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Nocturnal hemodialysis increases arterial baroreflex sensitivity
and compliance and normalizes blood pressure of hypertensive
patients with end-stage renal disease
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Nocturnal hemodialysis increases arterial baroreflex sensitivity
and compliance and normalizes blood pressure of hypertensive
patients with end-stage renal disease.

Background. Impaired neural control of heart rate, elevated
arterial stiffness, and hypertension place patients with end-stage
renal disease (ESRD) at increased risk of cardiovascular mor-
tality. Nocturnal hemodialysis (6 × 8 hours/week), a more in-
tense program than conventional hemodialysis (3 × 4 hours/
week), lowers blood pressure and restores brachial dilator re-
sponses to hyperemia and nitrates.

Methods. We hypothesized that nocturnal hemodialysis
would increase arterial baroreflex sensitivity for heart rate of
hypertensive ESRD patients by an afferent vascular mecha-
nism. Ten consecutive hypertensive ESRD patients (age 42 ± 4)
(mean ± SEM) receiving conventional hemodialysis were stud-
ied before and 2 months after conversion to nocturnal hemodial-
ysis. Regression slopes relating RR interval responses to rises or
falls in systolic blood pressure were averaged to derive sponta-
neous baroreflex sensitivity for heart rate for each patient, and
the stroke volume/pulse pressure ratio was used to estimate
total arterial compliance.

Results. Dialysis dose (Kt/V per session) increased from
1.2 ± 0.05 to 2.1 ± 0.1 (P < 0.05). Despite withdrawal of antihy-
pertensive medications (from 2.9 to 0.1 drugs/patient), noctur-
nal hemodialysis lowered systolic blood pressure (from 143 ±
4 to 120 ± 6 mm Hg) (P = 0.001). Both baroreflex sensitiv-
ity (from 4.76 ± 1.1 msec/mm Hg to 6.91 ± 1.1 msec/mm Hg)
(P = 0.04) and total arterial compliance (from 0.98 ± 0.13 mL/
mm Hg to 1.43 ± 0.2 mL/mm Hg) (P = 0.02) were higher follow-
ing conversion to nocturnal hemodialysis. Increases in barore-
flex sensitivity correlated with increases in stroke volume/pulse
pressure (r = 0.845, P = 0.002).

Conclusion. These findings are consistent with the concept
that nocturnal hemodialysis increases baroreflex sensitivity via
greater afferent baroreceptor responsiveness to pulsatile pres-
sure. A more favorable risk profile, due to enhanced barore-
flex regulation of the circulation and vascular compliance, may
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translate into lower cardiovascular event rates in ESRD pa-
tients receiving nocturnal hemodialysis.

Altered neural regulation of the heart and circulation
[1, 2], elevated arterial stiffness, [3] and hypertension [4]
are common in end-stage renal disease (ESRD). Each of
these factors contributes to the high cardiovascular event
rate of patients with this condition. A regulatory mecha-
nism impaired by all three abnormalities is the arterial
baroreflex, the principal short-term regulator of heart
rate and blood pressure.

Mechanoreceptor nerve endings, situated in the carotid
sinus and aortic arch, discharge when stretched dur-
ing systole, informing the nucleus tractus solitarii, via
the glossopharyngeal and vagal afferent nerves, respec-
tively, of changes in systolic blood pressure [5, 6]. The
reflex heart rate response to baroreceptor stimulation
is effected through efferent vagal nerve activation and
sympathetic neural withdrawal. The gain of the arterial
baroreflex for heart rate (arterial baroflex sensitivity) can
be determined, in conscious humans, from the slope of the
relationship between changes in systolic blood pressure
(stimulus) and changes in pulse interval (response) fol-
lowing bolus injection or infusion of vasoactive drugs [7,
8], or over the course of spontaneous rises and falls in
arterial blood pressure [9, 10]. These rapid (i.e., within
seconds) heart rate responses are mediated primarily
through changes in efferent vagal discharge [10].

