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Abstract

This paper deals with the stability of linear time-varying systems involving switches through time between different parameter-
izations of a dynamic linear time-varying system. Graph theory is used to describe the combinations of possible switches of the
various sets of parameterizations which ensure the stability of the configurations. Each graph vertex is associated with a particular
parameterization while edges (arcs) are associated with switches between the graphs (directed graphs or digraphs). An axiomatic
framework is first established concerned with previously known stability results from systems theory related to the achievement of
stability when switches between several parameterizations of a dynamic system take place. The axiomatic context is then used to
obtain stability results mainly based on the topology of the links between the various configurations associated with a state-trajectory
as well as on the nature of the vertices related to the stability of the various isolated parameterizations.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The stabilization of dynamic systems is a crucial research topic from several decades. The stabilization may be
achieved or improved through different alternative conventional techniques like observer-based controller design,
sliding-mode controller synthesis, optimal controllers, model-matching, pole-placement or adaptive stabilization,
[9,3,27,2,15,12,1,29,14,33,23] which can also be combined into mixed techniques. On the other hand, there are in
nature time-varying systems defined via switches through time in-between several configurations which may be time-
variant or time-invariant. A serious inconvenience to analyze those systems by conventional techniques is that their
properties depend on the basis chosen to represent the system in state–space, [9,15]. Examples are the use of descrip-
tions consisting of linearized models around different equilibrium points which describe certain chemical processes
or the configurations including switches between several estimation algorithms in parallel multiestimation schemes
which set more efficiently the identification performances through time than conventional single estimation schemes,
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[9,3,27,2,15]. Those schemes are sometimes used in tandem configurations with associated adaptive controller param-
eterizations to improve the tracking performances in adaptive control compared to the use of single adaptive controller
parameterizations, [3,27,2]. This manuscript is motivated by the well-known fact from Lyapunov stability theory
[9,15,12,1], that switches between stable parameterizations of a dynamic linear system ensure the stability of the whole
configuration if a minimum residence time at each parameterization is kept while very fast switches may lead to insta-
bility, [9,3,27,2,15]. In this paper, the stability of configurations consisting of a set of parameterizations with switching
in-between them are discussed from topological considerations using standard graph theory and an “ad hoc” axiomatic
framework constructed from logic considerations and a set of previous background of analytical results. On the other
hand, it is well-known the fact that when dealing with very general classes of systems, expert systems formulated ad
hoc for certain applications in a expert rule-based context of artificial intelligence, the clear formulation of an axiomatic
context is crucial to then derive new results which should agree with the empirical observation or knowledge as well as
with results obtained from conventional mathematical techniques, [24,22,30,7,11]. The paper is organized as follows.
Section 2 is devoted to describe a simple background on graph theory (see, for instance, [21,20,13,8,6,31,26,32,16])
to be then used in Section 3 which describes the axiomatic context and basic definitions and assumptions about the
configurations of switched parameterizations of a dynamic system built from elementary well-known results. In that
formulation, auto-loops associated with graph vertices are only allowed if the vertices are terminal; i.e. if they are end
vertices of walks with no later associated switches between the various system parameterizations. Section 4 is devoted
to enounce and derive the main results about stability based on graph theory. Section 4 proposes some alternative for-
mulations in formulating the graphs associated with the state-trajectories mainly concerned with the presence or not of
auto-loops in the vertices associated with the parameterizations. Section 6 is devoted to discuss a case study concerned
with parallel multiestimation-based adaptive control where switches in-between the various estimators and associate
controller parameterizations are decided by a supervisor on the basis of the identification performance, [3,27,2,18].
Finally, conclusions end the paper. The formulation is, in particular, appropriate for describing multimodel and multi-
estimation schemes, [3,27,2,5,19,17] from a topological point of view playing a main attention to the interconnection
topology among the various subsystems and the residence time at each node. On the other hand, it seems to be also
promising for certain classes of hybrid subsystems whose topology is easily described by automata, [10], as well as
for reliable control designs under a multiple controller, [4]. Furthermore, it is also interesting to promote certain nodes
describing estimator–parameterized controller pairs under a certain residence time, especially for the case when a
steady-state regime is reached then being subject to an infinite residence time and for finding particular patterns from
data under certain different initial conditions and classes of external disturbances, [28,25].

2. Background on graph theory

A graph (digraph or directed graph if oriented) is a pair G := (V , E)(G := (V , A)) consisting of a finite set V �= ∅
of vertices and a set of (two-element ordered pairs) subsets e(a) := {v1, v2} called edges (arcs for a digraph), of vertices
v1 ∈ V and v2 ∈ V , for all e ∈ E (a ∈ A). Since V is a carrier set and E (or A) is a signature of operations with
elements of V then G is also an algebra, [13,8,6,31,26,32]. It is said that v1 and v2 are incident with e(a) and that v1
and v2 are adjacent (or neighbors) of each other if e(a) := {v1, v2}. If G is a digraph then the arcs are directed so that
the associated pair of vertices are strictly ordered pairs. G1 := (V , E1), with E �= E1 ⊂ E, is called a partial graph of
G while G′

1 := (V1, E
′
1), E′

1 ⊂ E//V1, withE//V1 denoting the set of all edges in E which have both their vertices in
V1, is called a subgraph of G (similar definitions stand for a digraph as the subsequent definitions stand as well). The
number of vertices is called the cardinal ϑ of V or the degree or power of the graph G. A walk in G is defined by

W := (e1, e2, . . . , en) = ({v0, v1}, {v1, v2}, . . . , {vn−1, vn}),
with ei ∈ E, vj ∈ V (i = 1, 2, . . . , n; j = 0, 1, . . . , n) being a sequence of edges in the graph G whose length
L(W) := n, with start vertex v0 and end or terminal vertex vn, is the number of edges. If ei are pair-wise distinct then
W is called a trail. If, in addition, the involved vertices are pair-wise distinct then the trail is a path. A closed trail with
n�3 for which vj are pair-wise distinct (except v0 = vn) is called a cycle. Composed trails -or paths are (trail-path)
walks where at least one edge or vertex is repeated. A Hamiltonian cycle is a cycle which contains each vertex exactly
once. A Hamiltonian graph is that which contains (at least) a Hamiltonian cycle, [13,26,32]. If G is a digraph then the
respective above definitions are specified as directed walk, trail, path, cycle etc. If the edges have an associate positive
weight, we can also define weighted lengths Lw(W) := ∑n

i=1�i of walks W where �i is the weight of the edge
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ei (i = 1, 2, . . . , n). Note that although the length L(W) is a well-posed metric, the weighted length Lw(W) is not a
metric for all admissible weights and any walk W. An important concept stated “ad hoc” for the subsequent formulation
proposed in this paper is that of a proper subwalk W ′. A proper subwalk W �= W ′ ⊂ W is defined by convention as a
strip containing an ordered proper subset of the edges (arcs) of W subject to the constraints:

• W ′ has no terminal vertex.
• L(W ′) = ∞ if and only if W has no terminal vertex.

Note that

• If W has no terminal vertex then L(W ′)�∞ (since L(W) < ∞ ⇒ L(W ′) < ∞ and L(W)=∞ ⇒ L(W ′)�∞ with
L(W ′) = ∞ if it both W ′ and W contain infinitely many edges/arcs).

• If W has a terminal vertex then L(W ′) < ∞ (since W ′ has no terminal vertex by definition).
• If L(W ′)=∞ then W has no terminal vertex (since if W has a terminal vertex then L(W) < ∞ ⇒ L(W ′) < ∞ since

W �= W ′ ⊂ W ).

