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Abstract

This papers contains two main results. The first is a theorem about continuous functions from a
countably compact Hausdorff space into a compactF -space, which has applications to the algebraic
properties of the Stone–Čech compactificationβS of a discrete semigroupS. The second main result
shows that many continuous homomorphisms fromS∗ to G∗ have to arise from homomorphisms
mappingS toG, whereS is a discrete semigroup andG is a discrete group andS∗ denotesβS \ S.
The second result is related to the first because it uses it at a crucial point. 2000 Published by
Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper is devoted to two main results. The first—and the less difficult of the two—
says that sometimes extensions of maps which take their values inF -spaces (see [5,12]
or [7]) are almost unique. To make this precise, letD be a discrete space, letβD be its
Stone–̌Cech compactification, and writeD∗ = βD \D.

Lemma 1.1. LetD be discrete and letZ be a Hausdorff F-space. Letϕ1, ϕ2 :βD→Z be
two continuous functions which coincide onD∗. Thenϕ1(d)= ϕ2(d) for all except a finite
number of values ofd ∈D.

A number of applications of this result are given to the theory of compact semigroups
βS. If S is any discrete semigroup,βS has a unique semigroup structure in which it
becomes aright topological semigroup(that is, the mapsp→ pq are continuous for every
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q ∈ βS) and in which the mapsq → sq are continuous for everys ∈ S. (We refer the
reader to [7] for details of this construction and for the theory ofβS. General results about
compact semigroups can also be found in [7] and also in [2].) We shall, for example, show
that if S∗ has one right zero then it has infinitely many, and we give a precise cardinal
(Theorem 2.5).

The form of the Two-Function Lemma we establish is actually more general than the
above special case (see Lemma 2.2). However, it does not tell us when a mapϕ :D∗ → Z

does possess an extension toβD. Our second main result, Theorem 5.6, provides a context
in which extensions of continuous homomorphisms automatically exist. The Two-Function
Lemma plays a small but vital role in the proof: it is used to establish a key algebraic
property of extensions, and thence uniqueness.

We shall not state Theorem 5.6 in the introduction, as its statement is rather complicated;
but it has several interesting corollaries and we shall cite one or two of these. For example,
it implies that, ifS is any cancellative discrete semigroup and ifG is any countable discrete
group, then any continuous injective homomorphismϕ :S∗ →G∗ has the formϕ =ψ |S∗ ,
whereψ :S→G is a homomorphism andψ :βS→ βG is its continuous extension. It also
implies that, ifG is any countable discrete group and ifϕ :βN→G∗ is a continuous ho-
momorphism, thenϕ(N∗) is a finite group. The latter extends a result in [11], which stated
that a continuous homomorphismϕ :βN→N∗ must have finite range. Further theorems of
a type similar to ours can be found in Chapter 10 of [7]; but these are less general. For ex-
ample, in [7] it is onlyinjectivehomomorphisms fromS∗ toG∗ which are considered, and
these are restricted to the case in whichS andG are countable and embedable in the circle.

Section 3 collects preliminary results for use in the proof of the main theorem. Two ideas
may be worth mentioning here. The setωG of elements inβG with countable dispersion
character (that is, which are represented by ultrafilters which contain a countable set) is
a prime subsemigroup ofβG (Proposition 3.8). The concept of prime element ofβG is
introduced;p is prime if and only if p = xq , with x ∈ βG andq ∈G∗, implies thatx ∈G.
These elements play a key role in the proof.

Section 4 contains a result about homomorphismsϕ :S∗ → κG whereκG is a more
general compactification of a group. However, this generality is achieved only at the
expense of a very strong hypothesis, thatϕ(S∗) contains an element ofG.

Section 5 contains the main theorem, Theorem 5.6, and Section 6 presents some of its
corollaries.

We close this introduction with some notes on background knowledge. Information on
F -spaces and Stone–Čech compactifications can be found in [5,12,7]; the last reference is
the best for the theory of Stone–Čech compactifications of discrete semigroups. We denote
the closure of a setA byA; if A is a subset of a discrete spaceD thenA is homeomorphic
to βA, and we shall often identify the two.

We shall need some facts about cancellation in semigroups. A semigroup isleft
cancellativeif st = su with s, t, u ∈ S implies t = u. It is easy to show that ifS is left
cancellative andsq = sr with s ∈ S andq, r ∈ βS thenq = r. A semigroup is weakly left
(respectively right) cancellative if{t ∈ S: st = u} (respectively{t ∈ S: ts = u}) is finite
for eachs, u ∈ S. Weak left cancellativity is equivalent toS∗ being a left ideal inβS.
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Weak left and weak right cancellativity together imply thatS∗ is a two-sided ideal inβS.
In particular, ifG is a group thenG∗ is a two-sided ideal inβG.

Every compact right topological semigroupS has minimal left and minimal right ideals,
and the union of all minimal left or minimal right ideals is the unique smallest ideal
K(S). Each minimal left idealL contains idempotentse, and for any suche we have
Se= Le= L. MoreovereSe= eLe is a group withe as its identity.

Countability assumptions play an essential role in Theorem 5.6. One reason for this is
the frequency with which we use a theorem due to Frolik: IfA andB are countable subsets
of anF -space, thenA ∩ B 6= ∅ implies thatA ∩ B 6= ∅ or A ∩ B 6= ∅. (A proof is given
in [6, Lemma 1.1].)

2. The Two-Function Lemma and simple applications

Lemma 2.1. Let (an), (bn) be two sequences in a compact HausdorffF -spaceZ such that
an 6= bn for all n. Then there is a strictly increasing sequence(nk) such that

{ank : k = 1,2, . . .} ∩ {bnk : k = 1,2, . . .} = ∅.

Proof. In a compact HausdorffF -space, a sequence with an infinite number of distinct
terms has 2c cluster points (see [12, Proposition 1.64] or [5, Exercise 14N5]), and so in
particular it does not converge.

If (an) has a constant subsequence, sayanr = a for all r, then since(bnr ) cannot
converge toa it is easy to find further subsequences(ank ), (bnk ) for which the conclusion
holds. Using symmetry we may assume that neither(an) nor (bn) has a constant
subsequence. Then, using an inductive construction we may replace our original sequences
by subsequences(an), (bn) for whicham 6= bn for all m, n.

We now construct a subsequence(bnr ) of (bn) by a diagonal argument. Sincebn→ a1

is false, we may find a subsequence of(bn) which does not havea1 as a cluster point. Since
this subsequence does not converge toa2, we may find a further subsequence of the first
subsequence which does not havea2 as a cluster point. And so on. The diagonal sequence
(bnr ) does not have any ofa1, a2, . . . as a cluster point, and sinceam 6= bn for all n we have

{an: n= 1,2, . . .} ∩ {bnr : r = 1,2, . . .} = ∅,
and in particular

{anr : r = 1,2, . . .} ∩ {bnr : r = 1,2, . . .} = ∅.
We repeat the argument starting with the sequences(anr ), (bnr ) and interchanging the roles
of thea’s andb’s. We find subsequences(anrs ), (bnrs ) with

{anrs : s = 1,2, . . .} ∩ {bnrs : s = 1,2, . . .} = ∅.
Of course, we still have

{anrs : s = 1,2, . . .} ∩ {bnrs : s = 1,2, . . .} = ∅.
The conclusion of the lemma follows immediately from Theorem 3.40 in [7].2
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The Two-Function Lemma 2.2. LetX be a countably compact Hausdorff space andY a
compact HausdorffF -space. Letϕ,ψ :X→ Y be continuous mappings. Then

X0=
{
x ∈X: ϕ(x) 6=ψ(x)}

is countably compact.