A reduction in baroreceptor nerve firing in response to
changes in systolic or pulse pressure [5, 11], whether due
to decreased conduit artery compliance, diminished en-
dothelial prostacylin production, or increased local free
radial generation [12–15] contributes to the attenuated
arterial baroreflex gain that occurs with age, with increas-
ing blood pressure [8, 16, 17], or in disorders of arte-
rial elastin fiber assembly [18]. A reduction in arterial
baroflex sensitivity has important clinical consequences.
In cross-sectional studies involving patients with high
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normal and elevated blood pressure, arterial baroflex sen-
sitivity related inversely to blood pressure variability at
rest [19], and in response to mental stress and exercise
[8]. In prospective studies of patients following myocar-
dial infarction or with heart failure, a decrease in both
reflex and tonic vagal heart rate modulation predicted
greater cardiovascular and total mortality [20–23].

In ESRD, both reflex heart rate responses to increases
or decreases in blood pressure induced by phenylephrine,
angiotensin, or amyl nitrate [24–26], and spontaneous
arterial baroflex sensitivity [27] are markedly attenu-
ated. Pulse interval responses to phenylephrine, prior
to the initiation of dialysis, are less than 50% of that
predicted on the basis of patients’ ages and blood pres-
sures, owing to reduced vagal and augmented efferent
sympathetic modulation of heart rate [26]. This profound
reduction in arterial baroflex sensitivity gain is clearly
reversible, since normal, or near-normal values for ar-
terial baroreflex sensitivity have been found in renal
transplant patients [27, 28]. However, arterial barore-
flex sensitivity is not affected by acute or short-term (4
to 10 weeks) conventional hemodialysis, and increases
only modestly with long-term conventional hemodialysis
[25, 28].

Within 1 to 2 months of its initiation, nocturnal
hemodialysis, at a higher dialysis dose and with more
frequent application than conventional hemodialysis,
lowers blood pressure, peripheral resistance, plasma
norepinephrine concentration, and plasma phosphate,
and restores brachial artery responsiveness to both en-
dogenous (hyperemia) and exogenous nitric oxide (ni-
troglycerin) [29]. Nitric oxide increases brachial artery
elasticity [30]. If nocturnal hemodialysis improved the
distensibility of conduit, as well as muscular arteries,
leading to an increase in aortic arch and carotid si-
nus compliance, baroreceptor discharge responsiveness
to pulsatile pressure should be augmented, resulting in
greater reflex vagal modulation of heart rate. Although an
attractive concept, tests of this hypothesis have yet to be
reported. Indeed, several drugs used to treat hyperten-
sion have been shown to either increase arterial com-
pliance, or augment arterial baroreflex sensitivity, but
concurrent changes in these two variables with therapy
have yet to be correlated.

Our objectives in the present study were first, to test
the hypothesis that reductions in blood pressure follow-
ing conversion from conventional hemodialysis to noctur-
nal hemodialysis would be accompanied by an increase
in arterial baroreflex sensitivity, and second to determine
whether any increase could be attributed to an afferent
mechanism (i.e., greater arterial compliance). For this
latter purpose, we determined the effect of nocturnal
hemodialysis on the ratio of stroke volume:pulse pres-
sure, a well-established noninvasive estimate of total ar-
terial compliance [31–38].

METHODS

Subjects

We studied ten consecutive hypertensive ESRD pa-
tients [five men, mean age 42 ± 4 years (mean ± SE)]
in training for nocturnal hemodialysis. All had received
conventional hemodialysis for at least 2 years. Their
ESRD was due to glomerulonephritis (N = 4), hyperten-
sive nephrosclerosis (N = 2), polycystic kidney disease
(N = 2), or vasculitis (N = 2). None had documented
left ventricular systolic dysfunction or any acute illness
at the time of study. The present protocol is one aspect
of a larger investigation of nocturnal hemodialysis ap-
proved by the Research Ethics Boards of the Toronto
General and Humber Regional Hospitals of the Univer-
sity of Toronto.

Protocol

Each subject was studied first while receiving conven-
tional hemodialysis and again 2 months after a stable
dose of nocturnal hemodialysis. All experiments were
conducted in the morning, in the Toronto General Hospi-
tal Clinical Cardiovascular Physiology Laboratory. Base-
line studies were performed ≥18 hours after conventional
hemodialysis. To minimize circadian variation and repli-
cate steady-state nocturnal hemodialysis conditions, sub-
sequent experiments were performed ≥4 hours after the
regular nocturnal hemodialysis session. All subjects ab-
stained from tobacco and caffeine.