3. Axiomatic formalism and main assumptions and definitions

The problem considered through this paper is that of set of switched parameterizations of a dynamic system with
those switches between the various parameterizations taking place through time. This problem occurs in nature as,
for instance, when a set of parallel estimators with switching is used in estimation and adaptive control [3,27,2]
or when the amount of unmodeled dynamics of a certain nominal model is changing through time because of the
degree of plant filtering effects to the various input frequencies. For instance, the parasitic capacitor coupling effects
with earth in amplifiers, which imply an effective increase in the system order, only take place for high frequencies,
[29,14,33,23]. Analytic previous results on global stability (GS) of dynamic systems; i.e. stability in the sense that all
the state-trajectories are bounded for any bounded initial conditions, and global asymptotic stability (GAS); i.e. GS
with the state-trajectory converging to zero as time tends to infinity, are given below. These results are then used to settle
the axiomatic framework to obtain topologically based stability results when a finite or infinite number of switches
in-between several parameterizations of a system are involved, [9,3,27,2].

3.1. Background results on stability of switched parameterizations from conventional analysis techniques

Let R and Z be the sets of real and integer numbers, respectively. Assume an unforced dynamic system Ds of n-
dimensional state x(t), which takes through time parameterizations P : [ti , ti+1) ∩ R+

0 → P with R+
0 := R+ ∪ {0}

(the set of nonnegative real numbers being R+ := {z ∈ R : z > 0}) and ti ∈ S := {ti ∈ R+
0 }∞0 (for all i ∈ Z+

0 with
Z+

0 := Z+∪{0}={z ∈ Z : z�0}) being the strictly ordered sequence of switches such that t0=0 ∈ S. The set P consists
of a finite or infinite number of distinct parameterizations of Ds. Three major known features presented as rigorous
results in the literature (see, for instance, [9,3,27,2,15,12]) applicable to configurations consisting of switches through
time in-between parameterizations of (in general) linear time-varying systems are described below. The problem is
restricted to a linear Ds in order to formulate it by guaranteeing the absence of finite escape times. Those results will
be then used in settling partly the axioms to be then used to derive the (topologically based) stability results for the
switches between parameterizations.

Fact 1. A finite number of switches between stable parameterizations leads to a stable configuration. An infinite
number of switches between stable parameterizations leads to a stable configuration if a minimum residence time
constraint Tres > 0 at each one (which is proved to exist) is respected in-between each pair ofconsecutive switches or, in
a more general context, for some given integer Nr (1�Nr < N̄r < ∞), it exists a minimum time-varying residence time
Tres(P (tkt), tk)�NrT , T being the sampling period, such that the subsequent stability constraint holds for a prescribed
real constant 0 < ��1:

∞� tk+1 �Min(t = tk + Tres[P(tk, t), tk) : ‖x(t)‖��‖x(tk)‖, � ∈ (0, 1] ∩ R) (1)
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over a subset S ⊇ ST := {tk ∈ S : ∞ > �r � |ti − tj |; |ti+1 − ti |�Tres; ∀ti , tj ∈ S ∩ ST, ti+1 ∈ S}; i.e. the sequence
ST is defined for switches from each current parameterization to a (stable) one and by taking into account all the
previous residence times for switches in S and associate parameterizations, from the last switch at the subset ST. The
residence time compatible with the stability constraint is only checked for time instants in ST so that if ST �= S then not
all the switches belonging to S have to accomplish with the residence time constraint but only those belonging to ST.
S := {ti ∈ R+

0 }k1 might consist of a finite number of k switches and if ST �= S is finite then its last element is a switching
time instant to a stable parameterization. If � < 1, and each individual parameterizations is GAS (GS), then the system
is GAS in the Lyapunov’s sense since there are no finite escape times, since the system is linear, x(t) is bounded and
converges asymptotically to zero for a finite, since all parameterizations are GAS (GS), or infinite number of switches.
If �= 1 then the system is (at least) GS since ‖x(tk)‖�‖x(0)‖ and ‖x(tk)‖�‖x(0)‖+K for all tk ∈ S and all t ∈ R+

0 ,
some K ∈ R+. Since Tres exists some upper-bound T �Tres may be computed either from ‘a priori’ knowledge on
the system or experimentally starting with an arbitrary small tentative value to be then increased with small positive
increments until stability is guaranteed by keeping the state-trajectory norm below a prescribed upper-bound.

Fact 2. Stable configurations might be found provided that

(a) There is a non-empty subset Ps of (GAS or GS) stable parameterizations of cardinal at least unity of the set of
parameterizations P.

(b) The residence time Tres[P(tk, t), tk) satisfies the constraint (1) for the dynamic system Ds parameterized at some
member or at some non-empty subset of Ps for all t ∈ [tk, tk+1), ∀tk ∈ ST.

In other words, the so-called stability constraint ‖x(t)‖��‖x(tk)‖; 0 < ��1 should be tested on a subsequence ST
of the sequence of switches (such that the dynamic system is parameterized by a non-empty subset of possible stable
parameterization) by respecting at such a parameterization a minimum residence time which depends, in general, of all
the previous parameterizations and respective residence times since the above test was performed at the previous member
of ST. At an intuitive level, it is required to have at least one stable parameterization available in the configuration of
the dynamic system. Furthermore, if the number of switches is finite then the last one is to a stable parameterization
and the stability constraint should be tested at GAS parameterizations in-between finite time intervals and a minimum
residence time should be respected when the constraint is checked to the subsequent parameterization switching. If
either � is unity or the stability constraint is guaranteed with (non-asymptotically or critically) GS parameterizations
(so that � cannot be strictly less than unity) then the whole configuration of parameterizations and associated switches
is GS.

Fact 3. If all the parameterizations are unstable then the whole configuration might be still (critically) GS if the
stability constraint holds for certain patterns in the topology of switches, equilibrium points and initial conditions if
the stability constraint is respected, [27,15].

Remark. (1) Facts 1–2 are established in terms of sufficiency-type conditions so that they are compatible with Fact 3.
(2) Fact 2 is a direct extension of Fact 1 and might be applied under the existence of (at least one) stable param-

eterizations of the dynamic system. It is only required that the stability constraint to be tested and accomplished at
certain stable parameterizations after a finite number of switches have taken place involving either unstable or stable
parameterizations where such a constraint has not been guaranteed. Since not all stable parameterizations are involved
in testing the stability constraint, those involved in guaranteeing the associate test will be called marked parameteriza-
tions in the graph-based formulation context and axiomatic foundations used to describe the topological context of the
configuration obtained from switches between parameterizations of the dynamic system.

The subsequent simple example illustrates the above Facts 1–3.