Proof. We need to show that any sequence(xn) inX0 has a cluster point inX0. Let (nk) be
the sequence produced by Lemma 2.1 when we takean = ϕ(xn), bn =ψ(xn). By countable
compactness,(xnk ) has a cluster pointx in X. Thenϕ(x) is a cluster point of(ank ) and so
is different from the cluster pointψ(x) of (bnk ). 2

Our first corollaries are simple deductions from the lemma (the second is Lemma 1.1).

Corollaries 2.3.
(i) LetX be a countably compact Hausdorff space. Ifϕ = ψ on aGδ subsetE of X,

which is the intersection of a countable family of its closed neighborhoods, then
ϕ =ψ on some neighborhood ofE.

(ii) If X = βD for some discrete spaceD andϕ = ψ onD∗ thenϕ(x)= ψ(x) for all
except a finite number ofx ∈X.

Proof. (i) Let E =⋂nWn, whereWn is a closed neighborhood ofE andWn+1⊆Wn for
eachn. Suppose there exists in eachWn somexn with ϕ(xn) 6= ψ(xn). Thenxn ∈X0 for
eachn but all the cluster points of(xn) are inE and therefore not inX0.

(ii) Here X0 ⊆ D, and the only countably compact subsets of a discrete space are
finite. 2

In the rest of this sectionS is a discrete semigroup andβS has its usual structure as a
compact right topological semigroup.

Definition 2.4. Let p ∈ S∗. Thenorm‖p‖ of p is min{card(U): U ∈ p}.

Theorem 2.5. Suppose thatS∗ has a right zeroz (so thatpz = z for all p ∈ S∗, but we
are not requiringS∗ to be a semigroup here). Then

(i) there is a finite setFz ⊆ S such thatxz= z for all x ∈ βS \Fz;
(ii) S∗ has22‖z‖ right zeros.

Proof. The two mappingsx 7→ z (the constant map) andx 7→ xz (multiplication on the
right by z) are both continuous fromβS to βS and are equal onS∗. By Corollary 2.3(ii),
there is a finite setFz such that the maps are equal onβS \ Fz. That proves (i).

ChooseU ∈ z with |U | = ‖z‖. For eachx ∈ S \ Fz, let Ux = {u ∈ U : xu = u}.
(ConceivablyUx is empty.) It follows from the de Bruin–Erdős Lemma (Theorem 9.2
of [4] or Theorem 3.35 of [7]) thatUx ∈ z. The familyF = {Ux : x ∈ U ∩ (S \Fz)} has the
property that the intersection of any finite subfamily is both a member ofz and a subset
of U , and therefore any such intersection has cardinality‖z‖. By Theorem 7.7 of [4] (or
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Theorem 3.62 of [7]), there are 22‖z‖ ultrafilters which refineF . Letq be such an ultrafilter.
For eachx ∈ U ∩ (S \ Fz) and eachu ∈ Ux , we havexu= u. Allowing u to converge toq
and then allowingx to converge toz shows thatzq = q . Thus, for everyy ∈ S∗, we have
yq = yzq = zq = q . 2
Corollary 2.6. S∗ cannot have a zero(for any discrete semigroupS).

Proof. If S∗ did have a (two-sided) zero it would also be the unique right zero and this is
impossible. 2
Corollary 2.7. If S∗ has a right zero thenS must contain a sequences0, s1, s2, . . .with the
productsisj = sj wheneveri < j .

Proof. With the notation of the proof of Theorem 2.5, takes0 ∈ S \ Fz, s1 ∈ Us0, s2 ∈
Us0 ∩Us1, and so on. Our requirements are satisfied.2

We cannot improve on Corollary 2.7. To see this, letS be the semigroup generated by a
sequence{s1, s2, . . .} subject to the relationssisj = sj wheni < j . All elements ofS are of
the formsi1si2 . . . sik wherei1> i2> ik. If z is any cluster point of(sn), then whenn> i1
we havesi1si2 . . . sik sn = sn so thatsi1si2 . . . sik z= z, and thereforez is a right zero forβS
(anda fortiori for S∗).

The last few results have parallels for right identities. Part (ii) of the following theorem
is similar to Theorem 9.28 in [7].

Theorem 2.8. Suppose thatS∗ has a right identitye (so thatpe = p for all p ∈ S∗). Then
(i) there is a finite setFe ⊆ S such thatxe= x for all x ∈ βS \Fe ;
(ii) S∗ has22‖e‖ right identities.

Proof. The argument for (i) is as for Theorem 2.5 starting with the mapsx 7→ x

(the identity) andx 7→ xe. The proof for (ii) can be modeled on the proof of Theo-
rem 2.5(ii). 2

There are, of course, parallels to the corollaries too.S∗ cannot have an identity. IfS∗ does
have a right identity thenS contains a subsequence(en) with the multiplicationeiej = ei
wheneveri < j . An example similar to the one given above shows that this assertion cannot
be improved upon.

It is natural to enquire whether there are results similar to those just obtained for left
zeros and left identities. To some extent (but not much) there are. Ifz ∈ S is a left zero for
S∗ (that is,zq = z for all q ∈ S∗) then it is a left zero for all but a finite number of elements
of βS, using the above arguments and the continuity of the mapq 7→ zq on βS. However
the hypothesis here is unnatural: could we obtain the conclusion if we knew instead that
z ∈ S∗ was a left zero forS∗? The answer to this question is, No. The counter-example
is a simple one. For the semigroup(N,min) each elementp of N∗ satisfiespq = p for
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all q ∈ N∗, so it is a left zero forN∗, but it is not a left zero for (any element of)N since
pn= n for all n ∈N.

In the same way, ife ∈ S is a left identity forS∗ then it is also a left identity for all but
a finite number of elements ofS, but the example(N,max) shows that this need not hold
for left identities inS∗.

The Two-Function Lemma also allows us to make a deduction about commuting
elements in Stone–̌Cech compactifications, though again we have to impose a restriction
about the elements lying inS.

Theorem 2.9. Let S be a discrete semigroup and letA ⊆ S. Let s ∈ S have the property
that sp = ps for all p ∈A∗. Then there is a finite subsetF of A such thatsx = xs for all
x ∈A \F . In particular, if s ∈ S commutes with every element ofS∗ thens commutes with
almost every element ofS.

Proof. The two continuous mapsx 7→ xs, x 7→ sx of βA to βS coincide onA∗. The
Two-Function Lemma immediately gives the conclusion.2

Finally in this section we give a very weak cancellation result.

Proposition 2.10. Let S be a left cancellative discrete semigroup and letq, r ∈ S∗.
Suppose that there is an infinite subsetU of S such thatpq = pr for all p ∈ U∗. Then
q = r.

Proof. The continuous functionsp 7→ pq , p 7→ pr from βU to βS are equal onU∗
by hypothesis. From Corollary 2.3(ii) there iss ∈ U such thatsq = sr. Sinces is left
cancellable inβS [7, Lemma 8.1], this gives the result.2

3. Auxiliary results

This section contains results which we shall need to prove our main theorem. The first
is an immediate conclusion from a well-known lemma, but is recorded here in the form in
which we shall need to use it repeatedly.

Definition 3.1. Let X1, . . . ,Xn be discrete spaces and letθ :βX1 × · · · × βXn→ Z be
a map to a topological spaceZ. Then we sayθ is β-separately continuousif for eachk
with 16 k 6 n, the mapx 7→ θ(x1, . . . , xk−1, x,pk+1, . . . , pn) is continuous onβXk when
xi ∈Xi for 16 i 6 k − 1 andpi ∈ βXi for k + 16 i 6 n.