Lead II of the electrocardiogram (ECG) rate was mea-
sured to derive a continuous measure of heart rate. Rest-
ing blood pressure was determined noninvasively in the
arm opposite the arteriovenous fistula (Dinamap Pro
100) (Critikon LLC, Tampa, FL, USA). Stroke volume
was estimated, using standard echo Doppler methods, as
the product of the mean time velocity integral of ascend-
ing aortic flow and the cross-sectional area of the aortic
orifice [39]. Total peripheral resistance (TPR) was de-
rived from mean arterial blood pressure and cardiac out-
put (CO), the product of stroke volume and heart rate.
For each patient, the ratio of stroke volume to pulse pres-
sure was derived, as an estimate of total arterial compli-
ance [37].

Arterial baroreflex sensitivity for heart rate

Arterial baroreflex sensitivity for heart rate was cal-
culated using the sequence method, as described previ-
ously in detail [9]. In brief, the ECG signal was digitized at
1000 Hz. Sequences of three or more cardiac cycles dur-
ing which the systolic blood pressure and the R-R interval
of the subsequent beat either rose or fell in parallel were
identified. For each sequences, changes in R-R intervals
were related to the antecedent changes in systolic blood
pressure by least-squares linear regression analyses. The
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Table 1. Dialsyis dose, hemodynamics, baroreflex sensitivity for heart rate, and medication requirements before and after 2 months of nocturnal
hemodialysis

Conventional 2 months of nocturnal
Variables hemodialysis hemodialysis P value

Kt/V per session 1.2 ± 0.05 2.1 ± 0.1 0.008
Phosphate mmol/L 2.01 ± 0.3 1.29 ± 0.11 0.04
Systolic blood pressure mm Hg 143 ± 4 120 ± 6 0.001
Diastolic blood pressure mm Hg 86 ± 5 70 ± 5 0.02
Pulse pressure mm Hg 56 ± 3 49 ± 2 0.05
Heart rate min−1 76 ± 7 77 ± 1 0.93
Stroke volume mL 55 ± 7 66 ± 9 0.07
Weight kg 64.1 ± 11.9 64.2 ± 11.7 0.70
Stroke volume/pulse pressure mL/mm Hg 0.98 ± 0.13 1.43 ± 0.2 0.019
Baroflex sensitivity msec/mm Hg 4.76 ± 1.1 6.91 ± 1.1 0.04
Medications 2.9 0.1 <0.001

Angiotensin-converting enzyme inhibitors number 5 0
Angiotensin receptor blocker number 1 0
b blocker number 3 1
a blocker number 2 0
Calcium channel blocker number 6 0
Other vasodilators number 1 0

N = 10. Values are presented as mean ± SEM or number, as indicated.

mean value for those slopes with highly correlated se-
quences (r > 0.85) was derived to represent spontaneous
arterial baroreflex sensitivity for heart rate for each sub-
ject. A minimum of three such slopes at each study ses-
sion, as confirmed by visual inspection, was required for
such determination.

Dialysis prescriptions

Conventional hemodialysis was administered over
4 hours, 3 times per week, via a long-term internal jugu-
lar catheter or an arteriovenous fistula. A dialysate flow
rate of 500 to 750 mL per minute and F80 polysulfone di-
alyzers (Fresenius Medical Care, Lexington, MA, USA)
were used. After conversion to nocturnal hemodialysis,
patients received nocturnal hemodialysis at home for 8
to 10 hours, 6 nights per week, through similar vascular
access. A dialysate flow rate of 300 mL per minute and
F80 polysulfone dialyzers of Polyflux-17 polyamide dia-
lyzers (Gambro, Hechnigen, Germany) were used. Pre-
dialysis and postdialysis weights and ultrafiltration rates
were noted.

Dialysis dose per treatment was estimated by equili-
brated Kt/V (eKt/V), as described by Daugirdas et al [40]:

eKt/(eKt/V = spKt/V − 0.6(spKt/V)/t + 0.03

where spKt/V is single pool Kt/V, K is delivered clearance,
t is dialysis time, and V is urea distribution volume. Single-
pool Kt/V was determined by blood urea reduction ratio.
Plasma phosphate concentration was measured monthly
to estimate dialysis efficacy.