Example. Assume a linear (piecewise invariant) time-variant first-order system ẋ(t)=�(t)x(t);x(0)=x0 with |x0| < ∞.
Assume a sequence {ti}�0, 0���∞ of switches between configurations defined by �(t) = �(ti), ∀t ∈ [ti , ti+1) with

x(ti+1) =
i∏

j=0

[e�(tj )(tj+1−tj )]x(t0) = [e
∑i

j=0(�(tj )(tj+1−tj ))]x(t0).
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If � < ∞, then the system is GS (GAS) if �(tx)�0 (�(t�) < 0) since |x(t)|�K1 < ∞, ∀t �0 (and, furthermore, x(t) →
0 as t → ∞ if �(tx) < 0). If � = ∞ (i.e. infinitely many switches take place) then the system is GS (GAS) if∑i

j=0�(tj )(tj+1 − tj )�K2 < ∞ for any integer i�0 so that it suffices that �(t�j
)�0 (�(t�j

) < 0) during a sufficiently
large residence time interval t�j+1 − t�j

�Tres(�(ti); i = t�j−1 , t�j−1+1, . . . , t�j
), |t�j+1 − t�j

|��r < ∞ for t�j+1 = t�j
+

�(�j ), some �j , �(�j ) ∈ Z+, with the configuration �(t) = �(t�j
), ∀t ∈ [t�j

, t�j+1) for all ti ∈ {tj }∞0 and some (in
the most general case proper) subsequence of switching time instants t�i

∈ {t�j
}∞0 ⊂ {tj }∞0 such that �i takes values

at a subset of Z+
0 as i ∈ Z+

0 , where the stability constraint is guaranteed so that |x(t�j+1)|��|x(t�j
)|�K3 < ∞ with

��1 and |x(t)|�K3 < ∞ for all t ∈ R+
0 and some positive finite real constant K3. If � < 1 then x(t) converges

asymptotically to zero at the subsequence of switching instants where the stability constraint holds so that as a result
x(t) converges asymptotically to zero as time tends to infinity since no finite escape times can occur in-between such
switching instants (since the system is linear). Note that the above stability properties agree with the general Facts 1–2.
Now, assume that �(t) = �0e−�t (�0 > 0, � > 0), ∀t ∈ R+

0 /R1 := {z ∈ R+
0 : z /∈ R1} ⊂ R+

0 with R1 being a (perhaps)
non-connected interval) of finite measure L1 where �(t) = �1 > 0, ∀t ∈ R1. All the time instants where the value of
�(t) switches from �1 or to �1 are switching instants between parameterizations of the system. Then, the system is GS

with �(t) > 0, for all t ∈ R+
0 since |x(t)| = |e

∫ t
0 �(�) d�x0|�(e�1L1 + e�0/�)|x0| < ∞ for all t ∈ R+

0 . This is a particular
situation included in the general background Fact 3.

3.2. Graph theory problem setting up

Graph theory is now used to investigate the stability of a dynamic system possessing a set of parameterizations with
mutual switches between them. For that purpose, the following topological formalism is first introduced. Consider
a linear (in general time-varying) dynamic system Ds with ϑ (finite or infinitely many) distinct parameterizations
P := {p0, p1, . . . , pϑ−1}, [20,21], to which the graph G := (V , E) of so-called power, degree or cardinal Card(V )=ϑ
being the number of vertices in V := {v0, v1, . . . , vϑ−1}, with E := {e1, e2, . . . , eϑ} being its associate set of edges/(or
arcs if G is a digraph). Each one of the ϑ vertices vi inV represents a possible parameterization pi of Ds while the switches
from a parameterization to the next one is represented by an edge eji

{vji−1 , vji
} for vji

∈ V with ji ∈ {1, 2, . . . ,ϑ}
(or by an arc if G is a digraph what means that a transition to the last previous parameterization is forbidden). A walk
W = (ej1 , ej2 , . . . , ) = ({vj0 , vj1}, {vj1 , vj2

}, . . . , ) in G (in particular a trail, path, cycle etc.) with start vertex vj0 in V
is associated via a bijective mapping to a state-trajectory of Ds involving (possibly) parameterizations switches whose
initial condition x0 is in the parameterization pj0 ∈ P. A walk having repeated vertices is associate with repeated
parameterizations which define a certain state-trajectory of the dynamic system. If the walk involves (n + 1) vertices
then the number of switches is n (finite) and the system remains at the last parameterization (which is reached in finite
time) during a time interval of infinite duration which allows describing the concept of stability as a limit property with
time tending to infinity. If there is no terminal vertex then the state-trajectory associated with W possess infinitely many
switches. The residence time at each parameterization is the weighted length of the edge/arc to the next parameterization
with the only vertices possessing reflexive arcs (then of weighted length infinity) being the terminal ones, if any, for
some walk describing a state-trajectory of Ds. Since there is a natural bijection between state-trajectories of the
dynamic system Ds and walks in the graph, we might refer the stability properties of a state-trajectory of the dynamic
system to related properties in the associated graph walks or individual vertices. Thus, the subsequent definitions are
introduced.

Definition. (1) A vertex in the set V of vertices of G is asymptotically stable, critically stable (both being stable) or
unstable if its associate parameterization in the dynamic system Ds is GAS, GS or unstable.

(2) A (so-called) reduced vertex describes a whole configuration satisfying Fact 3 being considered as a vertex for
all purposes.

(3) A walk Ws in G is GS (GAS) if the associate state-trajectory xDs (x0; 0, ∞) of Ds, whose state x(t) ∈ Rn remains
uniformly bounded for all t ∈ R+ provided that it is bounded at t = 0 (in addition, if it converges asymptotically to
zero as time tends to infinity).

(4) The graph G is GS (GAS) if any walk with edges/arcs of G is GS (GAS).

Remark. (1) Note that any walk being a reflexive edge/arc around a critically stable or asymptotically stable vertex
corresponds to a globally stable or globally asymptotically stable state-trajectory with a single parameterization with
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no switches for any bounded initial state. If Ds is linear time-invariant, so that with a single constant parameterization,
then G has a single vertex which is asymptotically stable (critically stable) if all the eigenvalues of the dynamics matrix
of Ds have strictly negative real parts (at least one of them has zero real part).

(2) The graph G has no walk constraints if any vertex is linked to all the remaining ones with an edge/arc so that
the input and output degrees (indeg and outdeg) of each vertex are both equal to ϑ − 1, which is infinity if the graph
power is infinity. As a result, switches are allowed from a parameterization to any other existing parameterization in
Ds. A walk W in G describes a state-trajectory of Ds during a certain time (for stability analysis such a time should be
infinity). Each vertex in the walk describes a parameterization of Ds which is reached at a switching time. The residence
time at this parameterization and the switch to the next vertex (representing a new parameterization) is described by
an incident output edge/arc whose accumulated weight equalizes such a time, the arc being reflexive if and only if
the vertex is terminal. The state-trajectory solution at time instants, which are not switching times in Ds, is always
mapped into some edge/arc adjacent with two vertices of G describing the previous and next (if any) switching between
parameterizations.

(3) Since the overall time associated with any state-trajectory is infinity, any walk W := (ej0 , ej1 , . . . , ejm) of
length L(W) := m�∞, the associated graph G has an accumulated weighted length of residence times at each vertex
Lw(W) := ∑m

ji∈Zm
Tji

= ∞; Zm = {0, 1, . . . , m} such that Ti := ti+1 − ti ; ti ∈ S := {tj }m0 (0�m�∞). Any proper
subwalk W ′ ⊂ W , associated with a subtrajectory of Ds, has a finite accumulated weight (i.e. duration) Lw(W ′) :=∑m′

ji∈Z′
m
Tji

< ∞ if W possess a terminal vertex and Lw(W ′) := ∑m′
ji∈Z′

m
Tji

�∞, otherwise with m′ < m�∞ and all
residence times in the walk fulfilling Ti > 0. These considerations for the evolution through time of the state-trajectory
or corresponding walk W in the associated graph are motivated by the fact that the residence time at any single
parameterization is the weighted length of the edge/arc to the next parameterization.

(4) To investigate the stability, note that all the state-trajectories of Ds are, by nature, of infinite duration so that the
associated walks W in G satisfy some of the subsequent properties:

• L(W) := m < ∞ and Lw(W) = ∞. Thus, W has (m + 1) vertices, m edges/arcs, a finite number m of switches
in-between parameterizations and a terminal vertex whose associate parameterization has an infinite time duration.
Any proper subwalk W ′ ⊂ W satisfies L(W ′) < m < ∞, Lw(W ′) < ∞ and always involves a finite number of
switches in-between parameterizations with all the residence times being finite.