A situation in which such maps arise is whenX1 = · · · = Xn = S are all the same
semigroup, and the mapθ is the multiplication(x1, x2, . . . , xn) 7→ x1x2 . . . xn in βS.

Lemma 3.2. Letθ1 :βX1×· · ·×βXm→Z andθ2 :βY1×· · ·×βYn→ Z beβ-separately
continuous maps and letZ be an F-space. Suppose that

θ1(x1, . . . , xh−1,ph,ph+1, . . . , pm)= θ2(y1, . . . , yk−1, qk, qk+1, . . . , qn),
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where xi ∈ Xi for 1 6 i 6 h − 1 and pi ∈ βXi when h 6 i 6 m, and yi ∈ Yi for
16 i 6 k − 1 andqi ∈ βYi whenk 6 i 6 n. Suppose there are countable setsUh ⊆ Xh,
Vk ⊆ Yk with ph ∈Uh, qk ∈ V k . Then either there existxh ∈Uh andq ′k ∈ V k with

θ1(x1, . . . , xh−1, xh,ph+1, . . . , pm)= θ2
(
y1, . . . , yk−1, q

′
k, qk+1, . . . , qn

)
, (1)

or else there existp′h ∈ Uh andyk ∈ Vk with

θ1
(
x1, . . . , xh−1,p

′
h,ph+1, . . . , pm

)= θ2(y1, . . . , yk−1, yk, qk+1, . . . , qn). (2)

(The point of this lemma is that the number of variables which lie in the setsX or Y
rather than in the remaindersX∗ or Y ∗ increases by one.)

Proof. The hypotheses ensure that the closures of the two countable sets

θ1(x1, . . . , xh−1,Uh,ph+1, . . . , pm), θ2(y1, . . . , yk−1,Vk, qk+1, . . . , qn)

intersect. An immediate application of Theorem 3.40 of [7] assures us that either there
existxh ∈ Uh, q ′k ∈ V k such that(1) holds, or there existp′h ∈ Uh, yk ∈ Vk such that(2)
holds. 2

Next we have some lemmas about semigroups.

Lemma 3.3. LetG be a discrete group. Letp,q ∈ βG, and letG0⊆G be a subgroup.
(i) If any two ofp, q , pq are inG0, so also is the third.
(ii) If pq ∈G0 there isg ∈G with pg−1, gq ∈G0.

Proof. (i) We do the case in whichp, pq ∈G0. SinceG0 is a neighbourhood of bothpq
andp, using right continuity we can findg ∈G0 with gq ∈G0. Thusq ∈ g−1G0=G0.

(ii) As in (i), there isg ∈ G with gq ∈ G0. Then (pg−1)(gq) = pq ∈ G0. From (i),
pg−1 ∈G0. 2
Lemma 3.4. LetS, T be compact Hausdorff right topological semigroups withS ⊆ T and
letL be a minimal left ideal ofS. If t ∈ T , s ∈ L and ts ∈ S, thents ∈L.

Proof. Takee2= e ∈L so thatse= s. Thents = tse ∈ Se = L. 2
Lemma 3.5. Let S, T be compact Hausdorff right topological semigroups withS ⊆ T . If
p ∈ S andp /∈K(S) thenp /∈K(T ).

Proof. This follows from Theorem 1.65 in [7].2
The proof of our Main Theorem 5.6 would be slightly easier if we were considering

a two-sided, rather than just a left, ideal. Our next lemma shows that under some
circumstances a left ideal can have a very weak right-ideal like property.
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Lemma 3.6. Let S be a compact right topological semigroup and letT be a left ideal in
S. Suppose there isp ∈ T such thatsp /∈K(T ) for all s ∈ S \ T . Then for eachs ∈ S \ T
there isq ∈ T with qs ∈ T .

Proof. Suppose the conclusion false, so that there iss ∈ S \ T such that for allq ∈ T we
haveqs /∈ T , that is,T s ⊆ S \ T . BecauseT is a left ideal inS, T s is also a left ideal
so it contains a minimal left ideal. Therefore there is a minimal idempotente in T s, and
T e ⊆ T s ⊆ S \ T . Sincee is minimal,eS is a minimal right ideal inS andeSe is a group
with identity e.

Now take anyx ∈ T so thatex is any element ofeT . Then exe ∈ eSe, so there is
an inverse(exe)−1 with (exe)(exe)−1= e. SinceT is a left ideal,(exe)−1T ⊆ T . Thus
eT = (exe)(exe)−1T ⊆ exeT ⊆ eT . Therefore(ex)(eT )= eT , andeT is a minimal right
ideal inT . HenceeT ⊆K(T ), that is,ep ∈K(T ) for all p ∈ T . Thus the hypothesis of the
lemma is false fors = e. 2

Our next few results concern elements in Stone–Čech remainders whose norm is
countable. We write

ωS = {p ∈ βS: ‖p‖ is countable
}
.

Since every infinite subset ofS contains a countably infinite subset, it is easy to see that

Proposition 3.7. ωS ∩ S∗ is dense inS∗.

If S is a groupG andp ∈ ωG, then there is a countable subgroupGp ofG with p ∈Gp .

Proposition 3.8. ωG is a subsemigroup ofβG and if pq ∈ ωG then bothp and q are
in ωG. (This says thatωG is a prime subsemigroup in normal terminology, but below we
shall be using ‘prime’ in a different sense.)

Proof. Let Gp , Gq be countable groups inp, q , respectively. Then the group generated
byGp ∪Gq is in pq so thatωG is a semigroup. Ifpq ∈ ωG, saypq ∈G0 whereG0 is

countable, then from Lemma 3.3 we see thatp ∈G0g, q ∈ g−1G0 for someg ∈G so that
bothp andq are in the closures of countable sets.2

Our next lemma looks rather technical. It will be required in this form, but its point is
thatωS is well-behaved under homomorphisms.

Lemma 3.9.
(i) Let S be an infinite discrete semigroup andG a discrete group. LetS† be a left

ideal in βS for whichS∗ ⊆ S†. Let ϕ :S†→ βG be a continuous homomorphism.
Let Sc be a countable subsemigroup ofS and writeS†

c = Sc ∩ S†. Suppose there is
q ∈ S† with ϕ(sq) ∈ ωG for all s ∈ Sc . Then there is a countable subgroupGc ofG
such thatϕ(S†

c )⊆Gc andϕ(q), ϕ(sq) ∈Gc for all s ∈ Sc . Moreover, ifs ∈ Sc and
qs ∈ S† thenϕ(qs) ∈Gc .
Furthermore,ϕ(Sc)⊆Gc.
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(ii) Let H be a discrete group andG be as in(i). If ϕ :H ∗ → βG is a continuous
homomorphism and there isq ∈ H ∗ with ϕ(q) ∈ ωG then ϕ(hq) ∈ ωG for all
h ∈ H . Thus, withS taken to beH and S† taken to beH ∗, it follows that, for
every countable subsemigroupSc ofH , there is a countable subgroupGc ofG for
which the the conclusions of(i) hold.

Proof. (i) SinceSc is countable we can find a countable subgroupGc of G with ϕ(sq) ∈
Gc for all s ∈ Sc . Given p ∈ S†

c we can lets ∈ Sc converge top (if p ∈ Sc then the
net tending top can be constant) to find thatϕ(pq) ∈ Gc. But ϕ(pq) = ϕ(p)ϕ(q). So
from Lemma 3.8,ϕ(p) andϕ(q) are inωG. We may therefore suppose (enlargingGc if
necessary) thatϕ(q) is inGc. Then, by Lemma 3.3, we also haveϕ(p) ∈Gc . If in addition
qs ∈ S†, thenϕ(qs)ϕ(q)= ϕ(q)ϕ(sq)∈Gc and we see from Lemma 3.3 thatϕ(qs) ∈Gc .

