BRÉZIS AND F. E. BROWDER, Nonlinear ergodic theorems, Bull. Amer. Math. Soc. 82 (1976), 959-961.
- 4. F. E. BROWDER, Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc. 74 (1968), 660-665.
- 5. R. E. BRUCK, On the almost convergence of iterates of a nonexpansive mapping in Hilbert space and the structure of the weak ω -limit set, *Israel J. Math.*, in press.
- 6. R. E. BRUCK, A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces, to appear.
- 7. R. E. BRUCK AND S. REICH, Nonexpansive projections and resolvents of accretive operators in Banach spaces, *Houston J. Math.*, in press.
- 8. C. W. GROETSCH, A note on segmenting Mann iterates, J. Math. Anal. Appl. 40 (1972), 369-372.
- 9. G. G. LORENTZ, A contribution to the theory of divergent series, Acta Math. 80 (1948), 167-190.
- S. REICH, Fixed points via Toeplitz iteration, Bull. Calcutta Math. Soc. 65 (1973), 203-207.
- 11. S. REICH, Nonlinear evolution equations and nonlinear ergodic theorems, Nonlinear Anal. 1 (1977), 319-330.
- S. REICH, Almost convergence and nonlinear ergodic theorems, J. Approximation Theory 24 (1978), 269-272.