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Abstract

We explore a weakening of the coherence property of discrete groups studied by F. Waldhausen.
The new notion is defined in terms of the coarse geometry of groups and should be as useful
for computing theirk -theory. We prove that a group of finite asymptotic dimension is weakly
coherent. In particular, there is a large collectiorRpf"]-modules of finite homological dimension
when R is a finite-dimensional regular ring. This class contains word-hyperbolic groups, Coxeter
groups and, as we show, the cocompact discrete subgroups of connected Lie groups.

0 2004 Elsevier Inc. All rights reserved.

1. Introduction

Let A be a ring with a unit. A leftA-module iscoherent if it has a resolution by finitely
generated projectivd-modules. It isregular coherent or said to havdinite homol ogical
dimension if such resolution can be chosen to be finite. This notion is particularly useful
whenA is a group ringR[I']; alas, homologically finite-dimensional modules over generic
group rings are very rare. We will describe a weaker notion of coherence and a new
method for constructing finite-dimensional modules using coarse geometric properties of
the groupl”. Throughout the paper the rirgis assumed to be noetherian.

We should recall that F. Waldhaars[11] discovered a remarkable collection of discrete
groupsI” such that all finitely presented modules over the group RAf] are regular
coherent. It includes free groups, free abeligoups, torsion-free one-relator groups, their

Y Research supported from the National Science Foundation.
* Corresponding author.
E-mail addresses: gunnar@math.stanford.edu (G. Carlsson), goldfarb@math.albany.edu (B. Goldfarb).

0021-8693/$ — see front mattéi 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2004.02.006



G. Carlsson, B. Goldfarb / Journal of Algebra 276 (2004) 502-514 503

various amalgamated products and HNN extensions and so, in particular, the fundamental
groups of submanifolds of the three-dimegl sphere. Waldhausen called this property
of the groupregular coherence and used it to compute the algebrdictheory of these
groups. He also wondered if a weaker property of the group ring would suffice in his
argument (see, for example, the paragraph after the proof of Theorem 11.2 in [11]). When
we compute theK -theory of geometrically finite groups of finite asymptotic dimension
in [4—6], by proving surjectivity of the integral assembly map, we indeed require a weaker
coherence property than that of Waldhayseowever, it is not directly related to his
argument.

Using the coarse combinatorial geometry of the group, we will define a class of finite
presentations oR[/"]-modules which we cathdmissible. We will also use the geometry
to introduce a large collection of finite dimensiomil"]-modules which we callean and
which includes all modules with admissible presentations.

1.1. Example. To illustrate the geometric nature of our method, we give a new proof of
coherence of the group of integéfsin this case, we consider a&{Z]-homomorphism of
two free modules : R[Z]™ — R[Z]" and show that the kernel ¢f is finitely generated
whenR is noetherian.

A geometric viewpoint ory is introduced by filtering each of the free modules by the
R-submodules associated to the subgeté] = {a,a+1,...,b—1,b} of Z. Let R[a, b]F
stand for thek-tuples of group ring elements where all group elements in the formal sum
expressions come frofa, b]. Notice that for each homomorphisfthere is a numbef
such thatf (R[a, b]™) C Rla — d, b + d]" for all choices ofz < b.

Let k be an element of the kernel Kgn and letk be written as a sumt = > k;,
where k; € R[5di,5d(i + 1)]", and only finitely manyk; are nonzero. Observe that
because of the property of the numbkerlnd the fact thak; + Z#i k; € ker(f), we
have f (k;) = s;1 + si.r, Where

Si] = —f(ij) € R[5di —d,5di +d]" and
j<i

Siy = —f(ij) €R[5d(i+1)—d,5d( +1) +d]".

Jj>i

In fact, s; , = —s;11; for all i. SinceR is a noetherian ring, ify) N R[—d, d]" is finitely
generated, so there is a numbesuch that

im(f) N R[—d.,d]" = f(R[—d —e,d +¢]") N R[—d,d]".