(ii) If H is a group,H ∗ is an ideal inβH . If q ∈ H ∗ andϕ(q) ∈ ωG, then for each
h ∈H we haveϕ(qh−1)ϕ(hq)= ϕ(q2) ∈ ωG and soϕ(hq) ∈ ωG by Proposition 3.8. 2

We next need the concept of prime element in Stone–Čech compactifications of groups.

Definition 3.10. LetG be a group. We say thatp ∈G∗ is relatively prime toq ∈G∗ (for
G) if p = xq with x ∈ βG impliesx ∈G. If p is relatively prime to all elements ofG∗ it
is calledprime(for G).

Trivially if p is relatively prime toq then it is relatively prime togq for all g ∈G. In
addition, from Lemma 3.3 we see that ifG0 is a subgroup ofG andp is relatively prime
to q for G0 thenp is relatively prime toq for G. In fact we can say slightly more.

Proposition 3.11. Let G be a discrete group and letG0 be a subgroup ofG. Then if
p ∈G∗0 is prime forG0, it is prime forG.

Proof. Let p = xq where x ∈ βG, q ∈ G∗. From Lemma 3.3 there isg ∈ G with
xg−1 ∈G0, gq ∈G∗0. Fromp = xg−1gq we getxg−1 ∈G0, sox ∈G0g ⊆G. 2

The construction of prime elements is very easy.

Proposition 3.12. LetG be a discrete group and letA⊆G be countable and infinite. Then
there is an infinite subsetA0 ofA such that all elements ofA∗0 are prime. The set of prime
elements ofG∗ is dense inG∗.

Proof. From the remark about subgroups above, we need only consider the case in which
G itself is countable, sayG= {g1, g2, . . .}. Choosea1 ∈A arbitrarily and then inductively
choosean+1 ∈ A with an+1 /∈ {g1, g2, . . . , gn}{a1, a2, . . . , an}. We putA0 = {a1, a2, . . .}.
This construction means that for anyg 6= 1 in G, gA0 ∩ A0 is finite. Takep ∈ A∗0
and supposep = xq with x ∈ βG, q ∈ G∗. SinceA0 is open, for every sufficiently
small neighbourhoodU of x in βG we haveUq ⊆ A0. Take anyg1, g2 ∈ U , so that
g1q,g2q ∈ A0. Then we can find a neighbourhoodV of q with g1V ,g2V ⊆ A0, so that
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g1V,g2V ⊆A0. SinceV is infinite,g2g
−1
1 A0∩A0⊇ g2g

−1
1 (g1V )∩g2V = g2V is infinite,

whenceg1= g2. ThereforeU is a singleton, and this means thatx ∈G.
Since every subsetV of G contains a countable subset, we see that every subset ofG∗

of the formV ∗ contains prime elements. Therefore the prime elements are dense.2
Prime elements have a cancellation property.

Proposition 3.13. Let G be a discrete group. Letp ∈ G∗ be prime,q1, q2 ∈ ωG, and
q1p = q2p. Thenq1 = q2. In particular, if G is countable, prime elements are right
cancellable.

Proof. For i = 1,2 let Ui be any countable set withUi a neighbourhood ofqi . By
Lemma 3.2, there are two possibilities. The first is that there existg ∈ U1 andq ′2 ∈ U2

with gp = q ′2p. Then p = g−1q ′2p so becausep is prime g−1q ′2 ∈ G, and then by
Veech’s Lemma [2, 4.8.9], or by Corollary 8.2 in [7],g−1q ′2= 1. ThusU1 ∩U2 6= ∅. The
second alternative is the same with the subscripts 1 and 2 interchanged. Therefore every
neighbourhood ofq1 meets every neighbourhood ofq2, soq1= q2. 2

Finally we make a trivial observation about elements which cannot be prime.

Proposition 3.14. If p is prime forG and S is any compact subsemigroup ofG∗, then
p /∈K(S).

Proof. For each elementp of the smallest idealK(S) there is a left identitye ∈K(S), that
is p= ep. 2

4. Homomorphisms: An easy case

The aim in this section is to give a simple (but interesting) result which is not a special
case of our main theorem (because the target semigroup is more general). However, the
simpler arguments which suffice here follow the same pattern as the main proof.

Theorem 4.1. Assume that
(i) S is a discrete semigroup andS† is a two-sided ideal inβS,
(ii) κG is a compact right topological semigroup which algebraically contains a

subgroupG whose identity is the identity ofκG and in whichG is topologically
dense,

(iii) ϕ :S†→ κG is a continuous homomorphism,
(iv) ϕ(S†) ∩G 6= ∅.

Then there is a unique homomorphismψ :βS → κG with ψ |S† = ϕ. The mapψ is
continuous onβS.

These hypotheses hold in particular whenS is weakly left cancellative and weakly
right cancellative,S† = S∗ and ϕ is a continuous homomorphism fromS∗ to βG with
ϕ(S∗)∩G 6= ∅.
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Proof. Fix p ∈ S† with ϕ(p) ∈G. For eachs ∈ S, sp ∈ S†. Defineψ(s) = ϕ(sp)ϕ(p)−1.
Thenϕ(sp)=ψ(s)ϕ(p).

Defineψ to be the unique continuous extension ofψ to βS. Notice that, on taking
q ∈ βS and lettings ∈ S converge toq , we get from continuity thatϕ(qp) = ψ(q)ϕ(p).
Also, sinceϕ is a homomorphism onS† we haveϕ(qp) = ϕ(q)ϕ(p). Multiplying by
ϕ(p)−1 on the right givesψ(q)= ϕ(q). Thusψ is a continuous extension ofϕ to βS.

We must show thatψ is a homomorphism onβS. We take anyq ∈ S†. Then for any
t ∈ βS we haveqt, tp ∈ S† and so

ϕ(qt)ϕ(p)= ϕ(qtp)= ϕ(q)ϕ(tp)= ϕ(q)ψ(t)ϕ(p).
Sinceϕ(p) is invertible we getϕ(qt)= ϕ(q)ψ(t).

Now taket, t ′ ∈ βS. Then

ϕ(q)ψ(tt ′)= ϕ(qtt ′)= ϕ((qt)t ′)= ϕ(qt)ψ(t ′)= ϕ(q)ψ(t)ψ(t ′).
This holds for anyq ∈ S† so we may in particular takeq = p and cancelϕ(p) to find

ψ(tt ′)=ψ(t)ψ(t ′),
so thatψ is indeed a homomorphism.

Finally notice that ifψ ′ is any homomorphism onβS which extendsϕ it must satisfy

ϕ(qp)=ψ ′(qp)=ψ ′(q)ψ ′(p)=ψ ′(q)ϕ(p)
for everyq ∈ βS. Soψ ′(q)=ψ(q). 2
Examples 4.2.

(i) If G is any compact right topological group we may takeκG=G in hypothesis (ii)
of Theorem 4.1 and then hypothesis (iv) is automatically satisfied. Thus for a
discrete semigroupS, any continuous homomorphism from any idealS† in βS to
G extends uniquely to a continuous homomorphism fromβS to G. In particular,
any homomorphism fromS† to a finite group is the Stone–Čech extension of a
homomorphism fromS to the finite group.