• L(W) = ∞ and Lw(W) = ∞. Thus, W has infinitely many vertices and edges/arcs, infinitely many switches
in-between parameterizations and no terminal vertex. All the residence times are finite. Any proper subwalk
W ′ ⊂ W satisfies L(W ′)�∞, Lw(W ′)�∞ with (Lw(W ′) < ∞ ⇔ L(W ′) < ∞) ⇔ (Lw(W ′) = ∞ ⇔
L(W ′) = ∞) so that it can involve a finite or infinite number of switches in-between parameterizations. Since
L(W) = ∞ either one or more vertices are reached infinitely many times if Card(V ) < ∞ or,
alternatively,deg(G) = Card(V ) = ∞ (i.e. the dynamic system Ds has infinitely many parameterizations associ-
ated with the terminal vertex-free walk W).
(5) The finite (or infinite) set of switching times between all the set of adjacent vertices vji

, vji+1 ∈ V of G defining

a walk W is S := {ti}��∞
0 = {ti ∈ R+

0 : ti+1 > ti} with the residence time at vji
being Ti = ti+1 − ti .

Since only one vertex at each time is active at each walk, not all vertices should be tested for the stability constraint
and (in general) not all the vertices of the graph are in any walk describing a state-trajectory, the following variables
and functions are defined, ∀v ∈ V :

• sv is the stability notch of the vertex v defined as follows: sv = 1, 0 and −1 if and only if v is asymptotically stable,
critically stable and unstable, respectively.

• av : R+
0 → {0, 1} is the (binary) activity function of the vertex v defined as av(t) = 1 if v is active in some walk W

describing a state-trajectory of Ds and av(t) = 0, otherwise.
• pv : R+

0 → P ⊂ Rqv is the (real Z+ � qv-vector) parameterization function of Ds represented by the vertex
v (qv may depend on v in the general case). If Ds is piecewise time-invariant then pv ∈ Rqv is a constant real vector.

• mv : R+
0 → {0, 1} is the (binary) marks function of the (so-called marked) vertex v in the walk W at time t defined

as mv(t) = 1 if v is active and its associate parameterization in Ds fulfills the stability constraint tested from the last
previous marked vertex, otherwise mv(t) = 0 if v is not a marked vertex at time t.
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• hv : R+
0 → {0, 1}�hv(t) is the (size dependent on time) marks history �hv(t)-tuple (�hv(t)�∞) of the marked vertex

v at time t defined as

hv(t) := [hv(t
−)

...mv(t�v)] = [h(t(�−1)v)
...mv(t�v)] = [mv(t0v), mv(t1v), . . . , mv(t�v)],

with hv(0−) = ∅, as then stated in an axiomatic context, for all time t verifying S ⊃ (S∗ ∩ Sv) ⊃ S∗
v � t�v �

t (∈ R+
0 ) > t(�−1)v where Sv (S∗

v) are the sets of switching instants towards parameterizations of Ds represented by
the active (active and marked) vertex v of G; i.e. ti ∈ Sv ⇔ av(t) = 1, ∀t ∈ [ti , ti+1), ∀ti+1 ∈ S; and

ti ∈ S∗
v ⇔ mv(t) = 1, ∀t ∈ [ti , ti+1), ∀ti+1 ∈ S.

Note that ST is introduced via imbedding from the background Facts 1–3. However, it is not required that S∗ ≡ ST;
i.e. it is not requested to perform the stability constraint test at all stable vertices taking part of a walk associate with
a state-trajectory of the dynamic system, although it is required that S∗ ⊂ ST.

• The state-trajectory strip of Ds on [a, b) ∩ R+
0 is denoted as xDs(x0; a, b) with xDs(x0) := xDs(x0; 0, ∞) so that its

state is x(t) ∈ Rn, ∀t ∈ R+
0 , with initial state x(0) = x0.

• The bijective mapping from each state-trajectory of Ds with initial state x0 at the parameterization p0 ∈ P into
its associated walk W = ({vj0 , vj1}, {vj1 , vj2}, . . . . : vji

∈ V ; ji ∈ Z+
0 ) is denoted by xW : xDs(x0) → W . The

notation also extends to sub-trajectories by specifying the time interval as xW (0, a) : xDs(x0) → W ′ ⊂ W or
xW (a, b) : xDs(x(a)) → W ′ ⊂ W .

Then, each vertex v in the graph G is characterized at time t ∈ [tv, ti), with tv ∈ Sv, ti ∈ S and [tv, ti) ∩ S = ∅, by
an information six-tuple:

zv(t) := (sv, av(t), pv(t), mv(t), hv(t)
...I (Ds)),

with I (Ds) being either empty if the vertex v is inactive at time t or a pair with the vertex information associated with
the dynamic system defined by

I (Ds) = (x(x0, t), tv) if av(t) = 1 (i.e. if the vertex is active at time since tv ∈ Sv to the next switch (if any) ti ∈ S
or until time tends to infinity with [tv, ti) ∩ S = ∅); and

I (Ds) = ∅ if av(t), =0.

If the information zv(t) is the partial one referred to a particular walk W then it is denoted by zvW (t). The marked
history as well as the history and the stability functions contain information about if the active vertex is asymptotically
or critically stable or unstable and about its history and marked history. If the vertex is active during a time interval then
it takes part of the walk W . If it is active in the same W more than once (i.e. it is active during at least two non-connected
time intervals) then the above six-tuple is updated as many times as necessary. The whole state-trajectory is reconstructed
from the information part of W which contains the strictly ordered once active vertices with possible repetitions. We
have in mind that the information about the residence time at an active vertex at each connected residence time interval in
a walk W is the weighted length of the edge/arc to the next vertex in W , namely, LwW({v, vi})= ti − tv �Lw(W) where
vi is the next vertex after the switching time tv such that the edge/arc {v, vi} is a subwalk of W . Let Suc(v, W) = �v′ ∈
V : {v, v′} ⊂ W� be the set of successors of v in V . Then, the accumulated weight of all edges/arcs in W being
output-incident with vertex v is

LavwW

({
v, vi

vi∈Suc(v,W)

})
=

∑
vi∈Suc(v,W)

LvwW ({v, vi}) =
∑

tvi∈SvW;tji ∈Sv′W

(tji
− tvi)�Lw(W),

with SvW ⊂ Sv ⊂ S being the strictly ordered set of switches to parameterizations associated with the vertex v in the
walk W . If v is visited only once in W then the above expression reduces to LavwW ({v, vivi∈Suc(v,W)})=Lavw({v, vi}).
To map appropriately the state-trajectory of the dynamic system into the walk W at transition times in-between vertices,
define the accumulated time-scheduled weight of the walk W at time t as

LavwW(t) :=
∑

ti+1,ti∈SW(t)

(ti+1 − ti ) + t − t�W (t) �Lw(W),
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where W consists of �W (�∞) edges/arcs visiting (�W + 1) vertices with SW := {ti}�W

0 being a sequence of strictly

ordered switching times, SW(t) := {ti}�W (t)

0 and �W ��W(t) := Max(i ∈ Z+
0 : t � ti ∈ SW). Then, the accumulated

time-scheduled weight of all edges/arcs in W being output-incident with vertex v is

Lav wW(t) :=
�vW (t)∑

ti ,ti+1∈SvW(t)

(ti+1 − ti ) + t − t�v(t)
,

with SvW(t) := {ti}�v(t)

0 being a strictly ordered sequence of switching times, SvW(t) := {ti}�vW (t)

0 towards vertex v in
walk W , and ���vW ��vW (t) := Max(i ∈ Z+

0 : t � ti ∈ SvW) and �vW is the number of times that the vertex V is
visited in walk W .