Statistical analysis

Data are presented as mean ± SEM. Student t test for
paired variables was used to evaluate changes related to

dialysis. A two-tailed probability of P < 0.05 was required
for significance.

RESULTS

Baseline characteristics

The initial blood pressure of these ten hypertensive
conventional hemodialysis patients in training was well
controlled by the combination of dialysis and drug ther-
apy. The dose of conventional hemodialysis received and
the plasma phosphate concentration obtained conformed
to current dialysis guidelines [41] (Table 1).

Nocturnal hemodialysis

The dialysis dose received (Kt/V per session) increased
significantly after conversion to nocturnal hemodialysis
(from 1.2 ± 0.05 to 2.1 ± 0.1) (P < 0.05) (Table 1). In ad-
dition, the frequency of dialysis doubled. Blood pressure
fell, by 23/16 mm Hg (Table 1). Because symptomatic
hypotension developed in the majority of patients, the
treating nephrologists were obliged to reduce, on clinical
grounds, and independent of the present investigations,
the number of antihypertensive agents prescribed (from
2.9 to 0.1 drugs per patient) (P < 0.001). Thus, the true
antihypertensive impact of nocturnal hemodialysis may
actually have been much greater.

Mean heart rate was unaffected by mode of dialysis
(Table 1), whereas arterial baroflex sensitivity increased
from 4.76 ± 1.1 to 6.91 ± 1.1 (msec/mm Hg) (P < 0.04)
following conversion from conventional hemodialysis to
nocturnal hemodialysis. Over the same time period, the
stroke volume/pulse pressure ratio also rose, from 0.98 ±
0.13 to 1.43 ± 0.2 mL/mm Hg (P = 0.019) (Table 1).
There was a positive correlation between these changes
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Fig. 1. Significant positive relationship between changes in stroke vol-
ume/pulse pressure ratio (SV/PP) and changes in baroreflex sensitivity
for heart rate (BRS) 2 months after conversion from conventional to
nocturnal hemodialysis.

in stroke volume/pulse pressure and log10 arterial barore-
flex sensitivity (r = 0.845, P = 0.002) (Fig. 1).

DISCUSSION

We have previously shown that chronic nocturnal
hemodialysis lowers the total peripheral resistance and
systemic arterial pressure of ESRD patients converted
from conventional hemodialysis and restores brachial
artery dilator responses to flow-mediated dilation and ni-
troglycerin [29]. We now report three novel, additional,
effects of nocturnal hemodialysis: (1) a significant in-
crease in heart rate modulation by the arterial baroreflex;
(2) a significant increase in estimated total arterial com-
pliance; and (3) a significant positive correlation between
changes in these two variables resulting from this inter-
vention. Augmentation of arterial baroreflex sensitivity in
the present study occurred in the absence of any change in
resting heart rate, indicating, in addition to this increase in
gain, adaptation, or resetting, of the baroreceptor-heart
rate reflex to the lower prevailing blood pressure during
nocturnal hemodialysis.

In contrast, Pickering, Gribbin, and Oliver [25] did not
detect any significant increase in arterial baroreflex slopes
generated by phenylephrine injection after acute reduc-
tions in blood pressure resulting from single dialysis ses-
sions, and, 2 to 3 months of conventional hemodialysis
have little or no effect on arterial baroreflex sensitivity
[25, 28]. Thus, neither hypotension per se nor intermit-
tent dialysis is sufficient to improve arterial baroreflex
sensitivity in ESRD patients; longer-term functional or
structural changes, not obtained with conventional
hemodialysis, may be required.

The spontaneous sequence method yields values highly
correlated to those obtained following bolus administra-
tion of phenylephrine and sodium nitroprusside [10]. In

a study of 61 unmedicated patients with high or high nor-
mal blood pressure, in whom arterial blood pressure was
measured directly, and blood pressure elevated acutely
by intravenous doses of phenylephrine, the independent
effects of these two variables on arterial baroreflex sensi-
tivity could be expressed by the regression equation [8]:

log10 arterial baroreflex sensitivity
= 1.943 − [(0.00445) × (systolic blood pressure)

− (0.01059) × (age)]

Entering the values obtained in the present study into
this equation would yield an expected arterial barore-
flex sensitivity during conventional hemodialysis of 7.27
msec/mm Hg, and an expected arterial baroflex sensitiv-
ity during nocturnal hemodialysis of 9.29 msec/mm Hg
(i.e., a 28% increase).

