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Abstract

This papers contains two main results. The first is a theorem about continuous functions from a
countably compact Hausdorff space into a comgasipace, which has applications to the algebraic
properties of the Ston&ech compactificatiofi S of a discrete semigrouf. The second main result
shows that many continuous homomorphisms fi§fnto G* have to arise from homomorphisms
mappingsS to G, wheres is a discrete semigroup ar@is a discrete group ansf* denotes8 s \ S.

The second result is related to the first because it uses it at a crucial pa2®0 Published by
Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper is devoted to two main results. The first—and the less difficult of the two—
says that sometimes extensions of maps which take their valuBsspaces (see [5,12]
or [7]) are almost unique. To make this precise,lebe a discrete space, I6tD be its
Stone-€ech compactification, and write* = 8D \ D.

Lemma 1.1. Let D be discrete and leX be a Hausdorff F-space. Let, ¢2: 8D — Z be
two continuous functions which coincide Bxf. Theng1(d) = ¢2(d) for all except a finite
number of values af € D.

A number of applications of this result are given to the theory of compact semigroups
BS. If S is any discrete semigrougS has a unique semigroup structure in which it
becomes aight topological semigrouthat is, the mapp — pg are continuous for every
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q € BS) and in which the mapg — sq are continuous for every € S. (We refer the
reader to [7] for details of this construction and for the theorg 8f General results about
compact semigroups can also be found in [7] and also in [2].) We shall, for example, show
that if S* has one right zero then it has infinitely many, and we give a precise cardinal
(Theorem 2.5).

The form of the Two-Function Lemma we establish is actually more general than the
above special case (see Lemma 2.2). However, it does not tell us when@:mép—-> Z
does possess an extensiotb. Our second main result, Theorem 5.6, provides a context
in which extensions of continuous homomorphisms automatically exist. The Two-Function
Lemma plays a small but vital role in the proof: it is used to establish a key algebraic
property of extensions, and thence uniqueness.

We shall not state Theorem 5.6 in the introduction, as its statement is rather complicated;
but it has several interesting corollaries and we shall cite one or two of these. For example,
itimplies that, ifS is any cancellative discrete semigroup an€ ifs any countable discrete
group, then any continuous injective homomorphisns* — G* has the formp = v/|s+,
wherey : § — G is a homomorphismangd : S — BG is its continuous extension. It also
implies that, ifG is any countable discrete group an@if SN — G* is a continuous ho-
momorphism, thew(N*) is a finite group. The latter extends a result in [11], which stated
that a continuous homomorphigm BN — N* must have finite range. Further theorems of
a type similar to ours can be found in Chapter 10 of [7]; but these are less general. For ex-
ample, in [7] it is onlyinjectivehomomorphisms fron§* to G* which are considered, and
these are restricted to the case in whichndG are countable and embedable in the circle.

Section 3 collects preliminary results for use in the proof of the main theorem. Two ideas
may be worth mentioning here. The s&f of elements inBG with countable dispersion
character (that is, which are represented by ultrafilters which contain a countable set) is
a prime subsemigroup ¢fG (Proposition 3.8). The concept of prime elemen{saf is
introduced;p is primeif and only if p = xg, with x € G andqg € G*, implies thatx € G.

These elements play a key role in the proof.

Section 4 contains a result about homomorphigm§* — «G wherex G is a more
general compactification of a group. However, this generality is achieved only at the
expense of a very strong hypothesis, théf*) contains an element @f.

Section 5 contains the main theorem, Theorem 5.6, and Section 6 presents some of its
corollaries.

We close this introduction with some notes on background knowledge. Information on
F-spaces and Ston€ech compactifications can be found in [5,12,7]; the last reference is
the best for the theory of Ston€ech compactifications of discrete semigroups. We denote
the closure of a set by A; if A is a subset of a discrete spaBethenA is homeomorphic
to BA, and we shall often identify the two.

We shall need some facts about cancellation in semigroups. A semigrolaft is
cancellativeif st = su with s,¢,u € S impliesr = u. It is easy to show that if is left
cancellative andg = sr with s € S andqg, r € S theng = r. A semigroup is weakly left
(respectively right) cancellative {ft € S: st = u} (respectively{r € S: ts = u}) is finite
for eachs, u € S. Weak left cancellativity is equivalent t§* being a left ideal inss.
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Weak left and weak right cancellativity together imply tisétis a two-sided ideal ir8 S.
In particular, ifG is a group therG* is a two-sided ideal i G.
Every compact right topological semigro§has minimal left and minimal right ideals,
and the union of all minimal left or minimal right ideals is the unique smallest ideal
K (S). Each minimal left ideall. contains idempotents, and for any suck we have
Se = Le = L. MoreovereSe = eLe is a group withe as its identity.
Countability assumptions play an essential role in Theorem 5.6. One reason for this is
the frequency with which we use a theorem due to Frolild Hnd B are countable subsets
of an F-space, theml N B # ¢ implies thatA N B # @ or AN B # (. (A proof is given
in[6, Lemma 1.1].)

2. The Two-Function Lemma and simple applications

Lemma 2.1. Let(a,), (b,) be two sequences in a compact HausdBrEpaceZ such that
an # b, for all n. Then there is a strictly increasing sequereg) such that

(an: k=12, JN{bn: k=1,2,.. ) =0.

Proof. In a compact Hausdorff'-space, a sequence with an infinite number of distinct
terms has 2 cluster points (see [12, Proposition 1.64] or [5, Exercise 14N5]), and so in
particular it does not converge.

If (a,) has a constant subsequence, sgy= a for all r, then since(b,,) cannot
converge ta: it is easy to find further subsequendes, ), (b,,) for which the conclusion
holds. Using symmetry we may assume that neithgy) nor (b,) has a constant
subsequence. Then, using an inductive construction we may replace our original sequences
by subsequences,,), (b,) for whicha,, # b, for all m, n.

We now construct a subsequeriég,) of (b,) by a diagonal argument. Sinég — a1
is false, we may find a subsequencé/gf) which does not have; as a cluster point. Since
this subsequence does not convergexowve may find a further subsequence of the first
subsequence which does not hayes a cluster point. And so on. The diagonal sequence
(bn,) does not have any af, ao, ... as a cluster point, and sineg # b, for all n we have

{an:n=12,..30{b,,: r=1,2,...} =0,

and in particular

{an,: r=21,2,..}N{by,: r=212,...}=0.