Now choose; € R[5di —d — e,5di +d + e]™ so thatf (t;) = s; , = —si+1,; and thus alll
k; — t; + t; 1 are in the kernel:

Ski—ti +tiv1) = fki) — f@@) + f(tirr) = (i + Sip) — Sig +Sit11

= (si,y +i,r) — Sig —8ir =0.
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Since all elementl; —¢; +t;+1 € R[5di —d —e,5d (i +1) +d +e]™, we conclude that the
R[Z]-module ket f) is generated by th&-submodule kerf) " R[—d — e, 5d + d + e]™
which itself is finitely generated a® is noetherian.

For a general discrete group, given anR[I"]-moduleF with finite generating ser,
it is also anR-module with the generating s& = X x I'. There is a locally finite set
functions: B — I which mapg(o, y) to y. On the other hand, one can associate to every
subsetS of I" the R-submodule generated By x S.

Recall that a finitely presented group can be given avord metric specific to the
presentation. This makds a proper metric space. It is known that all word metrics on the
group are quasi-isometric.

1.2. Definition. Consider general functors: P(I") — Modg (F) from the power set of”
ordered by inclusion to th8-submodules of such thatf (I") = F and f(T) is a finitely
generatedk-module for each bounded subgetc I". We will refer to F' as anI”-filtered
R-module. If f is I"'-equivariant in the sense thaty S) = y f(S) forally e 'andS c I”
then F as anequivariant I"-filtered R-module.

A homomorphismyp : F1 — F> between finitely generateR[I"]-modules with fixed
choices of filtrationsf;, i = 1, 2, isboundedly controlled with respect to the bound > 0
if @f1(S) C fa(Bp(S)) forall subsetss ¢ I'. HereBp (S) stands for thed-enlargement of
a subsesS in a metric spac& that is the subsdix € X | d(x, S) < D}. LetI be the image
of ¢ and leti(S) =im(¢) N f2(S). If ¢ in addition satisfie® F1 N f2(S) C ¢f1(Bp(S))
then it is calledboundedly bicontrolled of filtration D. When I is infinite, neither of the
properties is satisfied by ak[I"]-homomorphisms.

1.3. Example. A boundedly controlled idempotent homomorphism of an equivariant
filtered module is always boundedly bicontrolled. Indeed; iff — F is an idempotent
so thatp? = ¢ theng|I =id, SO F N £(S) C ¢f(S).

1.4. Definition. A pair of subsetsS, T of a metric space&X is (coarsely) antithetic if for
each numbeD > 0 there isD; > 0 so thatBp (S) N Bp(T) C Bp,(SNT).

Examples of such pairs include any two subsets of a simplicial tree as well as
complementary half-spaces in a Euclidean space.

1.5. Definition. A I'filtration f of an R-moduleF is lean if it satisfies the following two
properties for some fixed numbée=dy > 0:

(1) for any subses$ of I" andy € f(S),

yey f(Ba));

yesS

(2) for any antithetic pair of subsets and 7', if y € f(S) andy € f(T) theny €
f(Ba(SNT)).
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An R[I']-module is calledean if it has a lean equivarianft -filtration by R-submodules.

Notice that a learR[I"]-module is finitely generated. The class of leRT"]-modules
certainly contains all free finitely generat&fiI"]-modules.

1.6. Definition. An R[I"]-module isfinitely presented if it is the cokernel of a homomor-
phism, calledpresentation, between free finitely generatd®] I"]-modules. If the homo-
morphism is boundedly bicontrolled, we call the presentadidmissible.

1.7. Definition. The group ringR[I"] is weakly coherent if every R[I"]-module with an
admissible presentation has a projective resolution of finite type. We say th&[ringis
weakly regular coherent if every R[I"]-module with an admissible presentation has finite
homological dimension.

Groups of finite asymptotic dimension were introduced by M. Gromov [10]. Examples
from this apparently very large class are the Gromov hyperbolic groups [10], Coxeter
groups [9], various generalized products of these, including the groups acting on trees with
vertex stabilizers of finite asymptotic dimension [2], and, more generally, fundamental
groups of developable complexes of finite-dimensional groups [1]. We show in Section 3
that cocompact lattices in connected Lie groups also have finite asymptotic dimension.

The following is the main result of the paper.