(ii) This example is to show that the hypotheses of the theorem can be satisfied in a
non-trivial way.
PutS = Z×Z,G= Z×Z2 andκG= βG. The mapψ :S→Gwhich is the identity
in the first coordinate and the usual quotient in the second is a homomorphism. The
extensionψ sends elements of{0}×Z∗ to {0}×Z2. Thus ifϕ isψ |S∗ , ϕ(S∗)meets
G. Butϕ(S∗) 6⊆G and indeed its image contains the whole ofG∗.

5. Homomorphisms: The hard case

It will be convenient to use the notationA†= S† ∩A, whenS† is a given subset ofβS
andA⊆ S. This is meant to parallel the relationshipA∗ = S∗ ∩A.

The main theorem of the paper is Theorem 5.6 below. We first need to prove a sequence
of lemmas in whichS andG are restricted to be countable.
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In the lemmas which follow we assume thatS is a discrete countable semigroup and
thatG is a discrete countable group. We also assume thatS† is a left ideal inβS such that
S∗ ⊆ S†, and thatϕ :S†→ βG is a continuous homomorphism. In addition, we assume
that there existsp ∈ S† such that, for everys ∈ S, ϕ(sp) /∈K(ϕ(S†)).

We note thatβS \ S†⊆ S and hence thatS† is a closedGδ-subset ofβS.
We shall prove that there exists a unique homomorphismψ :S→G such thatϕ =ψ |S†,

whereψ :βS→ βG denotes the continuous extension ofψ .
The following lemma is the key to the whole enterprise.

Lemma 5.1. There exists an infiniteX ⊆ S with ϕ(sp) /∈ βGϕ(SX∗p) for all s ∈ S.

Proof. Let e be an idempotent inK(S†). Then ep ∈ K(S†). Sinceϕ is a surjective
homomorphism fromS† onto ϕ(S†) we see thatϕ(ep) ∈ K(ϕ(S†)) ([8, Surjectivity
Lemma 2.3] or [7, Exercise 1.7.3]). We note that this implies thate /∈ S, because we
are assuming that, for eachs ∈ S, ϕ(sp) /∈ K(ϕ(S†)). ThereforeβGϕ(ep) ∩ ϕ(S†) =
ϕ(S†)ϕ(ep) (Lemma 3.4). Hence for eachs ∈ S, ϕ(sp) /∈ βGϕ(ep).

Now βGϕ(ep) is compact by right continuity. So givens ∈ S we can findW(s) ⊆ G
with ϕ(sp) /∈W(s) but βGϕ(ep) ⊆W(s). Then for eachg ∈G, s′ ∈ S we haves′e ∈ S†

and

gϕ(s′ep)= gϕ(s′eep)= gϕ(s′e)ϕ(ep) ∈ βGϕ(ep)⊆W(s).
For any giveng ∈G ands′ ∈ S, the mapx 7→ gϕ(s′xp) is continuous onβS. So there

existsU(g, s, s′) ⊆ S with e ∈ U(g, s, s′) andgϕ(s′U(g, s, s′)p) ⊆W(s). Moreover, we
can arrange thats′ /∈ U(g, s, s′) sinceU(g, s, s′) \ {s′} is again a neighbourhood ofe.

Now
⋂
g,s,s ′U(g, s, s

′) is a Gδ set inβS \ S = S∗, which is non-empty as it containse.

So we can find a countably infinite setX ⊆ S with X∗ ⊆⋂g,s,s ′U(g, s, s
′) [7, Theo-

rem 3.36]).
Thus for any givens ∈ S, for all g ∈G, s′ ∈ S andx ∈ X∗ we havegϕ(s′xp) ∈W(s).

SinceW(s) is closed, we deduce thatGϕ(s′xp)⊆W(s). Consequentlyϕ(sp) /∈Gϕ(s′xp)
as required. 2

We must strengthen the properties ofX. This is achieved in the next lemma by making
it thinner.

Lemma 5.2. Enumerate the countable setG× S× S as(gi, si , s′i )i∈ω. There is an infinite
setX = {t1, t2, . . .} ⊆ S such that the conclusion of Lemma5.1 holds and whenm,n > i
andm 6= n,

ϕ(sitmp) 6= giϕ(s′i tnp).

Proof. We start withX as produced in Lemma 5.1. For a giveni and somet0 fixed inX
consider{

t ∈X: ϕ(sit0p)= giϕ(s′i tp)
}
.
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If this set were infinite, then continuity in thet-variable would show that any of its cluster
points (which lie inX∗) would violate the conclusion of Lemma 5.1, so in fact the set is
finite. The same argument shows that{

t ∈X: ϕ(s′i t0p)= g−1
i ϕ(si tp)

}
must be finite. Therefore ift1, . . . , tn have been chosen fromX, we can findtn+1 ∈X such
that, for 16 i, j 6 n,

ϕ(sitj p) 6= giϕ(s′i tn+1p), giϕ(s
′
i tjp) 6= ϕ(sitn+1p).

We replaceX by its subset{t1, t2, . . .} to reach our conclusion.2
Lemma 5.3. TakeX as in the conclusion of Lemma5.2. Let x1, x2 ∈ X∗, y1, y2 ∈ βG,
s1, s2 ∈ S.

(i) If y1ϕ(s1x1p)= y2ϕ(s2x2p) thenx1= x2.
(ii) If in addition s1= s2, theny1= y2. (This says that fors ∈ S andx ∈X, ϕ(sxp) is

right cancellable inβG.)

Proof. (i) Begin by observing that the map(y, x ′, x) 7→ yϕ(x ′xp) is β-separately
continuous fromβG×βS×βS→ βG (Definition 3.1). Our proof comes from a sequence
of applications of Lemma 3.2.

Assumex1 6= x2. For i = 1,2 takeUi ⊆ X with xi ∈ U∗i andU1 ∩ U2 = ∅. Writing
X= {t1, t2, . . .} as in Lemma 5.2, we see that iftm ∈ U1, tn ∈ U2 thenm 6= n. We also take
anyY1, Y2⊆G with y1 ∈ Y 1, y2 ∈ Y 2.

Starting from the equation given in (i), Lemma 3.2 and symmetry tell us that we may
suppose that there exista1 ∈ Y1, y ′2 ∈ Y 2 with

a1ϕ(s1x1p)= y ′2ϕ(s2x2p).

In the same way, continuity in thex variable on the left and they variable on the right now
yields two possibilities. The first, that there existu1 ∈ U1, y ′′2 ∈ Y2 with

a1ϕ(s1u1p)= y ′′2ϕ(s2x2p),

or

ϕ
(
(s1u1)p

)= a−1
1 y ′′2ϕ(s2x2p),

contradicts the conclusion of Lemma 5.1, so is impossible. The second must therefore hold,
that is, there existx ′1 ∈ U1, a2 ∈ Y2 with

a1ϕ(s1x
′
1p)= a2ϕ(s2x2p). (?)

Herex ′1 ∈ S would again contradict the conclusion of Lemma 5.1, sox ′1 ∈ U∗1 .
The next step requires a little more care. Let(a−1

1 a2, s1, s2) be therth triple in the
enumeration ofG× S × S in Lemma 5.2. PutXr = {tn: n > r} and notice thatX∗r =X∗.
Then x ′1 ∈ U∗1 ∩ X∗r = (U1 ∩ Xr)∗ and x2 ∈ (U2 ∩ Xr)∗. Applying Lemma 3.2 to (?)
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using continuity in thex variables gives two alternatives again. The first is that there exist
tm ∈ U1 ∩Xr (which means in particular thatm> r) andx ′2 ∈U2 ∩Xr with

a1ϕ(s1tmp)= a2ϕ(s2x
′
2p).