Each edge (“e”) or arc (“a”) output-incident with a vertex v ∈ V has an associated history of weights (i.e. times of
residence) for all time which can be obtained from the information six-tuple zv(t) which can be directly obtained from
the set of vertices with non-empty history which is the strip ge(t), ga(t) defined by

ge(a)(t) := (g
(1)
e(a)(ti1), g

(2)
e(a)(ti2) . . . , g

(�(t))
e(a) (ti� ))

(the subscript “e” or “a” is specified “ad hoc” for edge or arc) for all t � ti ∈ Sv where ge(a)(ti) := ti+1 − ti > 0 for
ti ∈ Sv and ti+1 ∈ S(/∈ Sv) with (ti , ti+1) ∩ S = ∅ and ge(a)(ti) := t − ti for ti ∈ Sv if [ti , ∞) ∩ S = ∅; i.e. there is
no switching to a vertex input-incident with “e” (“a”) after ti . If v is not output-incident with e/a or its first time it is
output-incident is at t ′ > t then ge(a)(t) = ∅. If the definition refers to a particular walk W then an extra subscript W is
added; i.e. geW(aW)(t) = ∅. As a result, note that for all walk W and ∀t ∈ R+

0 such that av(t) = 1 and (ti , t] ∩ Sv = ∅,
the constraints Lw(W)�Lav�W(t) �

∑
t � ti∈Sv

ge(a)(ti) + t − ti hold.

3.3. Axiomatic framework

A set of axioms is now stated in order to then formulate the main results. The decomposition of V as the disjoint
union of stable, critically stable and unstable vertices V := V s ∪ V cs ∪ V u. In general, we will identify the overall set
of distinct vertices as V0 := V s ∪V cs ∪V u. However, the cardinal of that set may be reduced by grouping together sets
of walk including vertices and associate edges/arcs which satisfy Background Result 3, i.e. the associate subwalks are
(critically) stable. These configurations are improper or reduced vertices and by convention the set V includes these
configurations, if any, as improper vertices so that V := V s ∪ V cs ∪ V u ∪ V r is disjoint union where vertices in the
set V s ∪ V cs ∪ V u taking part of V have been deleted from the original set of vertices V0 and incorporated to V r

as (improper) reduced vertices. If there exists a non-empty set of (so-called) reduced vertices V r leading to a stable
configuration including the edges/arcs incident with them, include them, together with all their incident edges/arcs in
the set V cs of critically stable vertices; i.e. svr =0, ∀vr ∈ V r .All vertex V � v /∈ V r is called a proper vertex (as opposite
to reduced vertex in V r ). Let us denote by T (e∗−, e∗+) (respectively, T (a∗−, a∗+) the time interval in-between the
output edge e∗ (arc a∗) of the current stable marked vertex v∗ and the stable previous marked vertex v∗− in a walk W

which has to be at least equal to a minimum residence time Tres in order to guarantee the closed-loop stability of the
state-trajectory xW (x0, Ds).

Axioms. (1) A walk W is a unique strictly ordered sequence of edges/arcs associated with active vertices during
consecutive time intervals. Also, 0 ∈ S for any walk W , i.e. t = 0 is a switching time irrespective of the initial vertex
of W .

(2) t = 0 ⇒ hv(0−) = ∅, ∀v ∈ V .
(3) A vertex (reduced vertex) v has a reflexive edge (or arc) for a walk W if and only if v is the terminal vertex

(terminal reduced vertex) of W .
(4) ∀t ∈ R+

0 , ∃ (a unique) v∗ ∈ V : av∗(t) = 1 for each W .
(5) ∀t ∈ R+, ∃ (a unique) edge e∗ = {v∗, v} (or arc a∗ = {v∗, v}) ge∗(a∗)(t) > 0, v, v∗ ∈ V . (From Axiom 3, for

terminal vertices or terminal reduced vertices v = v∗ so that e∗ = {v∗, v∗} (or a∗ = {v∗, v∗})).
(6) For any walk W , Lw(W) = ∞ and Lw(W1)�∞ for any proper subwalk W �= W1 ⊂ W . If W has a terminal

(proper or reduced) vertex then Lw(W1) < ∞ for any proper subwalk W �= W1 ⊂ W .
(7) If sv = 0(1) then any walk W = (W1, v) with proper terminal vertex v ∈ V is critically stable (globally

asymptotically stable). If svr = 0 then any walk W = (W1, vr ) with vr ∈ V r is critically stable.
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(8) If W is a walk with (non-necessarily distinct) non-terminal stable marked vertices v∗, v′∗ ∈ V s after some finite
time t∗ ∈ R+ (i.e. hv∗(t) �= ∅ and hv′∗(t) �= ∅ for all t � t∗) then W , and thus xW (x0, Ds), is GAS for all bounded x0

provided that f (hv(t
∗
i )) satisfies the stability constraint (1) with hv(t

∗
i ) := [hv(t

∗
i−1)

...hve(a)(t
∗
i )] for t∗i+1 � t∗i + Tres,

∀t∗i , t∗i+1 ∈ S∗ ∩[t∗, ∞) with some real � ∈ (0, 1). W , and thus xW (x0, Ds), is (at least) GS for all bounded x0 provided
that the stability constraint holds with �=1. W , and thus xW (x0, Ds), is GS for all bounded x0 provided that the stability
constraint holds with � ∈ (0, 1) provided that v∗, v′∗ ∈ V cs ∪ V r .

(9) If either hv(t) = ∅, ∀v ∈ V s ∪ V cs ∪ V r , ∀t ∈ R+ or V �= V s ∪ V cs ∪ V r = ∅ then W , and thus xW (x0, Ds), is
unstable for all bounded x0.

(10) Only vertices in V s ∪ V cs ∪ V r can possess a non-empty marked history as time tends to infinity.

Comments to the axioms. (1) Axiom 1 implies that for any state-trajectory of Ds, the initial time is a switching time
of certain (initial) parameterization and state represented by a start proper vertex (or trail associated with a reduced
vertex) of the graph.
(2) Axiom 2 establishes that no vertex has a non-empty history on (−∞, 0).
(3) Axiom 3 states that reflexive edges/arcs are only incident with proper or reduced terminal vertices to reflect the two
following facts:

• Any state-trajectory of Ds has an infinite time duration so that only (sub)trajectories of finite duration are possible
prior to reach terminal vertices.

• The residence time intervals at ancestor vertices for the same walk are finite which are the weights of (non-
reflexive) edges/arcs of all those ancestor vertices.

Note that this axiom might be replaced by using reflexive edges/arcs at all vertices whose weights are the re-
spective residence times at the involved vertices. Under such a description, all the vertices in a walk have reflexive
edges/arcs whole the remaining output (unweighted) edges/arcs are only used to construct the walk of the graph.
This alternative description is not used since the problem information is not increased while the difficulties, for in-
stance, derived from schematics graphics descriptions increase because of the (one per vertex) proliferation of reflexive
edges/arcs.

(4) Axioms 4 and 5 mean that each walk W in G, associated via a bijective mapping with a state-trajectory of
Ds, might be constructed by successive aggregation of subwalks involving active vertices and edges/arcs and incident
edges/arcs. In the case of walks with terminal vertices, a reflexive edge/arc finishes the walk with an infinity time
duration.