1.8. Theorem. Let R be a noetherian ring and I" be a discrete group of finite asymptotic
dimension. Then

(1) lean R[I']-modules have projective resolutions of finite type,
(2) all R[I"']-moduleswith admissible presentations are lean.

If, in addition, R has finite homological dimension then
(3) lean R[I"]-modules also have finite homological dimension.

1.9. Corollary. Let R be afinite-dimensional noetherian ring and I" be a discrete group of
finite asymptotic dimension. Then the group ring R[I"] isweakly regular coherent.

1.10. Example. To illustrate the construction of interesting lean finite-dimensional
modules, recall that idempotents betweRfI"]-modules are boundedly bicontrolled.

We will see that images and cokernels of boundedly bicontrolled maps between lean
modules are lean. Existence of idempotents over group rings is well-known. Now given any
idempotent between fedfinitely-generate@[ I"]-modules, reduction modulo a composite
integerm gives another idempotent whose image and cokernel are nonprojective modules
overZ[I].
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We will prove weak coherence properties for discrete groups of finite asymptotic
dimension in Section 2. Section 3 shows that cocompact lattices in connected Lie groups
have finite asymptotic dimension.

2. Weak coherence and finite asymptotic dimension

2.1. Definition. A family of subsets in a general metric spade is d-digoint if
dist(V, V') =inf{dist(x, x") | x € V,x’ € V'} > d for all V, V'. Theasymptotic dimension
of X is defined by M. Gromov [10] as the smallest numhesuch that for any/ > 0
there is a uniformly bounded covér of X by n + 1 d-disjoint families of subsets
U=U%U-..uUu".

Itis known that asymptotic dimension is a quasi-isometry invariant and so is an invariant
of a finitely generated group viewed as a megpace with the word metric associated to a
given presentation.

The proof of Theorem 1.8 is based on thédwing characterization of metric spaces
of finite asymptotic dimension and a sequence of lemmas.

2.2. Definition. A map between metric spaces (M1, d1) — (M2, d2) is anasymptotic or
uniform embedding if there are two real functiong andg with lim,_ o f(x) = co and
limy_ o0 g(x) = 0o such that

fdix,y)) <dz2(o(x), 0 () < g(dalx, y))
for all pairs of pointsy, y in M1.

2.3. Theorem (Dranishnikov [7,8]) A group I" hasfinite asymptotic dimensionif and only
if thereis a uniform embedding of I" in a finite product of locally finite simplicial trees.

We can use the notions of lean filter&ttmodules and boundedly controlled and
bicontrolled homomorphisms of such modules associated to any proper metricXpace
with or without a group action. Thus ak-filtration of an R-module F is a functor
fP(X) — Modg(F) from the power set ofX to the R-submodules ofF' such that
f(X)=F and f(T) is a finitely generated&k-module for each bounded subgetc X.
Now conditions (1) and (2) in Definition 1.5 define the classeah X -filtered modules.

24. Lemma. Let P be a finite product of locally finite simplicial trees, with the product
word metric. Then the kernel of a surjective boundedly bicontrolled homomorphism
between lean P-filtered R-modulesis lean.

Proof. SupposeP = ngigm T; andx: P — T = T, is themth coordinate projection.
Given a surjective boundedly bicontrolled homomorphisnF — G between two lean
P-filtered R-modules, letD > 0 be a number such thatl) < D, and letf andg be lean

filtrations of F andG respectively, both of filtratiomD.
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We will show that the kernet = ker(¢) equipped with the restriction of the-filtration
f is lean. Fix a vertexg in T. Given another vertexe T, we define itsshadow as the
subset Str) ={t' € T | t € [0, t']}. For everyr € 3 Berp(t0), 0< k, let

(1) = Sh(t) N (Bsk-+2)p(t0) — Be(k+1)p(10)).-
SinceD is afiltration of f, if k is in the kerneK thenk can be written as the suln /;, t as
above, wheré; € f(r~1(S;)). This is certainly a finite sum. More generally, &, [, u),
for r € T with dist(rg, t) <! < u, be the subset $h N (B;(10) — B, (t0)). Then
o) e g(n1S(t,6(k + 1)D — D, 6(k +2) D + D)).