We repeat the argument starting with the sequeqges, (b,,) and interchanging the roles
of thea’s andb’s. We find subsequencés,, ), (b,, ) with

{an,,:s=21,2,..0N0{b,,  s=1,2,...} =0

Of course, we still have
{lan,:s=1,2,..30{b,, :5s=12,..}=0.

The conclusion of the lemma follows immediately from Theorem 3.40 in [7].
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The Two-Function Lemma 2.2. Let X be a countably compact Hausdorff space ahd
compact Hausdorff'-space. Letp, ¥ : X — Y be continuous mappings. Then

Xo={xeX: o) # ()}

is countably compact.

Proof. We need to show that any sequeiaeg) in Xo has a cluster pointiXg. Let (nx) be
the sequence produced by Lemma 2.1 when wedgkeo(x,), b, = ¥ (x,). By countable
compactnessy;,, ) has a cluster point in X. Theng(x) is a cluster point ofa,, ) and so
is different from the cluster poing (x) of (b,,). O

Ouir first corollaries are simple deductions from the lemma (the second is Lemma 1.1).

Corollaries 2.3.
(i) Let X be a countably compact Hausdorff spacep K= vy on a Gs subsetE of X,
which is the intersection of a countable family of its closed neighborhoods, then
¢ = ¥ on some neighborhood @f.
(i) If X = gD for some discrete spade andg = on D* thengp(x) = ¢ (x) for all
except a finite number afe X.

Proof. (i) Let E =(, W,, whereW, is a closed neighborhood & andW, 1 C W, for
eachn. Suppose there exists in eadly somex, with ¢(x,) # ¥ (x,). Thenx, € Xo for
eachn but all the cluster points afx,,) are inE and therefore not iXg.

(i) Here Xo € D, and the only countably compact subsets of a discrete space are
finite. O

In the rest of this sectiof§ is a discrete semigroup argf has its usual structure as a
compact right topological semigroup.

Definition 2.4. Let p € S*. Thenorm|| p|| of p is min{cardU): U € p}.

Theorem 2.5. Suppose that* has a right zera; (so thatpz = z for all p € $*, but we
are not requiringS* to be a semigroup heyeThen

(i) thereis afinite sef, C S suchthattz =z forall x € S\ F;;

(i) s* has22™ right zeros.

Proof. The two mappings +— z (the constant map) and— xz (multiplication on the
right by z) are both continuous frord S to S and are equal o§*. By Corollary 2.3(ii),
there is a finite sef, such that the maps are equal 8\ F. That proves (i).

ChooseU € z with |U| = ||z||. For eachx € S\ F,, let Uy = {u € U: xu = u}.
(ConceivablyUy is empty.) It follows from the de Bruin—Eé$ Lemma (Theorem 9.2
of [4] or Theorem 3.35 of [7]) thal/, € z. The familyF ={U,: x e UN(S\ F;)} has the
property that the intersection of any finite subfamily is both a memberasfd a subset
of U, and therefore any such intersection has cardinélity By Theorem 7.7 of [4] (or
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Theorem 3.62 of [7]), there aré? ultrafilters which refiner. Letg be such an ultrafilter.
Foreachy € U N (S \ F;) and each: € U,, we haveru = u. Allowing u to converge tq
and then allowinge to converge ta shows thatg = ¢. Thus, for everyy € S*, we have

Yqg=yzq=29=q. O
Corollary 2.6. §* cannot have a zerffor any discrete semigrou$).

Proof. If S* did have a (two-sided) zero it would also be the unique right zero and this is
impossible. O

Corollary 2.7. If $* has aright zero theS must contain a sequengg s1, s2, . .. with the
products;s; = s; whenevei < ;.

Proof. With the notation of the proof of Theorem 2.5, takge S \ F;, s1 € Uy, 52 €
U, N Uy, and so on. Our requirements are satisfied.

We cannot improve on Corollary 2.7. To see this,ddde the semigroup generated by a
sequencesy, s2, . ..} subject to the relationss; = s; wheni < j. All elements ofS are of
the forms;,si, . . .s;, Wherei1 > i > i;. If z is any cluster point ofs,), then whem > i1
we haves;,s;, . .. si, sp = s, SO thats;, s;, .. .s;, z = z, and therefore is a right zero foiB S
(anda fortiori for S*).

The last few results have parallels for right identities. Part (ii) of the following theorem
is similar to Theorem 9.28 in [7].

Theorem 2.8. Suppose that* has a right identitye (so thatpe = p for all p € $*). Then
(i) thereis afinite sef, C S such thatve = x forall x € S\ F;
(i) 5* has22' right identities.

Proof. The argument for (i) is as for Theorem 2.5 starting with the maps x
(the identity) andx — xe. The proof for (i) can be modeled on the proof of Theo-
rem 2.5(ii). O

There are, of course, parallels to the corollaries 85@annot have an identity. § does
have a right identity the§ contains a subsequengs,) with the multiplicatione;e; = ¢;
whenevei < j. An example similar to the one given above shows that this assertion cannot
be improved upon.

It is natural to enquire whether there are results similar to those just obtained for left
zeros and left identities. To some extent (but not much) there are K is a left zero for
S* (thatis,zqg = z for all ¢ € §*) thenitis a left zero for all but a finite number of elements
of 85, using the above arguments and the continuity of the gnap zqg on BS. However
the hypothesis here is unnatural: could we obtain the conclusion if we knew instead that
z € §* was a left zero fors*? The answer to this question is, No. The counter-example
is a simple one. For the semigroy, min) each elemenp of N* satisfiespg = p for
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all ¢ e N*, so it is a left zero folN*, but it is not a left zero for (any element df) since
pn=nforallneN.

In the same way, it € S is a left identity forS* then it is also a left identity for all but
a finite number of elements ¢f, but the exampl€N, max shows that this need not hold
for left identities inS™*.

The Two-Function Lemma also allows us to make a deduction about commuting
elements in Ston&ech compactifications, though again we have to impose a restriction
about the elements lying ifi.

Theorem 2.9. Let S be a discrete semigroup and IatC S. Lets € S have the property
thatsp = ps for all p € A*. Then there is a finite subsétof A such thatsx = xs for all
x € A\ F. In particular, if s € S commutes with every element®fthens commutes with
almost every element 6t

Proof. The two continuous maps — xs, x — sx of BA to S coincide onA*. The
Two-Function Lemma immediately gives the conclusiom

Finally in this section we give a very weak cancellation result.