Importantly, the observed gain of the baroreceptor-
heart rate reflex while these ESRD patients were receiv-
ing conventional hemodialysis was substantially lower,
and its 45% increase 2 months after conversion to noctur-
nal hemodialysis much greater than would be anticipated
simply on the basis of age and systolic blood pressure [8].
Moreover, this augmentation occurred in the setting of
withdrawal of angiotensin-converting enzyme (ACE) in-
hibitors, b adrenoceptor antagonists, and angiotensin re-
ceptor blockers. Because each of these drug classes has
been shown to improve arterial baroreflex sensitivity [19,
35, 42, 43], and ACE inhibitors have been shown to de-
crease pulse wave velocity (i.e., increase compliance) in
hemodialysis patients [44], an even greater increase in
both arterial baroreflex sensitivity and arterial compli-
ance might have been anticipated, had these antihyper-
tensives been continued up until the time of the nocturnal
hemodialysis study.

The present findings are consistent with the concept
that one or more mechanisms, specific to chronic renal
failure, and modifiable by nocturnal hemodialysis, act
to attenuate the baroreceptor-heart rate reflex at one
or more peripheral or central sites. Of note, in exper-
imental chronic renal hypertension, central integration
of baroreceptor input is also impaired [45]. Angiotensin
II, which acts centrally to blunt efferent vagal discharge,
and increase sympathetic nerve firing [46], is an obvious
candidate, but its plasma concentrations have not been
shown to fall after conversion to nocturnal hemodial-
ysis [29]. Less neural release of the vasoconstrictor
norepinephrine cannot explain these findings, because
application of a adrenoceptor agonists to the carotid si-
nus increases, rather than decreases baroreceptor nerve
firing rates [47]. The possibility of lower oxidative stress is
suggested by a report that ascorbic acid infusion increases
the arterial baroreflex sensitivity of healthy elderly men
[14].
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Our prior observation that conversion from conven-
tional hemodialysis to nocturnal hemodialysis not only
led to a significant reductions in peripheral resistance,
but also improved both endothelium-dependent and
endothelium-independent vasodilation of a muscular
artery, and normalized normal plasma phosphate concen-
trations [29], led us to propose the concept that nocturnal
hemodialysis induces, over time, structural (e.g., arterial
decalcification) or functional vascular changes (e.g., an
increase in the bioavailability of endothelial-derived ni-
tric oxide [30]), resulting in a decrease in the stiffness of
conduit arteries, the site of arterial baroreceptor afferent
nerve endings. If so, such changes would be anticipated
to improve baroreceptor nerve firing properties [12].

Distensibility of the arterial tree in humans has been es-
timated in a variety of ways, from pressure volume curves
using postmortem arteries [48], to vascular ultrasound
[49–51], measures of pulse wave velocity [52], and in vivo
studies involving magnetic resonance imaging [53]. The
noninvasive method applied in the present study, based
upon the ratio of Doppler-derived left ventricular stroke
volume to brachial artery pulse pressure, has been ap-
plied by a number of groups to estimate total arterial
compliance in both cross-sectional and longitudinal stud-
ies [32–38]. This ratio correlates well with values obtained
by invasive determination of pulse wave velocity [31],
and was recently shown to predict coronary heart disease
mortality in a population of elderly men [38].

Increased arterial stiffness, whether manifested as an
increase in arterial pulse wave velocity, aortic augmenta-
tion index, or the pulse pressure/stroke volume ratio, is
a feature common to ESRD patients receiving conven-
tional hemodialysis [54–57] and one that relates strongly
to their all-cause mortality [3]. In the absence of con-
current improvement in arterial compliance, blood pres-
sure reduction per se, does not alter these cardiovascular
event rates [58]. Greater arterial stiffness in ESRD has
been attributed to the presence of both structural and
dynamic factors, including uremia; fluid overload, hyper-
tension; increased tissue and circulating vasoconstrictors;
less nitric oxide synthesis, or bioavailability, leading to
endothelial dysfunction; and poorly controlled hyper-
parathyroidism promoting arterial calcification [44, 55,
56, 59–61]. Conversely, an improvement in phosphate bal-
ance, or an increase in nitric oxide synthesis or bioavail-
ability, as demonstrated in our previous report [29],
should result in greater arterial compliance. Importantly,
nocturnal hemodialysis, unlike conventional hemodialy-
sis, reverses many of the abnormalities of ESRD [29, 62,
63].