Using thaig (/) = —p (3", In),

¢<Zz,) e g(n718(t,6(k+1)D + D,6(k +2)D — D)),
t'#t

and thatD is a filtration ofg, we see thap (I;) = y} + y,2 with
1 -1
y; € g(77*S(r,6(k+1)D — 2D, 6(k +1)D +2D)) and
v2eg(mtS(t,6(k +2)D — 2D, 6(k +2)D + 2D)).

Notice that

diamS(z,6(k +1)D — 2D, 6(k +1)D +2D) < 16D and
diam$(z, 6(k +2)D — 2D, 6(k + 2)D + 2D) < 20D.

Itis clear that the subsess . S0 obtained are pairwise disjoint. Sincédil < D, there are
elements

zr € f(r71S(t,6(k+1)D — 3D, 6(k +1)D +3D)) and
22 e f(n1S(t,6(k +2)D — 3D, 6(k + 2) D + 3D))

with ¢ (z}) = y. Itis easy to see that, (z2 — z}) = 0. Nowk, = —z} +1, — z2 are elements
in the kernelk, each contained in

Fy=f(7~'S(t.6(k+1)D — 4D, 6(k + 2) D + 4D)),

S0k can be written as a finite sum

k:Zk,. (%)
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It follows that K is generated as aR-module by the submodules;, = K N F; for all ¢
as above. For each the diameter of the sei(z, 6(k +1)D — 4D,6(k + 2)D + 4D) is
bounded above by 28 which is independent af. In particular, this proves the statement
when P = T. In this casek; are finitely generated as submodules of finitely generated
modules over the noetherian rimly

In general, one can use induction on the numbeof tree factors inP. Let P; be the
product]’[,.>i T;. Letmw;_1: P;_1 — P; be the obvious projection. Now given an elemkent
in the kernelK such that there i§ c T with k € f(S) and diangz;—1(S)) < C, we would
like to see thak can be written as a sulm_ k, so thatk; € f(S;) and diantr;(S;)) < B
where B is a number which depends @ and D but not onn. This is easily achieved
exactly as in the construction of the suw) @bove withB = 2C + 15D. Applying this
construction inductively, one obtains a decomposition of the originalk as the sum
3"k, with k, € £(S,) and diangS;) < (C + 15D)2™.

Property (2) of the lean modules for ke is inherited fromF. O

2.5.Lemma. Every R[I"]-homomorphism¢ : F — G between alean R[I"]-module F and
an equivariant I"-filtered module G is boundedly controlled as a homomor phism between
filtered R-modules.

Proof. Let f be a lean equivariant-filtration of F. Consider; € f(S), thenz => r;z;
wherez; € f(By(x;)) for somex; € S. Since¢ is an R[I"]-homomorphism, there is a
numberD > 0 such thatp(z) is in g(By+p(x)) forall z € f(Bs(x)) and allx € I". Then
¢(2) =D ri¢p(zi) €Y g(Ba+p(xi)) C g(Batp(S)). O

2.6. Lemma. Every surjective boundedly controlled homomorphism of lean filtered
modules is boundedly bicontrolled. Therefore every surjective R[I"]-homomorphism of
lean R[I"]-modulesis boundedly bicontrolled.

Proof. If y € g(S) theny =3 " r;y; with y; € g(Bqy; (xi)), xi € g(S). Eachg(Bg,; (x)) is

a finitely generate&-module, so there is a constafit> 0 andz; € f (Bg;+c)(x) so that
¢(zi)=yi.Nowz =3 "riz;isin f(Byz+c(S)). O

2.7. Lemma. Let ¢: M1 — M> is an injective asymptotic embedding of proper metric

spaces. If S and T are coarsely antitheticin M1 then ¢ (S) and ¢ (T') are antitheticin M.

Conversely, if U and V areantitheticin M then ¢ ~1(U) and ¢ —1(V) areantitheticin M;.

Proof. We will show the first statement, the proof of the second is similar. Assbiimas
the properties listed in Definition 2.2. Now for any choiceic 0 with f(d) > D

Bp$(S) N Bpd(T) C ¢(Ba(S)) Nd(Ba(T)) = ¢(Ba(S) N Ba(T)) C ¢(Bay(SNT))
C Bgap® (SN T) C Byay (0 (S) N¢(T)).