(5) Axiom 6 establishes that the accumulated weight of any walk associated with a state-trajectory is infinite, because
of its infinite associated residence time, and that any partial subtrajectory has a finite duration so that its associate subwalk
has a finite accumulated weight provided that the whole walk ends at a terminal proper or reduced vertex. If W contains
infinitely many switches then the proper subwalks can have either finite or infinite time lasting.

(6) Axiom 7 reflects the fact that state-trajectories with either asymptotically stable or critically stable final configu-
rations are described by terminal critically stable or asymptotically stable vertices in the graph what may be extended
to stable reduced vertices and associate configurations of Ds.

(7) Axioms 8 and 10 establish that any stable/critically stable proper vertex or critically stable reduced vertex might
possess a non-empty marked history as time tends to infinity. Note that although the start vertex is marked (Axiom 1),
it has no marked history for t �0 (Axiom 2) so that Axiom 10 is compatible and complementary with Axioms 1 and 2.

(8) Axiom 9 states that if there are unstable vertices and there is no marked history in a walk at any time then the
trajectory is unstable.

(9) Axiom 10 also reflects the feature that reduced stable terminal vertices are critically stable (by nature) describing
oscillatory behaviors in the dynamic system Ds either associated with configurations of combined unstable, stable and
critically stable equilibrium points or switching processes in-between unstable configurations to the light of background
fact 3.

4. Stability results

A set of stability results based on the topology of links between parameterizations and mutual switches based on the
parallel graph problem description are now obtained. Basically, these results rely on the background results Facts 1–3
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of Section 3, which are known from analytical tools for stability analysis in the presence of parameterization switches
the literature, together with the axioms of Section 3 which were introduced in a natural way by using intuition as well
as Facts 1–3. Basically, if switching stops in finite time, the whole configuration is globally stable (asymptotically
stable) if the last parameterization is stable (asymptotically stable). If there are infinitely many switches in-between
parameterizations, it is requested to have infinitely many stable (asymptotically stable) parameterizations (including
possible repetitions in the same walk of parameterizations through time) where the system remains parameterized
at least a minimum residence time. The associated (asymptotically stable or critically stable) vertices are “marked”
since they satisfy the stability constraint compatible with the requested residence time imposed by the time interval
from the last occurred mark. The critical parameterization and the sets of switches leading to stability according
to Fact 3, even under individual instability conditions in the absence of switches, are addressed in a similar way.
For that last situation, the concept of (critically stable) reduced (i.e. non-proper) vertices is used to include all the
local configuration (parameterizations plus switches). Those vertices are added to the set of proper ones for stability
discussion. Some of the results are, in particular, devoted to mixed configurations that include Eulerian, Hamiltonian and
rotational cycles generated by the fact that the sequences of parameterizations are constrained according to those cyclic
behaviors.

Claim 1. Assume that the start active vertex of a walk W is in V/V u = V s ∪ V cs ∪ V r . Then,

S∗ := {t∗�k
}��
�0

⊂ S := {tk}��∞
0 with Z+

0 � �k �k ∈ Z+
0

⇒ (Card(S)) = � + 1�(Card(S∗)) = �� + 1 − �0 �1

so that Card(S∗) = 1 if and only if S∗ = {0} and Card(S) < ∞ ⇒ Card(S∗) < ∞.

If the start active vertex is in V u, so that 0 /∈ S∗, then S∗ = ∅ and Card(S∗) = 0 for all walk W with no marked vertex.

Proof. W is unique and built with a sequence of edges/arcs of consecutive active vertices with hv(0−)=∅ from Axioms
2–5. Since all the marked vertices are in S then S∗ ⊆ S and then ∞�� + 1 = Card(S)�Card(S∗)�1 if 0 ∈ S ∩ S∗
(Axiom 1) ⇒ Card(S)�Card(S∗)�1 and the proof is complete. On the other hand, if 0 /∈ S∗ then Card(S∗) = 0 for
any walk W with no marked vertex from Axioms 1 and 2 since hv(0−) = ∅, ∀t ∈ R+

0 . �

Claim 2. If V = V s = {v} then Ds is GAS for any bounded initial condition and the only associated walk W is GAS. If
either V = V cs = {v} or V = V r = {v} consists of a reduced (critically stable) vertex then Ds is GS for any bounded
initial condition and the only associated walk W is GS.

Proof. The only (trivial) switch occurs at 0 ∈ S ∩ S∗ = {0}, from Axiom 1, since no edge/arc exists in G apart from
the reflexive edge incident with v which is trivially terminal. Then the result follows directly. �

Claim 3. Assume that V s ∪ V cs = ∅ and that there is no reduced vertex. Then, Ds has no stable-state trajectory so
that there is no stable walk in the associated graph.

Proof. Since V s ∪ V cs ∪ V r = ∅ then hv(t) = ∅, ∀t ∈ R+
0 since 0 /∈ S∗ (from Axioms 1 and 8 since there is no stable

vertex). Then, any walk W has all vertices, the (unstable) start marked vertex included, in a set of proper unstable
vertices since V r = ∅. As a result W as well as the associated state-trajectory x(x0, Ds) of Ds are unstable from
Axiom 9. �

Claim 4. Assume that V s ∪ V cs �= ∅ and V r = ∅. Then, a necessary and sufficient condition for a state-trajectory
x(x0, Ds) of Ds to be stable that its associate walk W(x(x0, Ds)) satisfies any of the two conditions below:

C1. W(x(x0, Ds)) has a terminal vertex in V s ∪ V cs .
C2. W(x(x0, Ds)) has (at least) one vertex in V s ∪ V cs with non-empty marked history hv(t) �= hv(t − ts∗) ⇒

(hv(t
′) �= ∅, ∀t ′ � t), ∀t �Max(t∗, t∗s ), some finite t∗, ts∗ ∈ R+

0 .
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A necessary and sufficient condition for a state-trajectory x(x0, Ds) of Ds to be asymptotically stable is that its
associate walk W(x(x0, Ds)) has a terminal vertex in V s provided that Lw(W1) < ∞ for all W �= W1 ⊂ W , or
infinitely many marks in elements of V s as time tends to infinity if Lw(W1) = ∞ for some proper subwalk W1 with
W �= W1 ⊂ W .

Proof. Necessity. Proceed by contradiction.Assume that V s∪V cs=∅, V r =∅ with a walk W(x(x0, Ds)) with a terminal
vertex in V u so that Lw(W) = ∞ and Lw(W1) < ∞ for all W �= W1 ⊂ W (Axiom 6) so that Lw(W1)�Lw(W) = ∞,
∀W �= W1 ⊂ W (Axiom 6). Then, the system is unstable from Axiom 9. Equivalently, if there is a terminal vertex
in V s ∪ V cs (Condition C1) then the walk W(x(x0, Ds)) and its associate state-trajectory x(x0, Ds)) of Ds are stable.
Now, assume that there is no terminal vertex. Then, x(x0, Ds)) might be stable only if V r �= ∅ (what is excluded by
assumption) since V s ∪V cs =∅ or if there is at least one vertex with non-empty marked history as time tends to infinity.
This is impossible from Axioms 8 to 10 for any walk of infinite weighted length if V s ∪ V cs ∪ V r = ∅ or if there is no
vertex in V s ∪ V cs with non-empty marked history (Condition C2).