Normalization of vascular volume by nocturnal
hemodialysis might also improve arterial compliance, but
any such effect is likely too modest to account for the
present findings. Hemodialysis to dry weight does not re-
sult in any acute change in pulse wave velocity [44] or

carotid distensibility [64] unless performed in the pres-
ence of ACE inhibition [44]. By contrast, in the present
series, an increase in arterial compliance was evident de-
spite withdrawal of ACE inhibitors, weights postdialy-
sis were similar on study mornings after conventional
hemodialysis and nocturnal hemodialysis (Table 1), and
the hypotensive effect of conversion from conventional
hemodialysis to nocturnal hemodialysis resulted from de-
creases in afterload (total peripheral resistance) rather
than preload (stroke volume) [29].

Improved conduit artery compliance after conver-
sion to nocturnal hemodialysis should result in greater
mechanoreceptor stretch and afferent nerve firing in re-
sponse to the same distending pressure. Indeed, Kingwell
et al [49] found stiffness of the transverse aortic arch to
be an important determinant of baroreflex-mediated re-
sponses to phenylephrine and nitroprusside in normoten-
sive and hypertensive men, and in a subsequent series of
experiments in young and older healthy sedentary and en-
durance trained men, Monahan et al [50, 51] found that
arterial baroflex sensitivity tracked changes in carotid
artery diameter in response to changes in blood pressure.

Our hypothesis that nocturnal hemodialysis would in-
crease arterial baroreflex sensitivity by an afferent mech-
anism (i.e., a reduction in conduit artery stiffness), was
supported by two key observations, namely an increase
in the stroke volume/pulse pressure ratio from 0.98 ±
0.13 mL/mm Hg to 1.43 ± 0.2 mL/mmHg, a finding con-
sistent with greater total arterial compliance during noc-
turnal hemodialysis than conventional hemodialysis, and
a significant positive correlation between increases in the
stroke volume/pulse pressure ratio, and increases in arte-
rial baroflex sensitivity (Fig. 1). Importantly, a correlation
between such changes, as a result of either pharmacologic
or nonpharmacologic treatment of hypertension, has not
been reported previously.

CONCLUSION

Two months after the frequency, duration, and dose
of dialysis were increased in these hypertensive ESRD
patients, by conversion from conventional hemodialysis
to nocturnal hemodialysis, there was a substantial fall in
blood pressure and an increase in the arterial barore-
flex regulation of heart rate. A parallel increase total
arterial compliance, and a significant positive relation-
ship between changes in these two variables, is consistent
with the concept that this augmented reflex vagal heart
rate modulation results from greater afferent barorecep-
tor responsiveness to pulsatile pressure. Future investi-
gations would benefit from specific assessment of carotid
sinus and aortic arch compliance, and the possibility that
conversion of these ESRD patients from conventional
hemodialysis to nocturnal hemodialysis augmented arte-
rial baroreflex sensitivity through additional central or
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efferent mechanisms, affected beneficially by increased
uremia clearance, should also be considered.

Greater arterial compliance and more potent barore-
flex modulation of both heart rate and sympathetic out-
flow have several potential cardiovascular benefits, in-
cluding lower blood pressure [42] and pulse pressure, im-
proved ventricular arterial coupling [65], leading to re-
gression of left ventricular hypertrophy [66], more potent
damping of blood pressure variability [8], and a reduc-
tion in the probability of sudden cardiovascular death
[67]. Indeed, pharmacologic interventions shown to in-
crease arterial baroreflex sensitivity [19, 35, 42, 43] also
improve survival rates following myocardial infarction,
or in heart failure [68–71]. Thus, the augmented neural
regulation of heart rate, the increase in the stroke vol-
ume/pulse pressure ratio and the lower blood pressure
modify the cardiovascular risk profile of these ESRD pa-
tients. Over time, these changes following conversion to
nocturnal hemodialysis may translate into lower cardio-
vascular event rates in this high-risk population.
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