Here the equality follows from the injectivity assumption. So we can ke- g(d1). O
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2.8. Proposition. If ¢: M1 — M3 is an injective asymptotic embedding between proper
metric spaces then the M-filtration £, (S) = f(¢—1(S)) induced from an M -filtration f
isleanif and only if f islean.

Proof. We show the necessity half of the argument. Notice that the factdtiat(x),

¢ () < g(d1(x, y)) implies By (x) C q)—l(Bg(d)(qS(x)) for all d > 0. Supposef is lean,
then giveny € £.(S) = f(¢~1(S)) and

ve Y f(Ba)),

repL(S)
we have
ve Y f@THBuw (W)= Y fi(Bew(¢()) Y fi(Be (@)
xeg1(s) repL(S) zes

For the second property,ife £.(S) N f(T) = f(¢~1(S) N f(p~1(T)) then

y € f(Bd(QS*l(S)) n Bd(qﬁ*l(T))) C f(qﬁil(Bg(d)(S)) N ¢71(Bg(d)(T)))
= £ (¢ H(By(a)(S) N By(ay(1))) C fi(Bar(SNT))

for somed;. So f, is lean with characteristic constafit O

2.9. Corollary. Let I be a finitely generated group viewed as a metric space with the
word metric induced by a fixed presentation. If I has a uniform embedding ig: I” — P
in a finite product P of locally finite simplicial trees then the kernel of a surjective R[I"]-
homomorphism of lean R[I"]-modulesislean. In particular, it isfinitely generated.

Proof. The given homomorphism : F1 — F, between two learR[I"]-modules can be
thought of as a boundedly controlled homomorphism between Rarodules with the
P-filtrations fo defined byfp(S) = f(igl(S)). From Proposition 2.8, we see thétis lean

if and only if f is lean. Wheny is surjective, it is boundedly bicontrolled by Lemma 2.6.
The rest follows from Lemma 2.4.0

2.10. Lemma. The image of a boundedly bicontrolled homomorphism of lean filtered
modulesislean.

Proof. Let D be a filtration degree of the homomorphigmF — G. If I is the image
of f, it has the natural™-equivariant filtration given by(S) = I N g(S). If y € g(S) then
there isz € f(Bp(S)) with ¢ (z) = y written asz = )_ r;z; for somez; € f(By, (x;)) and
xi € Bp(S). Soy =) _ri¢(zi) and¢(z;) € g(Ba,+p(xi)). In other words,

ye Zi(BdGJrzD(X)).

xeS
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To see that the second characteristic property of lean modules is inherited by the image
from G, we show that generally the image of a boundedly bicontrolled homomorphism
with the kernel satisfying property (1) also satisfies property (2) in Definition 1.5. Let

y € g(S) N g(T), then there ares € f(Bp(S)) andzyr € f(Bp(T)) such thatp(zs) =

¢(zr) = y. Thusk = zg — zr is in the kernelK = ker(¢). Using property (1) of the
kernel K, write k = ks + kr whereks € f(Ba,+p(S)) andkr € f(Ba,+p(T)) so that

zs —ks = z7 + k7 and againp (zs — ks) = ¢ (zr + kr) = y. Now sinceF has property (2)

andzs —ks = z7 +kr isin f(Ba;+p(S) N f(Ba;4+p(T)), itis alsoinf (Bza,+p(SNT)).

Soy € g(B2da;+20(SNT)). O

2.11. Corollary. The cokernel of a boundedly bicontrolled homomorphism of lean P-
filtered R-modulesis|ean.

Proof of Theorem 1.8. Given a leanR[I']-moduleF, let F1 be the freeR[I"']-module
on the finite generating se&X of F. We view it as a learR-module with the canonical
filtration induced from the product generating getx I". Then the surjection : F; — F
is boundedly bicontrolled. The kerng&h = ker(rr) is lean by Lemma 2.4. Construct a free
finitely generated?[I"]-moduleF; with a projectionry : F, — K1. By Lemma 2.571 is
boundedly controlled, hence by Lemma 2.6sitoioundedly bicontrolled. This shows that
F is finitely presented as the quotient of the compositir= i171 which is boundedly
bicontrolled. This construction also inductivajives a resolution by free finitely generated
R[I'1-modules.