Sufficiency. It follows directly from Axiom 7.
The asymptotic stability referred to in the second part of the claim follows directly using Condition C2 with

the restriction that the terminal vertex is in V s provided that any proper subwalk is of finite weighted length or
the walk W (not necessarily possessing an asymptotically stable terminal vertex) possess infinitely many marks in
the marked history provided that some proper subwalk is of infinite weighted length from Axioms 6 and 7 since
‖x(t∗k )‖��‖x(t∗k−1)‖��k‖x(0)‖ → 0 as k → ∞ with all the sequence {‖x(t∗k )‖}∞k=0 being bounded if x(0)

is bounded with t∗i = ti+ki
∈ S∗ (t∗0 = t0 ∈ S∗) for some sequence of integers ki ∈ Z+

0 , ∞� i ∈ Z+
0 . Since

0 < Tres � |t∗i+1 − ti |��r < ∞ and Ds is linear no finite escape times can occur so that the state-trajectory is bounded
for all time and it tends asymptotically to zero as time tends to infinity. The sufficiency part follows directly from Axiom
7. The proof has been completed. �

Claim 4 extends in a natural fashion for a G with all vertices being stable as follows:

Claim 5. Assume that G is a graph with V = V s ∪ V cs and V r = ∅. Then, a necessary and sufficient condition for a
state-trajectory x(x0, Ds) of Ds to be stable is that its associate walk W(x(x0, Ds)) satisfies any of the two conditions
below:

C1. W(x(x0, Ds)) has a terminal vertex.
C2. W(x(x0, Ds)) has (at least) one vertex with non-empty marked history hv(t) �= hv(t − ts∗) ⇒ (hv(t

′) �=
∅, ∀t ′ � t), ∀t �Max(t∗, t∗s ), some finite t∗, ts∗ ∈ R+

0 .

A necessary and sufficient condition for a state-trajectory x(x0, Ds) of Ds to be asymptotically stable is that its
associate walk W(x(x0, Ds)) has a terminal vertex in V s provided that Lw(W1) < ∞ for all W �= W1 ⊂ W or infinitely
many marks in elements of V s as time tends to infinity if Lw(W1)=∞ for some proper subwalk W1 with W �= W1 ⊂ W .
If either C1 or C2 is satisfied by any walk W(x(x0, Ds)) then all trajectories of Ds and their associate graphs are stable.
If, furthermore, V cs = ∅ then all trajectories and associate graphs are asymptotically stable under the same conditions.

Proof. It follows directly as that of Claim 4 using V = V s ∪ V cs and V r = ∅ since the graph has no unstable vertex
so that the required properties apply for all walk. �

Claims 4 and 5 extend now in a natural way to the presence of graphs with reduced (stable) vertices, but only
(non-asymptotic) stability is guaranteed as follows since reduced vertices behave as critically stable proper ones. They
also extend allowing switches if the graph is connected since it is always possible to reach (terminal or non-terminal
with marked history) vertices in the non-empty set V/V u even for initial conditions in V u.

Claim 6. Assume that V =V s ∪V cs ∪V r . Then, a necessary and sufficient condition for any state-trajectory x(x0, Ds)

of Ds to be stable is that its associate walk W(x(x0, Ds)) satisfies any of the two conditions below:

C1. W(x(x0, Ds)) has a terminal vertex.
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C2. W(x(x0, Ds))has (at least) one vertex with non-empty marked historyhv(t) �= hv(t−ts∗) ⇒ (hv(t
′) �= ∅, ∀t ′ � t),

∀t �Max(t∗, t∗s ), some finite t∗, ts∗ ∈ R+
0 .

Assume that G is a connected graph with V ⊃ V/V u = V s ∪ V cs ∪ V r being a proper inclusion (i.e. V u �=
∅) so that V s ∪ V cs ∪ V r = ∅ (i.e. the overall set of stable proper and reduced vertices is non-empty). Then,
for any bounded initial condition of Ds, it is possible to construct stable state-trajectories (x(x0, Ds)), involving
at least one parameterization switch, with associate stable walk W(x(x0, Ds)) if any of the two conditions
below:

C1. W(x(x0, Ds)) has a terminal vertex in V/V u.
C2. W(x(x0, Ds)) has (at least) one vertex in V/V u with non-empty marked history hv(t) �= hv(t − ts∗) ⇒ (hv(t

′) �=
∅, ∀t ′ � t), ∀t �Max(t∗, t∗s ), some finite t∗, ts∗ ∈ R+

0 .

Proof. It follows by directly extending that of Claim 5 and using the properties of connected graphs for the second
part. In that second part, a switch at least is allowed for a trajectory starting in V u since the graph G is connected
and Min(Card(V u), Card(V/V u))�1 since both V/V u and V u are non-empty. For any trajectory with start vertex in
V/V u, at least two switches are allowed to build a stable state-trajectory of Ds and associate stable walk W(x(x0, Ds))

of G if Min(Card(V u), Card(V/V u)) = 1. �

The connection structure of the graph as well as the properties of its reachability matrix lead to the following necessary
and sufficient condition of existence of stable state-trajectories and associated walks:

Claim 7. Assume that the set of vertices V satisfies the constraint of proper inclusion V ⊃ V s ∪ V cs ∪ V r �= ∅
(i.e. V u �= ∅) and that the reachability matrix of G, R(G), satisfies

R(G) =
d(G)∑
i=1

[A(G)]i = P1 Block Diag (A1, A2, . . . , Ak)P2,

with k�2 where d(G) is the diameter of G (i.e. the maximal distance between vertices), A(G) is the adjacency
matrix of G, P1,2 are permutation matrices, and Ai (i = 1, 2, . . . , k) are some real matrices. Then, a necessary
condition for the existence of stable state-trajectories of Ds and associate stable walks W(x(x0, Ds)) of G is that
Card(V s∪V cs∪V r)�k. If Card(V s∪V cs∪V r)=k0 < k then there are at least (k−k0) with all their vertices in V u where
any bounded initial condition leads to a unstable state-trajectory of Ds and an associate unstable walk W(x(x0, Ds))

of G.

Proof. The reachability matrix possesses k cells implying the existence of k connected components of the non-
connected (since k > 1) graph G. The existence of (at least) a stable terminal or a marked ( proper or reduced) vertex
per connected component Gi (a subgraph of G) for stability of state-trajectories and associated walks with any initial
conditions is necessary, since they may correspond to parameterizations at unstable vertices, from Claim 6. �

A necessity- and sufficiency-type condition of stability for a non-connected graph is directly obtained from Claim 4
as follows:

Claim 8. Assume that Claim 1 holds so that there are Gi (i=1, 2, . . . , k) connected components of G with Card(V̄ s)�k

�Card(V̄ si )�1 (i = 1, 2, . . . , k) with V ⊃ V̄ s = ⋃
1� i �k(V̄

si ), V̄ s := V s ∪ V cs ∪ V r , V ⊃ V i ⊃ V̄ si :=
V si ∪ V csi ∪ V ri (i = 1, 2, . . . , k) with all the set inclusions being proper and all the set unions being disjoint. Then,
a sufficient condition of existence of stable state-trajectories of Ds and associate stable walks W(x(x0, Ds)) of G for
initial conditions for parameterizations at any vertex is that walks in each connected component Gi (i = 1, 2, . . . , k)

satisfies Claim 6.
IfV s �= ∅and either Conditions C1 or C2 in Claim 6 stands by replacingV/V u byV/(V u∪V cs∪V r) then the stability

of state-trajectories of Ds, and associate stable walks W(x(x0, Ds)) of G, for initial conditions for parameterizations
at any vertex is global asymptotic.
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The two following results are concerned with walks involving Eulerian cycles (i.e. walks with the same start and
end vertex where edge/arc is not repeated by the same walk) or Hamiltonian cycles (i.e. walks with the same start and
end vertex where each vertex is visited once, the start/end one excepted).