Proposition 2.10.Let S be a left cancellative discrete semigroup and det- € S*.
Suppose that there is an infinite subgebof S such thatpg = pr for all p € U*. Then

q=r.

Proof. The continuous functiong — pgq, p — pr from U to S are equal onJ*
by hypothesis. From Corollary 2.3(ii) there is= U such thatsq = sr. Sinces is left
cancellable ing S [7, Lemma 8.1], this gives the resultm

3. Auxiliary results

This section contains results which we shall need to prove our main theorem. The first
is an immediate conclusion from a well-known lemma, but is recorded here in the form in
which we shall need to use it repeatedly.

Definition 3.1. Let X3, ..., X,, be discrete spaces and #tgX; x --- x X, — Z be
a map to a topological space Then we say is -separately continuoui$ for eachk
with 1 <k <n,themapc — 6(x1, ..., Xk—1, X, Pk+1, - - ., Pn) IS CcONtinuous o X when
xieX;forl<i<k—1landp; e BX;fork+1<i<n.

A situation in which such maps arise is whéil = --- = X,, = S are all the same
semigroup, and the mapis the multiplication(x1, x2, . .., x,) — x1x2...x, In BS.

Lemma3.2. Leto1:BX1x---xBX,, > Zandby:BY1x ---x BY, — Z beB-separately
continuous maps and et be an F-space. Suppose that

el(x:L) ey Xp—1, ph» pthla ey pm) = 92()’1, ey kal, C]k, C[k+l, ceey Qn),
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wherex; € X; for 1<i<h—1and p; € BX; whenh <i <m, and y; € Y¥; for
1<i <k—1landg; € BY; whenk <i < n. Suppose there are countable séisC X,
Vi € Yi with pj € Uy, g € V. Then either there exist, € U, andg;, € V. with

el(x:L) cees Xp—1, Xh, ph+la ey pm) = 92()]19 ceey kal, C]]/(, qurla ey C]n), (1)

or else there exisp), € Uy, andyy € Vi with

01(x1, -, Xn—1, Plys Pty - Pm) = 02001 -y Yk—1 Yk Gk+1s - - -+ Gn)- 2

(The point of this lemma is that the number of variables which lie in the Xets Y
rather than in the remaindeks* or Y* increases by one.)

Proof. The hypotheses ensure that the closures of the two countable sets

01(x1, ...y Xp—1, Up, prtds oo oo Pm)s 02001, -+ Yi=1, Vi, @it 1, -+ -5 qn)

intersect. An immediate application of Theorem 3.40 of [7] assures us that either there
existx, € Uy, q,’C € V such that(1) holds, or there exisp;l e Uy, yx € Vi such that(2)
holds. O

Next we have some lemmas about semigroups.

Lemma 3.3. Let G be a discrete group. Let, ¢ € BG, and letGg C G be a subgroup.
(i) If any two ofp, ¢, pq are in Go, so also is the third.
(i) If pg € Gothereisg € G with pg~1, gq € Go.

Proof. (i) We do the case in which, pg € Go. SinceGy is a neighbourhood of bothg
andp, using right continuity we can find € Go with gg € Go. Thusq € g=1Go = Go.

(ii) As in (i), there isg € G with gg € Go. Then(pg ) (gq) = pq € Go. From (i),
pg’l € Eo. O

Lemma 3.4. Let S, T be compact Hausdorff right topological semigroups wiita 7 and
let L be a minimal left ideal of. If t € T, s € L andts € S, thenrs € L.

Proof. Takee? =e € L so thatse =s. Thents =tse € Se=L. O

Lemma 3.5. Let S, T be compact Hausdorff right topological semigroups with 7. If
peSandp ¢ K(S)thenp ¢ K(T).

Proof. This follows from Theorem 1.65in [7]. O
The proof of our Main Theorem 5.6 would be slightly easier if we were considering

a two-sided, rather than just a left, ideal. Our next lemma shows that under some
circumstances a left ideal can have a very weak right-ideal like property.
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Lemma 3.6. Let S be a compact right topological semigroup and Tebe a left ideal in
S. Suppose there is € T such thatsp ¢ K(T) forall s € S\ T. Then foreaclh € S\ T
thereisq € T withgs € T.

Proof. Suppose the conclusion false, so that theredsS \ T such that for ally € T we

havegs ¢ T, that is,Ts C S\ T. BecauseT is a left ideal inS, Ts is also a left ideal
so it contains a minimal left ideal. Therefore there is a minimal idempetémt7's, and

Te CTs CS\T.Sincee is minimal,eS is a minimal right ideal inS andeSe is a group
with identity e.

Now take anyx € T so thatex is any element okT. Thenexe € eSe, so there is
an inverselexe) 1 with (exe)(exe) 1 =e. SinceT is a left ideal,(exe) 1T < T. Thus
eT = (exe)(exe) 1T CexeT C eT. Thereforelex)(eT) = eT, andeT is a minimal right
idealinT. HenceeT C K(T), thatis,ep € K(T) forall p € T. Thus the hypothesis of the
lemmais false fos =e. O

Our next few results concern elements in Stddeeh remainders whose norm is
countable. We write
wS={p e BS: |pll is countabl¢.
Since every infinite subset ¢fcontains a countably infinite subset, it is easy to see that

Proposition 3.7. wS N $* is dense inS*.
If Sis agroupG andp € wG, then there is a countable subgra@p of G with p € G ,.

Proposition 3.8. wG is a subsemigroup o8G and if pg € wG then bothp and ¢ are
in wG. (This says that»G is a prime subsemigroup in normal terminology, but below we
shall be using ‘prime’ in a different senje.

Proof. Let G,, G, be countable groups ip, ¢, respectively. Then the group generated
by G, UG, isin pq so thatwG is a semigroup. ljpg € wG, saypq € Go whereGg is
countable, then from Lemma 3.3 we see that Gog, ¢ € g~1Go for someg € G so that
both p andg are in the closures of countable sets

Our next lemma looks rather technical. It will be required in this form, but its point is
thatwS is well-behaved under homomorphisms.

Lemma 3.9.

() LetS be an infinite discrete semigroup ar@ a discrete group. Les™ be a left
ideal in S for which $* € ST. Let: ST — BG be a continuous homomorphism.
Let S. be a countable subsemigroup $fnd write SI =35.NST. Suppose there is
g € STwith ¢(sq) € wG for all s € S.. Then there is a countable subgroGp of G
such thatp(S]) € G, ande(q), ¢(sq) € G, for all s € S,. Moreover, ifs € S, and
gs € ST theng(gs) € G..
Furthermorep(S.) € G..
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(i) Let H be a discrete group and be as in(i). If ¢: H* — BG is a continuous
homomorphism and there ig € H* with ¢(q) € oG then ¢(hg) € oG for all
h € H. Thus, withS taken to beH and S taken to beH*, it follows that, for
every countable subsemigroSp of H, there is a countable subgroup, of G for
which the the conclusions @J hold.