Again by Lemma 5.1 this is impossible unlessx ′2 ∈G, and that meansx ′2 ∈ U2 ∩Xr , say
x ′2= tn with n > r. But that possibility is ruled out by the properties ofX in Lemma 5.2.
The second alternative simply interchanges the subscripts 1 and 2, so is equally impossible.

This contradiction tells us thatx1= x2, and (i) is proved.
(ii) If we start with s1 = s2 = s in the equation in (i), then (?) becomesa1ϕ(sx

′
1p) =

a2ϕ(sx2p). By (i), this implies thatx ′1 = x2. SinceG is a group we may apply Veech’s
Lemma ([2, Lemma 4.8.9] or [7, Corollary 8.2]) to find thata−1

1 a2= 1, or a1= a2. Thus
Y1 intersectsY2, which means that every neighbourhood ofy1 meets every neighbourhood
of y2. Thusy1= y2. 2

The result which we are moving towards is that two elements of the formϕ(sxp) are
relatively prime:

Lemma 5.4. Let s1, s2 ∈ S, x ∈ X∗. Then βGϕ(s1xp) ∩ βGϕ(s2xp) 6= ∅ implies
ϕ(s1xp) ∈Gϕ(s2xp).

Proof. The hypotheses tell us that there arey1, y2 ∈ βG with y1ϕ(s1xp) = y2ϕ(s2xp).
Following the proof of Lemma 5.3(i) as far as (?) provides a1, a2 ∈ G such that
a1ϕ(s1x

′
1p) = a2ϕ(s2xp), for some x ′1 ∈ βS (or a corresponding formula with the

subscripts 1 and 2 interchanged). Lemma 5.3(i) says thatx ′1 = x, and the result
follows. 2

We are now in a position to complete the proof for countable semigroups.

Lemma 5.5. There is a unique homomorphismψ :S→G such thatψ |S† = ϕ.

Proof. TakeX as in Lemma 5.2. Fixx ∈X∗ ands0 ∈ S. For anys ∈ S write

V (s)= {v ∈ S†: vs ∈ S†}.
Our hypotheses imply thatsp /∈ K(S†) for all s ∈ S, for otherwiseϕ(sp) ∈ ϕ(K(S†)) =
K(ϕ(S†)) since a surjective homomorphismϕ :S†→ ϕ(S†) preserves smallest ideals ([8,
Surjectivity Lemma 2.3] or [7, Exercise 1.7.3]). Lemma 3.6 therefore tells us thatV (s) is
non-empty. Moreover,V (s) = S† ∩⋂a∈S\S†{v ∈ βS: vs 6= a}. Now {v ∈ βS: vs 6= a} is

clopen inβS for eacha ∈ S. SinceS† is a closedGδ-subset ofβS, it follows thatV (s) is
a closedGδ-subset ofβS.

Now for anyv ∈ V (s) we havevs ∈ S† and therefore

ϕ(vs)ϕ(s0xp)= ϕ(vss0xp)= ϕ(v)ϕ(ss0xp).
ThusGϕ(s0xp) ∩Gϕ(ss0xp) 6= ∅. From Lemma 5.4 there is an element ofG which we
denote byψ(s) for which

ϕ(ss0xp)=ψ(s)ϕ(s0xp);
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thusψ :S→G. By Lemma 5.3(ii) the last equation determinesψ(s) uniquely. Letψ be
the unique continuous extension ofψ to βS.

Now let q be any element ofS†. In the last equation we lets in S converge toq .
Continuity gives us

ϕ(qs0xp)=ψ(q)ϕ(s0xp).
Sinceϕ is a homomorphism onS† we also haveϕ(qs0xp) = ϕ(q)ϕ(s0xp), and we may
cancelϕ(s0xp) (Lemma 5.3) to obtainψ(q)= ϕ(q), so thatψ|S† = ϕ|S†.

We must show thatψ is a homomorphism. First for anyq ∈ S† and anys ∈ S, either
qs ∈ S† or qs ∈ S. In the former case

ψ(qs)ϕ(s0xp)= ϕ(qs)ϕ(s0xp)= ϕ(qss0xp)= ϕ(q)ϕ(ss0xp)
=ψ(q)ψ(s)ϕ(s0xp).

In the second

ψ(qs)ϕ(s0xp)=ψ(qs)ϕ(s0xp)= ϕ(qss0xp)= ϕ(q)ϕ(ss0xp)
=ψ(q)ψ(s)ϕ(s0xp).

Again from Lemma 5.3 we deduce thatψ(qs)= ψ(q)ψ(s). Now givens, s′ ∈ S, for any
v ∈ V (s) bothv, vs ∈ S† (thoughvs may not be inV (s)), so that

ψ(v)ψ(ss′)=ψ(vss′)=ψ(vs)ψ(s′)=ψ(v)ψ(s)ψ(s′).
This means that the continuous maps (defined onβS)

x 7→ψ(x)ψ(ss′), x 7→ψ(x)ψ(s)ψ(s′)
coincide on the setV (s), which is a closedGδ-subset ofβS. By Corollary 2.3(i) to the
Two-Function Lemma, these maps are equal on a non-empty open subset ofβS. So there
existsx ∈ S such that

ψ(x)ψ(ss′)=ψ(x)ψ(s)ψ(s′)
and sinceψ(x) ∈G it can be cancelled to yield thatψ is a homomorphism.

To see thatψ is unique, letψ ′ :S→ G be any homomorphism for whichψ ′|S† = ϕ.
Thenϕ(ss0xp)=ψ ′(ss0xp)=ψ ′(s)ψ ′(s0xp)=ψ ′(s)ϕ(s0xp) and soψ ′ =ψ . 2

We can now prove our second main result.

Theorem 5.6. Let S be a discrete semigroup andS† be a left ideal inβS with S∗ ⊆ S†,
and letG be a discrete group. Letϕ :S†→ βG be a continuous homomorphism with the
properties

(i) there isq ∈ S† such thatϕ(sq) ∈ ωG for all s ∈ S,
(ii) for each countable subsetS0 of S there exist a countable subsemigroupSc of S and

p ∈ S†
c = S† ∩ Sc with S0⊆ Sc andϕ(sp) /∈K(ϕ(S†

c )) for all s ∈ Sc .
Then there exists a unique homomorphismψ :S→G such thatϕ =ψ |S†.

We note that:
(a) if G is countable then(i) is always satisfied;
(b) if S is countable then(ii) need only be checked whenS0= Sc = S.
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Proof. Let S0 be any countable subset ofS and let Sc be the countable subset ofS
guaranteed by hypothesis (ii). By Lemma 3.9, there is a countable subgroupGc of G
such thatϕ(S†

c ) ⊆ Gc. It follows from Lemma 5.5 that there is a unique homomorphism
ψc :Sc→ G whose continuous extensionψc :Sc→ βG agrees withϕ on S†

c . Since the
union of any two such semigroups is contained in a third, and the union of all of them
is S itself, we easily find a uniqueψ defined onS whose extensionψ to βS agrees with
ϕ on everyS†

c , and so on
⋃
c S

†
c = ωS. SinceωS is dense inβS, it follows that the two

continuous mapsψ andϕ agree on the whole ofβS. Uniqueness is clear, and Theorem 5.6
is proved. 2
Remark 5.7. There are two troublesome hypotheses in Theorem 5.6. The first is thatϕ(S†)

should contain elements ofωG. The other is the existence ofp with ϕ(sp) /∈K(ϕ(S†
c ) for

some semigroupSc . The first is certainly necessary forϕ to arise as the extension of a
homomorphismψ from S toG. To see this, simply observe that ifψ :S→G thenψ(S∗)
must contain cluster points of setsψ(A) with A⊆ S countable.