Part (2) of Theorem 1.8 follows directly from Corollary 2.11.

For part (3), consider theth syzygy moduleK,, = ker(d,,) wheren is the homological
dimension of the ringR. It is known from the syzygy theorem thé&t is a projective
R-module if it fits into a resolution

O—G—P,—P,_1— --—P—F—0

of an R-module F over a regular ringk of homological dimension &) < » and all
modulesPy, ..., P, are projective, cf. [12, Lemma 4.1.6]. This certainly applieXio
SinceR[I"']-modules which are free @-modules are also freR[I"]-modules, it follows
easily thatR[I"]-modules projective aR-modules are projective & I"]-modules. Since
K, is lean, it is finitely generated oveR[I"]. This shows that has a finite projective
resolution of length at moat. O

3. Theasymptotic dimension of uniform lattices

This section proves that the asymptotic dimension of cocompact discrete subgroups of
a connected Lie grou@ is the dimension of the homogeneous space of maximal compact
subgroupsirG.

3.1. Definition. A map between metric spaces. (M1, d1) — (M2, d>) is eventually
continuousif there is a real functiog such thatiz(¢ (x), ¢ (v)) < g(di(x, y)) for all pairs
of pointsx, y in Mj.
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3.2. Proposition. If M1 = M>, the identity map id: M1 — M> is a uniform embedding if
and only if the identity map is eventually continuous in both ways, that is, there are real
functions g and g suchthat da(x, y) < g(d1(x, y)) anddi(x, y) < g(d2(x, y)) for all pairs
of pointsx, y in M.

Proof. If the identity is an asymptotic embedding, we may chog$er ¢ and define
g =supz'| f(2) <z}

Thendi(x, y) < g(dz(x, y)) sincef(di(x, y)) < da(x, y).
To see that the identity is an asymptotic embedding, we may again chdosene of
the bounding functions and define

f@) =it | 8@) <zl

Thenf (di(x, y)) <da(x,y) sincedi(x, y)) < g(d2(x, y)). lim; .« f(z) = oo because&x’
is not compact. O

3.3. Definition. Given a spaceé/, two metricsd; anddz on M form auniform pair if the
identity map id (M1, d1) — (M2, d2) is an asymptotic embedding.

When two metrics are a uniform pair, metric balls of uniformly bounded diameter in
one metric are uniformly bounded in the other metric.
The following result is from [3, Chapter V].

3.4. Proposition. Let G bea connected Liegroup and K beits maximal compact subgroup.
Then thereis a simply connected nilpotent Lie group N and a simply transitive action of N
on the homogeneous space G/K by isometries with respect to the N-invariant metric ds.
If dp isthe G-invariant metric on G/ K thentheidentity map of G/ K with these two metrics
is eventually continuous. In other words, the two metrics d1 and d2 form a uniform pair.

Let I be a cocompact lattice in a connectad group. A uniform embedding aof in
N can be obtained by uniformly embeddingin G/K as the pullback of the orbify of
xo via the simply transitive action d¥ on G/K with either metriai; or d» and then lifting
the embedding t&v . There is no natural action df on N but notice that the embedding
of I' is commensurable.

3.5. Theorem. Let N be a simply connected nilpotent Lie group with the left-invariant
Riemannian metric. Then

asdim(NV) =dim(N).
Proof. A simply connected solvable grou§y of dimensionn is isomorphic to the

semidirect producl x Ng, whereNy is a normal simply connected solvable Lie group and
T is isomorphic to the group of real numbers which act\agn There is a corresponding



512 G. Carlsson, B. Goldfarb / Journal of Algebra 276 (2004) 502-514

vector space splitting of the Lie algebta= r & no which is orthogonal with respect to
a positive definite bilinear forng on n. If the metricd in N is the Riemannian metric
associated tg8 and T has the metric associated to the restrictiongofo ¢ then the
projectionz: N — T is a distance nonincreasing map. In factyit y, + yo then the
lengthi(y) =1(y:) + L(yo). One can show that

By (n Ya, b)) =" (la —r,b+11).
For details, see [3, Section V]. For any paing [a, b], the function
pla,b,x):mw ([a,b]) = 7 (x)
given byp(a, b, x)(g) = g(x — n(g)) is bounded by — «, that is,
d(g.pla,b,x)(g))<b—a

forall a, b, x, andg € 7 ~1([a, b]). Also, p(a, b, x) is equivariant with respect to the left
multiplication action byNo.