Proof. (i) SinceS, is countable we can find a countable subgraypof G with ¢(sq) €
G. for all s € S,.. Given p € S:.r we can lets € S, converge top (if p € S; then the
net tending top can be constant) to find that(pq) € G.. But ¢(pg) = ¢(p)e(q). SO
from Lemma 3.8p(p) andg(g) are inwG. We may therefore suppose (enlargifg if
necessary) thai(q) is in G.. Then, by Lemma 3.3, we also hayép) € G.. If in addition
gs € ST, thenp(gs)p(q) = v(q)¢(sq) € G. and we see from Lemma 3.3 thalys) € G..
(i) If H is a group,H* is an ideal inBH. If ¢ € H* and¢(q) € G, then for each
h € H we havep(gh~YHe(hg) = ¢(¢?) € wG and sop(hq) € G by Proposition 3.8. O

We next need the concept of prime element in St@esh compactifications of groups.

Definition 3.10. Let G be a group. We say thate G* is relatively prime tog € G* (for
G)if p=xqg with x € BG impliesx € G. If p is relatively prime to all elements @¥* it
is calledprime (for G).

Trivially if p is relatively prime tog then it is relatively prime tgq for all g € G. In
addition, from Lemma 3.3 we see thatlb is a subgroup o&; and p is relatively prime
to g for Go thenp is relatively prime taz for G. In fact we can say slightly more.

Proposition 3.11. Let G be a discrete group and letg be a subgroup of5. Then if
p € G is prime forGo, itis prime forG.

Proof. Let p = xq wherex € G, g € G*. From Lemma 3.3 there ig € G with
xg teGo,gq e Gp. Fromp = xg tgq we getrg~t € Go, s0x € Gog € G. O

The construction of prime elements is very easy.

Proposition 3.12. Let G be a discrete group and let C G be countable and infinite. Then
there is an infinite subseto of A such that all elements ofj are prime. The set of prime
elements o&;* is dense inG*.

Proof. From the remark about subgroups above, we need only consider the case in which
G itself is countable, sag = {g1, g2, .. .}. Chooseu1 € A arbitrarily and then inductively
choosen, 11 € A with a,,41 ¢ {g1, g2, ..., gn}{a1, a2, ..., a,}. We putdg = {a, az, ...}

This construction means that for agy# 1 in G, gAo N Ap is finite. Take p € Aj

and suppose = xq with x € BG, g € G*. Since Ag is open, for every sufficiently
small neighbourhood of x in BG we haveUq C Ag. Take anygi, g» € U, so that

219, 829 € Ag. Then we can find a neighbourhodd of ¢ with g1V, g2V C Ag, so that
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g1V, g2V C Ao. SinceV isinfinite, gog; *AoN Ao 2 g2g7 1 (g1V) Ng2V = g2V is infinite,
whenceg; = g2. ThereforeU is a singleton, and this means that G.

Since every subsét of G contains a countable subset, we see that every subggt of
of the formV* contains prime elements. Therefore the prime elements are dense.

Prime elements have a cancellation property.

Proposition 3.13. Let G be a discrete group. Lep € G* be prime,q1, g2 € wG, and
q1p = q2p. Theng1 = g2. In particular, if G is countable, prime elements are right
cancellable.

Proof. Fori = 1,2 let U; be any countable set witt/; a neighbourhood of;. By
Lemma 3.2, there are two possibilities. The first is that there gxést/; andg, € U

with gp = g4p. Then p = g~1¢,p so because is prime g~1¢, € G, and then by
Veech’s Lemma [2, 4.8.9], or by Corollary 8.2 in [#]; ¢}, = 1. ThusU1 N Uz # ¥. The

second alternative is the same with the subscripts 1 and 2 interchanged. Therefore every

neighbourhood o§1 meets every neighbourhood @f, sogi =¢2. O

Finally we make a trivial observation about elements which cannot be prime.

Proposition 3.14. If p is prime forG and S is any compact subsemigroup 6f, then
pEK(S).

Proof. For each element of the smallest ideak (S) there is a leftidentity € K (5), that
isSp=ep. O

4. Homomorphisms: An easy case

The aim in this section is to give a simple (but interesting) result which is not a special
case of our main theorem (because the target semigroup is more general). However, the
simpler arguments which suffice here follow the same pattern as the main proof.

Theorem 4.1. Assume that

() S is a discrete semigroup ansf is a two-sided ideal itBS,

(i) «G is a compact right topological semigroup which algebraically contains a
subgroupG whose identity is the identity @fG and in whichG is topologically
dense,

(i) ¢:ST— kG is a continuous homomorphism,

(iv) o(SHNG #0.

Then there is a unique homomorphisit 8S — kG with V|g+ = ¢. The mapy is
continuous orgS.

These hypotheses hold in particular wh&ns weakly left cancellative and weakly

right cancellative,ST = §* and ¢ is a continuous homomorphism frofff to G with
P(SYNG £ .
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Proof. Fix p € ST with ¢(p) € G. For eachs € S, sp € ST. Definey (s) = p(sp)o(p) L.
Theng(sp) =¥ (s)p(p).

Define ¢y to be the unique continuous extensionypfto 8S. Notice that, on taking
g € BS and lettings € S converge ta, we get from continuity thab(gp) = ¥ (¢)e(p).
Also, sinceg is a homomorphism o™ we haveg(gp) = ¢(q)¢(p). Multiplying by
¢(p)~1 on the right gives/ (¢) = ¢(g). Thusy is a continuous extension @fto .

We must show that is a homomorphism oBS. We take any; € ST. Then for any
1 € BS we havegt, rp € ST and so

@(ge(p) = @(qtp) = (@) ¢(tp) = eV (e (p).

Sinceg(p) is invertible we get(gt) = ¢(q) ¥ (1).
Now taker, ' € BS. Then

PP ) =gt = ((gDt") = p(g) ¥ (") = p(@ ¥ (O ().