The second is necessary too, but needs a little more argument. For any homomorphism
ψ :S→G for whichψ(S) is infinite, we can find a countable subsemigroupS0 for which
the groupG0 generated byψ(S0) is infinite (and countable). Suppose that for everyp ∈ S†

0

there iss ∈ S0 with ψ(s)ψ(p) = ψ(sp) ∈ K(ψ(S†
0)). This implies thatψ(s)ψ(p) is not

prime inβG0 (Proposition 3.14) and so thatψ(p) is not prime. Butψ(S∗0)= ψ(S0)
∗ is a

clopen subset ofG∗0 and so contains prime elements (Proposition 3.12).

6. Corollaries and comments

We now consider some corollaries to the main theorem. First we look at the case in which
S is also a group. We show that, ifG andH are discrete groups, then every continuous
surjective homomorphism fromH ∗ toG∗ is the extension of a surjective homomorphism
fromH toG. This is the only result in this section that requires no countability assumptions
aboutG and which does not use Theorem 5.6.

Lemma 6.1. Let S be a discrete semigroup. Suppose thatux = vy, wherex, y ∈ βS and
u,v ∈ ωS. Then there existss ∈ S such thatsx ∈ (βS)y or there existst ∈ S such that
ty ∈ (βS)x.

Proof. LetU andV be countable subsets ofS such thatU ∈ u andV ∈ v. Sinceux ∈ Ux
andvy ∈ Vy, it follows from Lemma 3.40 in [7] thatsx ∈ Vy ⊆ (βS)y for somes ∈ U , or
elsety ∈ Ux ⊆ (βS)x for somet ∈ V . 2
Theorem 6.2. Let H , G be discrete groups, and letϕ :H ∗ → G∗ be a continuous
homomorphism for whichϕ(H ∗) contains an element ofωG which is prime inβG. (This is
true in particular whenϕ(H ∗)=G∗ (by Proposition3.12).)Thenϕ =ψ |H ∗ for a unique
homomorphismψ :H →G (andψ is surjective ifϕ is surjective).
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Proof. Suppose thatp ∈ ωG is prime inβG and thatϕ(q) = p for someq ∈ H ∗. For
anys ∈H we haveϕ(qs−1)ϕ(sq)= p2. It follows from Proposition 3.9 thatϕ(qs−1) and
ϕ(sq) are inωG. It then follows from Lemma 6.1 thatp = xϕ(sq) for somex ∈ βG, or
ϕ(sq)= yp for somey ∈ βG.

Since p is prime, the first possibility implies thatx ∈ G. We shall show that the
second possibility implies thaty ∈ G. To see this, observe thatϕ(sq) = yp implies that
ϕ(qs−1)yp = p2 and hence thatϕ(qs−1)y = p (by Proposition 3.14). Sincep is prime,
this implies thaty ∈G.

We can thus defineψ :H → G such thatϕ(sq) = ψ(s)p for everys ∈ H . It follows
from continuity thatϕ(vq)= ϕ(v)p = ψ(v)p for everyv ∈ βH . By Proposition 3.14 we
then haveϕ(v)=ψ(v) for everyv ∈H ∗.

To see thatψ is a homomorphism, lett ∈ H . Thenψ(t)p is also a prime element
of βG and is also inωG. By what we have already proved, withψ(t)p in place ofp,
there is a functionψt :H → G such thatϕ(stq) = ψt (s)ϕ(tq) = ψt (s)ψ(t)p for every
s ∈H . We also haveϕ(stq)=ψ(st)p and soψ(st)=ψt (s)ψ(t) [7, Corollary 8.2]. Since
ψt = ψ = ϕ onH ∗, it follows from Corollaries 2.3 thatψt(s) = ψ(s) for all but a finite
number of values ofs. Soψ(st) = ψ(s)ψ(t) for all but a finite number of values ofs.
By continuity we haveψ(vt) = ψ(v)ψ(t) for everyV ∈ H ∗ and everyt ∈ H . If t ′ ∈ H ,
we can substitutevt ′ for v in this equation and deduce from Corollary 8.2 in [7] that
ψ(t ′t)=ψ(t ′)ψ(t).

To show thatψ is unique, suppose thatψ ′ :H →G is also a homomorphism for which
ψ ′ = ϕ onH ∗. For anys ∈H , we haveψ(sp)= ψ ′(sp) and soψ(s)ψ(p) = ψ ′(s)ψ(p).
Thusψ(p)=ψ ′(p), by Corollary 8.2 in [7].

Finally, we suppose thatϕ is surjective and deduce thatψ must be surjective. For every
infinite subsetB ofG, we must haveψ(H)∩B 6= ∅. Otherwise there would be an element
in B∩G∗, but not inψ(H)=ψ(βH). SoG\ψ(H) is finite. By the pigeon hole principle,
for anyu ∈G, there existss ∈ ψ(H) such thatus−1 ∈ψ(H). Sou ∈ ψ(H). 2
Corollary 6.3. Let G andH be discrete groups and letϕ :H ∗ → G∗ be a continuous
homomorphism. Ifφ is not the extension of a homomorphism fromH toG, thenϕ(H ∗) is
nowhere dense inG∗.

Proof. If ϕ(H ∗) contains a non-empty open subset ofG∗, it contains a prime element of
ωG (by Proposition 3.12). 2

Our next theorem shows that, ifG andH are discrete groups andG is countable,
then any continuous injective homomorphism fromH ∗ to G∗ is the extension of a
homomorphism fromH toG.

Theorem 6.4. Let G be a countable group and letS be a cancellative semigroup.
Then every continuous injective homomorphism fromS∗ to G∗ is the extension of a
homomorphism fromS toG.
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Proof. Let S0 be a countable subsemigroup ofS. We note that there existsp ∈ S∗0 \K(S∗0)
(by Corollary 6.33 in [7]). Now, if s ∈ S0, then sp /∈ K(S∗0). To see this, note that
sp ∈ K(S∗0) implies thatsp = spq for some minimal idempotentq in S∗0 and hence that
p = pq ∈K(S∗0) (by Lemma 6.28 in [7]).

If ϕ(S∗)→G∗ is a continuous injective homomorphism, thenϕ defines an isomorphism
fromS∗0 to ϕ(S∗0). Thus, for everys ∈ S0, ϕ(sp) /∈K(ϕ(S∗0)). It follows from Theorem 5.6,
with S†= S∗, thatϕ is the extension of a homomorphismψ :S→G. 2
Theorem 6.5. LetG be a countable group and letS be a cancellative discrete semigroup.
Then any continuous injective homomorphism fromβS to βG is the extension of an
injective homomorphism fromS toG.

Proof. Let ϕ :βS→ βG be a continuous injective homomorphism. Exactly as in the proof
of Theorem 6.4, withS†= βS, we can show that there is a homomorphismψ :S→G such
thatϕ =ψ . It is obvious thatψ is injective. 2

Now we consider even more special cases. For simplicity we shall suppose thatG is
countable—that saves us having to add hypothesis 5.6(i) every time. Our next result is
an extension of the main theorem of [11] which says that any homomorphism fromβN
to N∗ must have finite image. A more general conclusion was given in [7], but this was
still restricted to homomorphisms with domainsN∗ and ranges inβG, whereG was a
countable group embedable in the circle.