There is a useful equivalent characterization of asymptotic dimension [7,10]. For a
metric spaceX, asdim(X) < n if for arbitrarily large numberD there is a uniformly
bounded covet/ of X such that every metric ball of radiu3 has nhonempty intersection
with at mostz 4 1 sets irA.

We will use induction on the dimension @f. Starting with dimension one, let the
covering of N = R be by the closed segments

Ut ={Ut=[4Di,4D(i + 1)]|i e Z}.

Itis clear that asdifR) = 1. Notice also that each se’;l in 41 has the property that there
is the pointy; =4Di + 2D € U,'l such that the metric ball centeredatwith radiusD is
contained entirely irU;, and another covering? can be obtained by translatiag (that
is left-multiplying) by 2D. Because of the first property, each metric ball with radius
intersects at most 3 subsets from the new covedhg 1/2.

Now suppose that ditV) = n, then dim{Ng) = n — 1 in the semidirect product
decomposition above. We assume that

(1) No is given theNp-invariant Riemannian metric,

(2) Ng has a covering consisting of two s;ubcoveririgt;%_1 and uf_l by uniformly
bounded subsets with the propethat each ball of radiu® intersects at most
subsets in each coverir'l@jnl_1 and L{,f_l and at most: + 1 subsets in the union

1 2
U, VUr_,.

In order to construct two similar coveringg andi/2 of N, consider the translatesVo
of N for 1; = 4Di, i € Z, and the corresponding coverinig$ , ; andi/Z_, ; of ;; No. We
will use the notation '
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Sty =p7t 2D, 4, 1)(U),  SIU)=p i, 1 +2D,4)(U)

for any subsel of t; No. Now define four collections of subsets @fas

Uyt ={siu|vetdy y;, i€z}, U
U ={SAWU) |UelU? ;. ieZ}, Uy ={SiU) |U etff_y;. i € Z}.

{SrUy | Uely_y ;. i €},

Let L{nl = u,}” U u,%’ andL{n2 = u,}’r U L{nz’l . Itis clear that either of the two coverintj,y',é,L
andi{2 has the property that a metric ball with radifsin N intersects at most + 1
sets from the covering. It is alsoedr that a metric ball with radiud intersects at most
n + 2 sets from the covering> U2, as required in the induction step. So by induction
asdimN) < n.

To see the reverse inequality, recall that Gromov [10] defines another notion of
asymptotic dimension which he denotes simply asdim. This notion is different from the
asymptotic dimension conventionally used in this and other papers in the literature. In order
to avoid confusion in this proof, we will use the notation asdfor this possibly different
number. Now Gromov shows that for a compact acyclic manifedd asdim.(M) =
dim(M). The general inequality asdjm< asdim gives din) < asdim(M). Applying
this inequality in the case o¥f = I'\ N, for any cocompact latticé” in N, we see that
dim(N) =dim(I"'\N) <asdimN). O

A map between metric spaces (X1, d1) — (X2, d2) is auniform embedding if there
are two real functiong’ andg with lim, _, o f(x) = oo and lim,_, o g(x) = oo such that

fldix,y)) <dz2(¢(x), ¢(y)) < g(da(x,y))

for all pairs of pointsy, y in X1. Itis known from [10] that asymptotic dimension does not
decrease under uniform embeddings.

3.6. Coroallary. Let I be a cocompact lattice in a connected Lie group G. Then

asdim(I") = dim(G/K).
Proof. Clearly, asdini") = asdim(G/K) sincel” embeds uniformly and commensurably
in the homogeneous space K. Now there are mutual uniform embeddings®fK in a
simply connected nilpotent Lie group with the N -invariant Riemannian metric, and vice

versa, according to [3, Section 1V]. Thus tleee metric spaces have the same asymptotic
dimension. O
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