This holds for any; € ST so we may in particular takg = p and cancep(p) to find
V@) =y Oy ),

so thaty is indeed a homomorphism.
Finally notice that ify»’ is any homomorphism oAS which extendg it must satisfy

@(gp) =V (gp) =¥ (V¥ (p) =¥ (@e(p)
for everyg € BS. Soy/'(¢) =Y (q). O

Examples 4.2.

() If G is any compact right topological group we may tak@ = G in hypothesis (ii)
of Theorem 4.1 and then hypothesis (iv) is automatically satisfied. Thus for a
discrete semigroups, any continuous homomorphism from any idéalin 85 to
G extends uniquely to a continuous homomorphism frento G. In particular,
any homomorphism frons™ to a finite group is the Ston&ech extension of a
homomorphism fron$ to the finite group.

(i) This example is to show that the hypotheses of the theorem can be satisfied in a
non-trivial way.
PutS=72x7Z,G =Zx7Zyand«G = 8G. The mapy : S — G which is the identity
in the first coordinate and the usual quotient in the second is a homomorphism. The
extensiony sends elements @0} x Z* to {0} x Z,. Thus ifg is V|5, ¢(S*) meets
G.Buto(S*) € G and indeed its image contains the whole®bf.

5. Homomorphisms: The hard case

It will be convenient to use the notation’ = ST N A, whensT is a given subset g8 S
andA C S. This is meant to parallel the relationshii = S* N A.

The main theorem of the paper is Theorem 5.6 below. We first need to prove a sequence
of lemmas in whichS andG are restricted to be countable.
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In the lemmas which follow we assume thfis a discrete countable semigroup and
thatG is a discrete countable group. We also assumesthit a left ideal in8S such that
s* c 8T, and thaty: ST — BG is a continuous homomorphism. In addition, we assume
that there existp € ST such that, for every € S, ¢(sp) ¢ K (¢(ST)).

We note thaps \ ST < § and hence thas' is a closedss-subset ofS.

We shall prove that there exists a unique homomorphjisis — G such thatp = v+,
wherey : S — BG denotes the continuous extensionjaf

The following lemma is the key to the whole enterprise.

Lemma 5.1. There exists an infinit& C S with p(sp) ¢ BGe(SX*p) forall s € S.

Proof. Let ¢ be an idempotent ik (sT). Then ep € K(ST. Since ¢ is a surjective
homomorphism fromsT onto ¢(ST) we see thaip(ep) € K (¢(ST)) ([8, Surjectivity
Lemma 2.3] or [7, Exercise 1.7.3]). We note that this implies th&t S, because we
are assuming that, for eache S, ¢(sp) ¢ K ((S1)). ThereforeBGy(ep) N ¢(ST) =
»(SHg(ep) (Lemma 3.4). Hence for easte S, ¢(sp) ¢ BGp(ep).

Now BGe(ep) is compact by right continuity. So givene S we can findW(s) € G
with @(sp) ¢ W(s) but BGp(ep) € W(s). Then for eacly € G, s’ € S we haves’e € ST
and

g@(s'ep) = gp(s'eep) = gp(s'e)p(ep) € BGyp(ep) € W(s).

For any giveng € G ands’ € S, the mapx — g (s’xp) is continuous orgS. So there
existsU (g, s,s’) € S with e € U(g, s, s’) andge(s'U (g, s,s’)p) € W(s). Moreover, we
can arrange that ¢ U(g, s, s") sincelU(g, s, s’) \ {s’} is again a neighbourhood ef

Now (), ;. U(g.s,s) isa G setinps\ S = S*, which is non-empty as it contaires
So we can find a countably infinite s&t < S with X* € (1, ( ,U(g,s,s") [7, Theo-
rem 3.36)).

Thus for any giveny € S, for all g € G, s’ € S andx € X* we havegg(s'xp) € W(s).
SinceW (s) is closed, we deduce th&ip(s'xp) € W (s). Consequently(sp) ¢ Go(s'xp)
as required. O

We must strengthen the propertiesXf This is achieved in the next lemma by making
it thinner.

Lemma 5.2. Enumerate the countable s@tx S x S as(g;, si, s))ico- There is an infinite
setX = {r, 2, ...} C S such that the conclusion of Lemridl holds and whem:, n > i
andm #n,

@(Sitmp) # 8i9(Sitap).

Proof. We start withX as produced in Lemma 5.1. For a givieand somey fixed in X
consider

{t € X1 p(sitop) = gip(sjtp)}.
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If this set were infinite, then continuity in threvariable would show that any of its cluster
points (which lie inX*) would violate the conclusion of Lemma 5.1, so in fact the set is
finite. The same argument shows that

{t € X: p(sitop) = g M p(sitp)}

must be finite. Therefore i, ..., t, have been chosen frod, we can find,, ;1 € X such
that, for 1<, j <n,

@(sitjp) # gi@(sitay1p),  &iw(sitjp) # @(Situs1p).

We replaceX by its subsefrs, r2, ...} to reach our conclusion.O

Lemma 5.3. Take X as in the conclusion of Lemnf@a2 Let x1, x2 € X*, y1, y2 € BG,
51,52 € S.
(i) If yap(s1x1p) = y29(s2x2p) thenxy = x2.
(i) If in addition s1 = s2, theny; = y,. (This says that fos € S andx € X, ¢(sxp) is
right cancellable in8G.)

Proof. (i) Begin by observing that the mapy, x’,x) — yp(x'xp) is B-separately
continuous fronBG x BS x BS — BG (Definition 3.1). Our proof comes from a sequence
of applications of Lemma 3.2.

Assumexy # x2. Fori = 1,2 takeU; € X with x; € U} and Uy N Uz = ¥. Writing
X ={n,1t2,...} asin Lemmab’.2, we see thatjf € Uy, t, € Uz thenm # n. We also take
anyYy, Yo € G with y; € Y1, yo € Y.

Starting from the equation given in (i), Lemma 3.2 and symmetry tell us that we may
suppose that there exist € Y1, y; € Y, with

a19(s1x1p) = yo@(s2x2p).

In the same way, continuity in thevariable on the left and the variable on the right now
yields two possibilities. The first, that there exigte U, y; € Y2 with

a1p(siu1p) = yp¢(s2x2p),

or

¢((s1u1)p) = ag vy e(s2x2p),

contradicts the conclusion of Lemma 5.1, so is impossible. The second must therefore hold,
that is, there exist; € U1, az € Y2 with

a1(s1xyp) = azp(s2x2p). (*)

Herex] € S would again contradict the conclusion of Lemma 5.1x$e U;'.

