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We derive asymptotic formulas for A(n) - C(n) = / {m < n: every group of order 
m is abelian but not every group of order m is cyclic}l, N(n) -A(n) = 1 {m <n: 
every group of order m is nilpotent but not every group of order m is abelian}l, and 
related counting functions from group theory. ‘C 1988 Academic Press. Inc 

There is only one group of order p, p a prime, up to isomorphism. This is 
equivalent to saying that every group of prime order is cyclic. A necessary 
and sufftcient condition that there be only one group of order n is that 
(n, 4(n)) = 1, where 4(n) is the totient function of Euler. (n, d(n)) = 1 iff n is 
squarefree and no two prime factors p and q of n have p s 1 (mod q). 

Erdbs [ 1 J found an asymptotic formula for the counting function 

C(n) = 1 {WI <n: there is only one group of order m}l 

= 1 {m < n: every group of order m is cyclic} 1 

=I{m<n: (m,4(m))=l}l, 

given by 

(1) 

where y is Euler’s constant. 
Pazderski [S] studied the function r++(n) defined by extending mul- 
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tiplicatively the recursion for prime powers $( p”) = (p” - 1) $( pz ‘), 
$( 1) = 1. He gave several theorems of the form 

Every group of order n has property P if and only if n has property 
P’ and $(n) has property P”. 

For example, since e(n) = #( ) ff n i n is squarefree, we have that every 
group of order n is cyclic iff (n, e(n)) = 1 and n is squarefree. Two 
analogous results from [S] are that every group of order n is abelian iff 
(n, $(n)) = 1 and n is cubefree, and every group of order n is nilpotent iff 
(4 $(n)) = 1. 

Mays [4] used these results to find asymptotic formulas for A(n)= 
1 {m ,< n: every group of order m is abelian} 1 and N(n) = 1 (m <n: every 
group of order m is nilpotent } 1. It happens that the “same” formula 

(1+0(l)) ne-’ 
log log log n 

is an appropriate measure of the rate of growth for all three counting 
functions C(n), A(n), and N(n). This turns out to be a special case of a 
result of Scourlield [ 111, who established that an asymptotic formula 
similar to this is valid if any function which is “polynomial like” is used in 
place of $(n). 

On the other hand, C(n) <A(n) <N(n) from first principles, so it is 
reasonable to expect that some liner information has gotten lost in the o( 1) 
term. This paper estimates the differences A(n) - C(n) and N(n) - A(n). 

Throughout we will use some standard estimates for functions of prime 
numbers. It will be convenient to use a generic constant c in our series of 
estimates rather than to keep track of new constants introduced in every 
step. In all cases the constant c is independent of n. 

If p and q are primes, it follows from Remark 1 in [9] that 

1 l/p=(loglog~)l(q-1)+~(logq/q). 
Pen ps I (modq) 

In particular, if q d (log n)““‘, then 

c l/P=(~+41))(lwlog~Mq- 1). P<n 
p z I (mody) 

(2) 

We will also need the following well-known lemma from sieve theory: 
Let q1 <q2< ... < x be a sequence of primes such that Cti < y, < x l/q, + 0 
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for every E > 0. Then the number of integers n < x for which n f 0 (mod qi) 
is 

(1 +o(l))x n (1 -l/q,). 
4, < -y 

(3) 

Note that the hypothesis is satisfied for the primes r = 1 (mod p), if p -+ cc. 
Two useful sums over primes are 

(4) 

and 

p;, l/P3 = (i + f-41 )) l/U’ log t). (5) 

These follows from the prime number theorem using summation by parts 
or a formula relating the density of primes in the neighborhood of y to 
l/log Y. 

A useful bound for a special product of the form (3) is 

n (l-l/P)=(l +o(l))e-Y/logn. (6) 
P<n 

To sieve by primes in an arithmetic progression we can use (2) to write 

n (1 - l/p) = (1 + O(log q/q))/(log n)“‘Q- ‘I. (7) 
p=l lmody) 

P<n 

A good reference for sieving argument results is Halberstam and Richert 
[3], and for the other estimates involving prime numbers Prachar [lo], 
Estermann [2], or Norton [7]. 

THEOREM 1. There exists a constant c such that 

A(n) - C(n) = (1 + 41)) log log ntl:ilog log n12. 