For the proof we shall need the concept of thetopological centerΛ(T ) of a compact
right topological semigroupT :

Λ(T )= {t ∈ T : s 7→ ts is continuous}.
If ϕ :T1 → T2 is a continuous surjective map between compact right topological
semigroups thenϕ(Λ(T1)) ⊆ Λ(T2) [8, Surjectivity Lemma 2.3]. A discrete semigroup
S is always in the topological center ofβS.

Theorem 6.6. Let G be a countable discrete group and letS be a countable discrete
semigroup. Then, for any continuous homomorphismϕ :βS→G∗, ϕ(S)∩K(ϕ(βS)) 6= ∅
and each maximal group inK(ϕ(βS)) is finite. Every element inϕ(S) has finite order.

Proof. The imageϕ(βS) is a compact semigroup with a dense topological center. We
apply Lemma 5.5 withS†= βS. We takep to be any element ofS. Then sinceϕ does not
arise from a mapψ :S→G, there must bes ∈ S with ϕ(sp) ∈ K(ϕ(βS)). Sincesp ∈ S,
ϕ(sp) is in the topological center ofϕ(βS). This implies thatϕ(sp)K(ϕ(βS))ϕ(sp) is
compact. Since it is a maximal group in the minimal ideal ofϕ(βS), it is a compact group.
But compact groups inF -spaces are finite (see, for example, [11, p. 66]).

Now considerP = {p,p2,p3, . . .}. We can equally well apply what we have just
established to the semigroupP and the homomorphismϕ restricted toβP . We conclude
that there is an elements of P with ϕ(sp) ∈K(ϕ(βP)); that is, for some integerm we have
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ϕ(p)m = ϕ(pm) ∈K(βP). We deduce from this thatϕ(p)m is in some finite group and so
there isn for whichϕ(p)mn is the identity of that group. Thusϕ(p) has finite order. 2
Corollary 6.7. Let G be a countable group and letϕ :βN → G∗ be a continuous
homomorphism. Thenϕ(βN) is finite andϕ(N∗) is a finite group.

Proof. This follows easily from Theorem 6.6.2
Corollary 6.8. LetG be a countable group and letC be a compact subsemigroup ofG∗.
Then every element ofΛ(C) has finite order.

Proof. Let p ∈ Λ(C). The mappingϕ :N→ G∗ defined byϕ(n) = pn extends to a
continuous homomorphism fromβN into G∗. It follows from Corollary 6.7 thatϕ(N)
is finite. 2

Theorem 6.6 also simplifies whenS is a group.

Corollary 6.9. LetG be a countable group and letH be any group. Ifϕ :βH →G∗is a
continuous homomorphism,ϕ(βH) is a finite group.

Proof. We first consider the case in whichH is countable. By Theorem 6.6ϕ(a) ∈
K(ϕ(βH)) for somea ∈H . For everyx ∈H we haveϕ(x)= ϕ(a)ϕ(a−1xa−1)ϕ(a). Our
claim then follows from the fact thatϕ(a)ϕ(β(H))ϕ(a) is a finite group.

In the general case, we note thatϕ(H0) is finite for every countable subgroupH0 of H .
It follows that there must be a finite subsetF ofG such thatϕ(H0)⊆ F wheneverH0⊆H
is countable. Otherwise, there would be a sequence(Hn)n∈N of countable subsets ofH for
whichϕ(

⋃
n∈NHn) would be infinite. Soϕ(H) is finite. 2

The question of whether there exist elements of finite order (apart from idempotents of
course) in anyβG appears to be extremely difficult. Zelenuk has shown that, ifG is a
countable torsion free group, thenG∗ contains no non-trivial finite subgroups [13]. This
was generalized in [9]. In this paper, the finite subgroups ofG∗ were characterized, where
G denoted a countable group. These all have the formG0p, whereG0 is a finite subgroup
ofG andp is an idempotent inG∗ which commutes with the elements ofG0. There are no
known examples of torsion free groupsG for whichG∗ contains elements of finite order
which are not idempotent.

If an elementq ∈G∗ does have finite order, then the mapN→ βG defined byψ(n) =
qn naturally extends to a homomorphism fromβN to the finite semigroup generated byq .

Here is another corollary to Theorem 6.6.

Corollary 6.10. LetG be a countable group. Let(N,max) be the setN of integers with
the maximummultiplication. Then there is no continuous homomorphismϕ :βN→ βG

which is injective onN.
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Proof. By Theorem 6.6,ϕ(n) ∈ K(ϕ(βN)) for somen ∈ N. If r ∈ N and r > n, then
ϕ(r)= ϕ(n)ϕ(r)ϕ(n). Sinceϕ(n)ϕ(βN)ϕ(n) is finite,ϕ(βN) must be finite. 2
Definition 6.11. Let p and q be idempotents in a semigroup. We say thatp 6 q if
pq = qp = p.

Corollary 6.12. LetG be a countable group and letC be a compact subsemigroup ofG∗.
ThenΛ(C) cannot contain an infinite decreasing sequence of idempotents.

Proof. If (pn)n∈N were an infinite decreasing sequence of idempotents inΛ(C), the
map n 7→ pn would extend to a continuous homomorphism from(βN,max) into G∗,
contradicting Corollary 6.10.2
Corollary 6.13. Suppose thatG andH are countable groups and thatϕ :H ∗ →G∗ is a
continuous homomorphism which is not the extension of a homomorphism fromH to G.
Then, for everyx, y ∈H ∗, ϕ(xy) ∈ K(ϕ(H ∗)). In particular, every idempotent inϕ(H ∗)
is minimal inϕ(H ∗).

Proof. By Theorem 5.6, there existss ∈ H for which ϕ(sy) ∈ K(ϕ(H ∗)). So ϕ(xy) =
ϕ(xs−1)ϕ(sy) ∈K(ϕ(H ∗)).

Now let q be an idempotent inϕ(H ∗). Then ϕ−1({q}) is a compact semigroup
and therefore contains an idempotentp (by Theorem 2.5 in [7]). Soq = ϕ(pp) ∈
K(ϕ(H ∗)). 2

Corollaries 6.7 and 6.8 tell us that whenG is a discrete group,G∗ cannot contain
subsemigroups of certain kinds. There is another result of this type in the literature: for
a certain restricted class of groupsG, there cannot be an infinite compact right-zero
subsemigroup inG∗ [3, Theorem 8.4]. We have been unable to obtain this conclusion
from Theorem 5.6.

Remark 6.14. There can be non-trivial homomorphismsϕ :S∗ →G∗ which do not arise
from homomorphisms fromS to G, even whenS is also a group. Consider the right-
zero semigroupZ = {z1, z2} with two elements. Defineϕ :Z∗ → Z by ϕ(Z∗+) = {z1},
ϕ(Z∗−)= {z2}. Thenϕ is a continuous homomorphism. It is easy to find copies ofZ inside
G∗ for any infinite groupG (forK(G∗) contains infinite right-zero semigroups). However
there is no extension ofϕ to βZ because the image ofβZ must be infinite and any closed
infinite set must have 2c elements.

Of course, in this case,ϕ(S∗)=K(ϕ(S∗)).
This example also shows that the observation in Example 4.2(i) that any homomorphism

from S∗ to a finite group is generated by a homomorphism fromS to the group, does not
extend to finite semigroups.



I. Protasov et al. / Topology and its Applications 105 (2000) 209–229 229

References

[1] J.W. Baker, A.T. Lau, J.S. Pym, Identities in Stone–Čech compactifications of semigroups,
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