The next step requires a little more care. l(eflaz,sl,sz) be therth triple in the
enumeration oG x S x §in Lemma 5.2. Puk, = {#,: n > r} and notice thak = X*.
Thenx] e Uf N X} = (U1 N X,)* andxz € (U2 N X,)*. Applying Lemma 3.2 to X)
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using continuity in ther variables gives two alternatives again. The first is that there exist
tm € U1 N X, (which means in particular that > r) andx), € U> N X, with

a1 (s1tm p) = a29(s2x3P).
Again by Lemma 5.1 this is impossible unlesse G, and that means;, € U, N X, say
x5 =t, with n > r. But that possibility is ruled out by the propertiesXfin Lemma 5.2.
The second alternative simply interchanges the subscripts 1 and 2, so is equally impossible.

This contradiction tells us that = x2, and (i) is proved.

(ii) If we start with s1 = s2 = s in the equation in (i), then] becomesiip(sx;p) =
azp(sxz2p). By (i), this implies thatc; = x2. SinceG is a group we may apply Veech’s
Lemma ([2, Lemma 4.8.9] or [7, Corollary 8.2]) to find tthlaz =1, 0ra; =ap. Thus
Y1 intersects’>, which means that every neighbourhoodypfmeets every neighbourhood
of yo. Thusy; = y2. O

The result which we are moving towards is that two elements of the {gump) are
relatively prime:

Lemma 5.4. Let s1,52 € S, x € X*. Then BGo(s1xp) N BGe(s2xp) # ¥ implies
@(s1xp) € Go(s2xp).

Proof. The hypotheses tell us that there asg y2 € BG with y1¢(s1xp) = y20(s2xp).
Following the proof of Lemma 5.3(i) as far as)(providesai, a2 € G such that
a1p(s1x1p) = axp(s2xp), for somex] € S (or a corresponding formula with the
subscripts 1 and 2 interchanged). Lemma 5.3(i) says #jat x, and the result
follows. O

We are now in a position to complete the proof for countable semigroups.
Lemma 5.5. There is a unique homomorphigi S — G such thaty | ¢+ = ¢.

Proof. TakeX asinLemma5.2. Fix € X* andsg € S. For anys € S write
Vis)={ve s vsest].

Our hypotheses imply thap ¢ K (ST for all s € S, for otherwisep(sp) € p(K (ST)) =
K (¢(ST)) since a surjective homomorphism ST — ¢(ST) preserves smallest ideals ([8,
Surjectivity Lemma 2.3] or [7, Exercise 1.7.3]). Lemma 3.6 therefore tells usithatis
non-empty. Moreovery (s) = SN M), cq st{v € BS: vs # a}. Now {v € BS: vs #a} is
clopen ings for eacha € S. SincesT is a closed5s-subset of3 S, it follows that V (s) is
a closedGs-subset o8 S.

Now for anyv € V (s) we havevs € sT and therefore

@(vs)@(soxp) = @(vssoxp) = (V)@ (ss0xp).

ThusGo(soxp) N Ge(ssoxp) # ¥. From Lemma 5.4 there is an element®fwhich we
denote by (s) for which

p(ssoxp) = ¥ (s)g(soxp);
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thusy : S — G. By Lemma 5.3(ii) the last equation determing&) uniquely. Lety be
the unique continuous extensionfto 8S.

Now let ¢ be any element of'. In the last equation we let in S converge tog.
Continuity gives us

@(gsoxp) = ¥ (q)¢(soxp).
Sinceg is a homomorphism o™ we also haver(gsoxp) = ¢(¢)¢(soxp), and we may
cancek (soxp) (Lemma 5.3) to obtainy (¢) = ¢(q), SO thaty| gt = ¢|t.
We must show that is a homomorphism. First for any e ST and anys € S, either
gs € ST orgs € S. In the former case

Y (gs)g(soxp) = p(qs)g(soxp) = p(gssoxp) = ¢(q)¢(ssoxp)
=Y (@)Y ()¢(soxp).

In the second

Y (gs)p(soxp) = ¥ (gs)¢(soxp) = ¢(gssoxp) = ¢(q)@(ssoxp)
=Y (@)Y (s)p(soxp).

Again from Lemma 5.3 we deduce thatgs) = v (q)¥ (s). Now givens, s’ € S, for any
v € V(s) bothv, vs € ST (thoughvs may not be inV (s)), so that

Y)Y (ss) =9 (vss") =Y W)Y () = Y)Y ()Y (s).
This means that the continuous maps (define@ &

x> Y OYss), x> Y)Y )P

coincide on the seV (s), which is a closedss-subset ofgS. By Corollary 2.3(i) to the
Two-Function Lemma, these maps are equal on a non-empty open sulpsetS6 there
existsx € S such that

Y)Y (ss") = Y ()Y ()P (s)
and sincey (x) € G it can be cancelled to yield that is a homomorphism.
To see thaty is unique, lety’: S — G be any homomorphism for whictt’| g+ = ¢.
Theng(ssoxp) = ¥/ (ssoxp) = ¥/ ()Y (soxp) = ¥/ (s)p(soxp) and soy’ = . O

We can now prove our second main result.

Theorem 5.6. Let S be a discrete semigroup arl be a left ideal in8S with s* < ST,
and letG be a discrete group. Let: ST — BG be a continuous homomorphism with the
properties

(i) thereisq € ST such thaip(sq) € wG forall s € S,

(ii) for each countable subs&g of S there exist a countable subsemigratpof S and

pesSh=S8TNS. with So S, ande(sp) ¢ K (o(S])) for all s € S..

Then there exists a unique homomorphigms — G such thaty = /| st.

We note that

(a) if G is countable thelfi) is always satisfied

(b) if S is countable theiii) need only be checked whéf= S, = S.
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Proof. Let Sop be any countable subset 6f and letS. be the countable subset &f
guaranteed by hypothesis (ii). By Lemma 3.9, there is a countable subgiowb G

such that(p(S;r) C G.. It follows from Lemma 5.5 that there is a unique homomorphism
V. :S. — G whose continuous extensiah, : S. — BG agrees withy on S:.r. Since the
union of any two such semigroups is contained in a third, and the union of all of them
is S itself, we easily find a uniqués defined onS whose extension to S agrees with

@ on everySI, and so or J, SI = wS. SincewS is dense i8S, it follows that the two
continuous mapg andg agree on the whole ¢S. Uniqueness is clear, and Theorem 5.6
is proved. O

Remark 5.7. There are two troublesome hypothesesin Theorem 5.6. The first is(thiat
should contain elements a@fG. The other is the existence pfwith ¢(sp) ¢ K(<p(S:.r) for
some semigrougs.. The first is certainly necessary forto arise as the extension of a
homomorphism) from S to G. To see this, simply observe thatjf: S — G theny (5*)
must contain cluster points of setgA) with A C S countable.