Proof: The most general m <n counted by A(n) - C(n) has the prime 
factorization p:p:. . . pfq,q2.. .qs, where no pi is a qj, r > 1, 
Pl<P2< .*-p,, 41<q2< ..’ <qs, and no unitary congruences pi s f 1 
(mod pi), pi= +l (mod qj), qi = 1 (mod p,), or qi- 1 (mod qj) hold among 
the prime divisors of m. 
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However, we may without loss of generality assume that the form of m 
is more restricted. Suppose first that nz has a prime factor 
p< log log n/(log log log n)‘. Then all other prime factors q of tn must 
satisfy q $ 1 (mod p), and so of the numbers less than n at most 

n nrs I (modp).r<n (1 - l/r) are eligible. But by (7) this product is no bigger 
than 

(1 + O(log p/p))/(log I?)‘!(” ” < ce “Og’Ogn+. 

which is small enough to be ignored as n becomes large. Thus we may 
assume that all prime factors or m are bigger than log log n/(log log log n)‘. 
Furthermore, if there are two or more prime factors occurring in the 
square-full part of m, say p, and p2, then the total number of multiples of 
m eligible is no more than n/(p: pi), and the set of all such numbers is no 
larger than 

n 1 llp:ptdnC l/pfC l/p;, 
PI,P2 PI P? 

where the sum over p, is for p, > (log log n )/(log log log n)’ and the sum 
over p2 is p, > pr > (log log n)/(log log log n)2. By (4) this is of smaller 
order of magnitude than the bound claimed in the theorem. Thus m has a 
unique squared prime factor p. Also inconsequential by (4) are square 
prime factors larger than (log log n)(log log log n)’ because there are not 
enough multiples of such numbers less than n. 

Now fix p and consider how many eligible m < n are counted with square 
factor p2. Write t =n/p’. By (l), of the t multiples up’ of pz less than n, 
(1 + o( 1)) ePYt/log log log n have (u, d(u)) = 1 and hence have no unitary 
congruences among the qi. To ensure that qt & 1 (mod p) we rule these 
primes out with the sieving factor 

n (l-l/r)=(l+O(logp/p))/(logn)‘“P~~l’. 
r= I (modpl 

r < ,1 

Now we sum over p and use the lemma to get 

(1 +o(l))e~~~n/logloglogn~ l/p’(logn)“‘PP”, 

where the summation extends over all mimes a between (log log n)/ 
(log log log n)2 and (log log n)(log log log nj2. The proof is complete upon 
noting that by a partial summation formula similar to (4) the summation is 

(1 + 0( 1)) c/(log log n log log log n). 
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THEOREM 2. There exists a constant c such that 

N(n)-A@)=(1 +0(l)) 
cn 

(log log n)Z( log log log n)2’ 

Proof: We use the same technique here as was used in the proof of 
Theorem 1. We need to estimate 

1 {m < n: m is not square-free and (m, $(m)) = 1}1. 

The most general such m have prime factors with arbitrary exponents, with 
at least one prime factor occurring to at least the third power. However, we 
can successively restrict m to guarantee 

(i) all prime factors of m are >log log n/(log log log n)‘, 

(ii) no prime factor occurs to a power higher than the third, 

(iii) exactly one prime factor p occurs with exponent three, 

(iv) p < (log log n)(log log log n)‘, and 

(v) m/p’ is square-free. 

This is done by noting in each case that the asymptotic size of the set of 
m <n discarded as failing to meet the condition is smaller than the 
asymptotic value claimed for N(n) -A(n) in the theorem. 

Now fix the prime p occurring with exponent three and write t = n/p’. 
There are t multiples up3 of p3 less than n, and the relevant multiples for 
our theorem satisfy (u, d(u)) = 1 and q f 1 (mod p) for any qlu. When 
factors for these conditions are included and we sum over p, the expression 
to evaluate is the same as in Theorem 1 except for a factor of p3 replacing 
p2 in the denominator. 

With Carl Pomerance, we observe that several other results of [S] can 
be used to establish asymptotic limits for counting functions associated 
with finite groups. In particular, the method of this paper applied to the 
characterization of supersolvable groups in Pazderski’s Satz 3 gives that 
there exists a constant c with 1 > c > 6/7c’ such that 

U(n) = 1 {m <n: every group of order m is supersolvable}l 

=(l +o(l))cn. 

Murty and Murty [6] use a result of Hughes to draw the same 
conclusion about the existence of a “constant of supersolvability.” 

Satz 4 and Satz 5 of [8] similarly can be used to establish the existence 
of constants c, 1 > c > 6/n2, for groups with cyclic commutator subgroups 
and metacyclic groups. The characterization of integers n for which every 
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group of order n is p-nilpotent implies the existence of a constant c greater 
than (p - 1 )/p but less than 1 for which 

N,,(n) = / { 1y1< n: every group of order m is p-nilpotent 1 I 

satisfies 

N,(n)=(l+o(l))cn. 

This statement of the p-nilpotence density result corrects a result of Mays 
[S], the error of which was pointed out by Pomerance. In all of these 
cases, the technique is to start with a set of integers of positive density for 
which the number theoretic condition is vacuously satisfied (square-free 
numbers for U(n) and the two generalized commutativity conditions, and 
numbers not divisible by p for p-nilpotent groups), and augment that set 
with sets built by sieving to ensure that forbidden congruences among the 
prime factors of the remaining number do not occur. 
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