The second is necessary too, but needs a little more argument. For any homomorphism
¥ S — G for which ¢ (S) is infinite, we can find a countable subsemigrdiggor which
the groupGo generated by (Sp) is infinite (and countable). Suppose that for every Sg
there iss € So with ¥ (s)¥ (p) = ¥ (sp) € K(W(Sg)). This implies thaty (s)v¥ (p) is not
prime in 8G (Proposition 3.14) and so that(p) is not prime. Buty (S3) = ¥ (So)* is a
clopen subset of7; and so contains prime elements (Proposition 3.12).

6. Corollaries and comments

We now consider some corollaries to the main theorem. First we look at the case in which
S is also a group. We show that, @ and H are discrete groups, then every continuous
surjective homomorphism frorf* to G* is the extension of a surjective homomorphism
from H to G. This is the only result in this section that requires no countability assumptions
aboutG and which does not use Theorem 5.6.

Lemma 6.1. Let S be a discrete semigroup. Suppose that= vy, wherex, y € 85 and
u,v € wS. Then there exists € S such thatsx € (85)y or there exists € S such that

ty € (BS)x.

Proof. Let U andV be countable subsets Sfsuch that/ e u andV € v. Sinceux € Ux
andvy € Vy, it follows from Lemma 3.40 in [7] thaix € Vy C (8S)y for somes € U, or
elsery e Ux C (BS)x forsomer e V. O

Theorem 6.2.Let H, G be discrete groups, and let: H* — G* be a continuous
homomorphism for which(H*) contains an element ofG which is prime in8G. (This is

true in particular whenp(H*) = G* (by Proposition3.12).)Theng = |5+ for a unique

homomorphismy : H — G (and s is surjective ify is surjective.
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Proof. Suppose thap € wG is prime in G and thaty(q) = p for someq € H*. For
anys € H we havep(gs Yo (sq) = p?. It follows from Proposition 3.9 thag(gs—1) and
¢(sq) are inwG. It then follows from Lemma 6.1 that = x¢(sq) for somex € 8G, or
¢(sq) = yp for somey € SG.

Since p is prime, the first possibility implies that € G. We shall show that the
second possibility implies that € G. To see this, observe tha(sq) = yp implies that
@(gs~YHyp = p? and hence thap(gs—1)y = p (by Proposition 3.14). Sincg is prime,
this implies thaty € G.

We can thus defing : H — G such thatp(sq) = ¥ (s)p for everys € H. It follows
from continuity thatp(vg) = ¢(v)p = ¥ (v) p for everyv € H. By Proposition 3.14 we
then havep(v) = ¥ (v) for everyv € H*.

To see thatyy is a homomorphism, let € H. Then(¢)p is also a prime element
of BG and is also inwG. By what we have already proved, with(z) p in place of p,
there is a function/, : H — G such thatp(stq) = ¥, (s)@(tq) = ¥ (s)y¥(t) p for every
s € H.We also have(stq) = ¥ (st)p and soyr (st) = ¥, (s)y(¢) [7, Corollary 8.2]. Since
¥, = ¢ = ¢ on H*, it follows from Corollaries 2.3 that, (s) = v (s) for all but a finite
number of values of. So vy (st) = ¥ (s)y (¢) for all but a finite number of values of
By continuity we have) (vt) = v (v)y(¢) for everyV € H* and everyt € H. If t' € H,
we can substitute:’ for v in this equation and deduce from Corollary 8.2 in [7] that
V(') =y )y @).

To show thaty is unique, suppose thét : H — G is also a homomorphism for which
Y’ =@ on H*. For anys € H, we havey (sp) = ¥/(sp) and soy (s)¥ (p) = ¥/ (s)¥ (p).
Thusy (p) = v¥/(p), by Corollary 8.2 in [7].

Finally, we suppose that is surjective and deduce thatmust be surjective. For every
infinite subsetB of G, we must have/ (H) N B # (. Otherwise there would be an element
in BNG*, butnotiny (H) =y (BH). SoG \ v (H) is finite. By the pigeon hole principle,
foranyu € G, there exists € v (H) such thaus =t € y(H). Sou e (H). O

Corollary 6.3. Let G and H be discrete groups and lei: H* — G* be a continuous
homomorphism. I$ is not the extension of a homomorphism fréfio G, theng(H*) is
nowhere dense iG*.

Proof. If ¢(H™) contains a non-empty open subset®f, it contains a prime element of
oG (by Proposition 3.12). O

Our next theorem shows that, @ and H are discrete groups an@ is countable,
then any continuous injective homomorphism fra to G* is the extension of a
homomorphism fronH to G.

Theorem 6.4.Let G be a countable group and lef be a cancellative semigroup.
Then every continuous injective homomorphism fi§imto G* is the extension of a
homomorphism fron§ to G.
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Proof. Let Sp be a countable subsemigroupfwe note that there exisgse S; \ K (S3)
(by Corollary 6.33 in [7]). Now, ifs € So, thensp ¢ K(S3). To see this, note that
sp € K(S3) implies thatsp = spg for some minimal idempotent in S5 and hence that
p=pq € K(S3) (by Lemma 6.28 in [7]).

If 9(§*) — G™* is a continuous injective homomorphism, thedefines an isomorphism
from S5 to ¢(Sg). Thus, for every € So, p(sp) ¢ K (¢(Sg)). It follows from Theorem 5.6,
with ST = §*, thatg is the extension of a homomorphism § — G. O

Theorem 6.5. Let G be a countable group and Iétbe a cancellative discrete semigroup.
Then any continuous injective homomorphism frgto G is the extension of an
injective homomorphism froito G.

Proof. Lety:BS — BG be a continuous injective homomorphism. Exactly as in the proof
of Theorem 6.4, wittsT = A5, we can show that there is a homomorphigms — G such
thaty = . It is obvious thaty is injective. O

Now we consider even more special cases. For simplicity we shall supposé ikat
countable—that saves us having to add hypothesis 5.6(i) every time. Our next result is
an extension of the main theorem of [11] which says that any homomorphismgkom
to N* must have finite image. A more general conclusion was given in [7], but this was
still restricted to homomorphisms with domail¥ and ranges ir8G, whereG was a
countable group embedable in the circle.

For the proof we shall need the concept of thpological centerA(T) of a compact
right topological semigrouf'’:

A(T)={t € T:s > tsis continuouk

If ¢:7T1 — T is a continuous surjective map between compact right topological
semigroups thew(A(T1)) € A(T>) [8, Surjectivity Lemma 2.3]. A discrete semigroup
S is always in the topological center gfS.

Theorem 6.6. Let G be a countable discrete group and I&tbe a countable discrete
semigroup. Then, for any continuous homomorphisiS — G*, ¢(S) N K (p(BS)) £ ¢
and each maximal group iR (¢(85S)) is finite. Every element in(S) has finite order.

Proof. The imagep(BS) is a compact semigroup with a dense topological center. We
apply Lemma 5.5 witlsT = 8S. We takep to be any element of. Then sincey does not
arise from a map/ : S — G, there must be € S with ¢(sp) € K(p(B8S)). Sincesp € S,
@(sp) is in the topological center af(8S). This implies thatp(sp) K (¢(BS))¢(sp) is
compact. Since it is a maximal group in the minimal ideap@8.5), it is a compact group.
But compact groups ir-spaces are finite (see, for example, [11, p. 66]).

Now considerP = {p, p2, p3,...}. We can equally well apply what we have just
established to the semigroupand the homomorphism restricted tog P. We conclude
that there is an elemenbf P with ¢ (sp) € K (¢(B P)); thatis, for some integet we have
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e(p)™ = p(p™) € K(BP). We deduce from this that(p)™ is in some finite group and so
there isn for which ¢ (p)™" is the identity of that group. Thug(p) has finite order. O

Corollary 6.7. Let G be a countable group and lep: BN — G* be a continuous
homomorphism. Thep(BN) is finite andp(N*) is a finite group.

Proof. This follows easily from Theorem 6.6.0

Corollary 6.8. Let G be a countable group and |€t be a compact subsemigroupGf.
Then every element af(C) has finite order.

Proof. Let p € A(C). The mappingy:N — G* defined byg(n) = p" extends to a
continuous homomorphism froN into G*. It follows from Corollary 6.7 thaip(N)
is finite. O

Theorem 6.6 also simplifies whehis a group.

Corollary 6.9. Let G be a countable group and |&f be any group. lfp: BH — G*is a
continuous homomorphism(B H) is a finite group.

Proof. We first consider the case in whicH is countable. By Theorem 6.6(a) €
K (p(BH)) for somea € H. For everyx € H we havep(x) = ¢(a)¢(a xa YHp(a). Our
claim then follows from the fact that(a)e(8(H))¢(a) is a finite group.

In the general case, we note thatHy) is finite for every countable subgroufy of H.
It follows that there must be a finite subgebf G such thaty(Hp) € F whenevetHy € H
is countable. Otherwise, there would be a sequéhgg, < of countable subsets @f for
which ¢ (|, ey Hr) would be infinite. Sap(H) is finite. O

The question of whether there exist elements of finite order (apart from idempotents of
course) in anyBG appears to be extremely difficult. Zelenuk has shown that; i§ a
countable torsion free group, th&r* contains no non-trivial finite subgroups [13]. This
was generalized in [9]. In this paper, the finite subgroupS ofvere characterized, where
G denoted a countable group. These all have the {Gyp, whereGy is a finite subgroup
of G andp is an idempotent ir;* which commutes with the elements@p. There are no
known examples of torsion free grougsfor which G* contains elements of finite order
which are not idempotent.

If an elemenyy € G* does have finite order, then the mip—> G defined byy (n) =
4" naturally extends to a homomorphism frg@i¥ to the finite semigroup generated py

Here is another corollary to Theorem 6.6.

Corollary 6.10. Let G be a countable group. L&lN, max) be the selN of integers with
the maximummultiplication. Then there is no continuous homomorphist8N — BG
which is injective orN.
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Proof. By Theorem 6.6¢(n) € K (p(8N)) for somen € N. If r € N andr > n, then
o) =pm)er)pn). Sincep(n)p(BN)p(n) is finite, ¢ (BN) must be finite. O

Definition 6.11. Let p and g be idempotents in a semigroup. We say thpak ¢ if
pPq=49gp =1Dp-

Corollary 6.12. Let G be a countable group and Iét be a compact subsemigroup@f.
ThenA(C) cannot contain an infinite decreasing sequence of idempotents.

Proof. If (pn).eny Were an infinite decreasing sequence of idempotentd (@), the
mapn — p, would extend to a continuous homomorphism frgaN, max into G*,
contradicting Corollary 6.10. O

Corollary 6.13. Suppose that; and H are countable groups and that: H* — G* is a
continuous homomorphism which is not the extension of a homomorphisnHfrianG.
Then, for every, y € H*, p(xy) € K (p(H™)). In particular, every idempotent in(H*)
is minimal ing (H*).

Proof. By Theorem 5.6, there existse H for which ¢(sy) € K(p(H*)). Sop(xy) =
@(xs He(sy) € K (p(H")).

Now let ¢ be an idempotent inp(H*). Then ¢~1({g}) is a compact semigroup
and therefore contains an idempotent(by Theorem 2.5 in [7]). Sq; = ¢(pp) €
K(p(H"). O

Corollaries 6.7 and 6.8 tell us that wheh is a discrete groupG* cannot contain
subsemigroups of certain kinds. There is another result of this type in the literature: for
a certain restricted class of groups there cannot be an infinite compact right-zero
subsemigroup irG* [3, Theorem 8.4]. We have been unable to obtain this conclusion
from Theorem 5.6.

Remark 6.14. There can be non-trivial homomorphis@sS* — G* which do not arise
from homomorphisms fron§ to G, even whenS is also a group. Consider the right-
zero semigrou = {z1, z2} with two elements. Defing:Z* — Z by ¢(Z%) = {z1},
¢(Z*) = {z2}. Theng is a continuous homomorphism. It is easy to find copies ofside
G* for any infinite groupG (for K (G*) contains infinite right-zero semigroups). However
there is no extension af to B7Z because the image gfZ must be infinite and any closed
infinite set must have“2elements.

Of course, in this cas@,(S*) = K (¢(5%)).

This example also shows that the observation in Example 4.2(i) that any homomorphism
from S* to a finite group is generated by a homomorphism fito the group, does not
extend to finite semigroups.
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