Claim 9. Assume that G is connected and that the power of each v ∈ V is po(v) = 2iv , some iv ∈ Z+. Assume
also that V̄ s = V s ∪ V cs ∪ V r �= ∅ and consider a walk W(x(x0, Ds)) with (at least one) Eulerian cycles of the form
W =(Wc, W

′) with Wc being non-empty connected and containing all the Eulerian cycles of W and W ′ being connected
if non-empty. Then, the following items hold:

(i) The walk W(x(x0, Ds)), and thus its associate state-trajectory of Ds , is globally stable if and only if W ′ is non-
empty with a terminal vertex in V̄ s or if Wc has a terminal vertex in V̄ s or a non-empty subset of V̄ s with infinitely
many marks.

(ii) The walk W(x(x0, Ds)), and thus its associate state-trajectory of Ds, is globally asymptotically stable if V s �= ∅
and Item (i) holds by replacing V̄ s with V s .

Proof. Since deg(v) = 2iv , G is Eulerian and the considered walk W is decomposed into two disjoint connected
subwalks: Wc, that contains all the Eulerian cycles and possible trails and paths in-between them as well as the start
vertex by construction, and W ′, with no cycles (since all of them are in Wc). The proof follows directly from Claim 6
since Lw(W ′) = ∞ ⇔ (W ′ �= ∅ ∧ Lw(Wc) < ∞) and Lw(Wc) = ∞ ⇔ (L(W ′) = ∅ ⇒ W ′ = ∅) since both Wc and
W ′ are connected.

Claim 10. Assume that G is connected with Card(V )�n�3 and V ⊃ V̄ s = V s ∪ V cs ∪ V r �= ∅, and that some of
the constraints below holds:

(a) deg(v)� n
2 , ∀v ∈ V .

(b) For any two non-adjacent vertices v and v′, deg(v) + deg(v′)�n.

Consider a walk W(x(x0, Ds)) with (at least one) Hamiltonian cycle of the form W = (Wc, W
′) with Wc being

non-empty connected and containing all the Hamiltonian cycles of W and W ′ being connected if non-empty. Then, the
following items hold:

(i) The walk W(x(x0, Ds)), and thus its associate state-trajectory of Ds, is globally stable if and only if W ′ is non-
empty with a terminal vertex in V̄ s or if Wc has a terminal vertex in V̄ s or a non-empty subset of V̄ s with infinitely
many marks.

(ii) The walk W(x(x0, Ds)), and thus its associate state-trajectory of Ds, is globally asymptotically stable if V s �= ∅
and Item (i) holds by replacing V̄ s with V s .

Proof. It follows directly from Claim 6 following a similar reasoning as that of the proof of Claim 9 since under any
of the constraints (a) or (b) the graph is Hamiltonian so that it contains at least a Hamiltonian cycle. �

Claim 9 is directly extendable to �-rotational k-cycle systems, [16], which satisfy less restrictive conditions than
Eulerian/Hamiltonian cycles. Assume that the set of switches in-between parameterizations is disposed with walks
being a set �(�)

k := (G, C
(�)
k ) = ((V , E), C

(�)
k ) of �-rotational k-cycles Bk := ({v0, v1}, {v1, v2}, . . . , {vk−1, v0}) over

the k-trail B of graph G. (i.e. B := (v0, v1, . . . , vk−1) ⇒ (v0 +�, v1 +�, . . . , vk−1 +�)), with V := (Zv−1 ∪{∞}) � vi

(assuming Zv−1 := {z ∈ Z+
0 : z�v − 1} and the composition rule ∞ + 1 = ∞) being the pair-wise distinct vertices

and denote a k-cycle system. The subsequent result summarizes properties for existence, non-existence and design of
1-rotational k-cycle systems proved in [21,16,5] with the use of Skolem sequences (see [32,5]).

Lemma 1. The following results hold:

• There exists a rotational cycle of G in �k(1) if V satisfies the congruence relation v ≡ 3 or v ≡ 9 (mod 24).
• There is no rotational cycle of G in �(1)

k with k even. If v ≡ 1 (mod k) then there exists a rotational cycle of G in �(1)
k

if and only if k is odd and composite.
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• There exists a rotational cycle of G in �(1)
k if Card(V ) = 2kn + 1 with k odd and composite.

• There exists a rotational cycle of G in �(1)
k for any admissible pair (i, k) with k odd and i ∈ {k + 1, k + 2, . . . ,

3k − 1} − {2k + 1}.

Claim 9 extends as follows to �-rotational k-cycle systems by taking into account that terminal vertices (except
infinity) do not appear in rotational k-cycles.

Claim 11. Assume that the set of switches in-between parameterizations is disposed with walks W(x(x0, Ds)) being
a set �(�)

k := (G, C
(�)
k ) = ((V , E), C

(�)
k ) of �-rotational k-cycles Bk := ({v0, v1}, {v1, v2}, . . . , {vk−1, v0}) over the

k-trail B of graph G. Assume also that the subset of vertices V̄ s = V s ∪ V cs ∪ V r �= ∅. Then, the following items
hold:

(i) The walk W(x(x0, Ds)), and thus its associate state-trajectory of Ds, is globally stable if and only if there is a
non-empty subset of V̄ s with infinitely many marks.

(ii) The walk W(x(x0, Ds)), and thus its associate state-trajectory of Ds, is globally asymptotically stable if and only
if V s �= ∅ and there is a non-empty subset of V s with infinitely many marks.

Claim 11 might easily be re-formulated in particular for 1-rotational systems by taking into account Lemma 1 with
conditions of existence or non-existence for design of such cycles.

5. Simple formulation variations

Basically, only reflexive edges/arcs have been considered in the basic formulation of the previous sections. Thus, the
binary relation between vertices is irreflexive (except, eventually, for some terminal vertices), it is not anti-symmetric
and it is trivially transitive. Thus, all walk in the graph satisfies in a natural way, a strict order relation in-between
vertices. If all (terminal and non-terminal) vertices in a walk have loops with weights being equal to the corresponding
residence time at each associate parameterization and, furthermore, all switches to the preceding vertex are allowed,
then the symmetric property holds so that the binary relation is an equivalence relation since it satisfies the reflexive,
symmetric and transitive properties. In such a case edges/arcs incident with consecutive vertices are unweighted while
only describing the transitions to each successor vertex (i.e. transitions in-between parameterizations themselves) since
the residence times at each parameterization is always associated with an auto-loop for both terminal and non-terminal
vertices.

A third problem description is as follows: the auto-loop vertices might be eliminated if the binary relation R is defined
as viRvj := {vi, vj } if either vi = vj ∈ V (i.e. for two identical vertices) or eji/aji = {vi, vj } and the extended set
of vertices Vext := V ∪ {∞} is introduced with the infinity vertex describing the equilibrium. Then, a terminal vertex
of the main formulation in Sections 3 and 4 will translate into a vertex with a weighted auto-loop associated with a
residence time interval at a parameterization plus a linking edge/arc from such a vertex to the infinity vertex. All the
remaining residence time intervals in a walk will be associated as well with auto-loops with weighted lengths at the
corresponding vertices, the edges/arcs not being auto-loops only reflecting links to each successor vertex in the same
walf. If transitions from all parameterizations to the preceding one are always allowed, the binary relation is still of
equivalence type.

Note that the three descriptions are equivalent in the sense that they allow the description of the same problem
with no ambiguity and with the same expected performances. Only minor modification in the Axioms and associate
result are required to pass from any of the descriptions to the two remaining ones. We decided to formulate the basic
theory with the absence of as many auto-loops as possible in order to be able, if desired, to represent graphically
the graphs in the simpler possible way especially if there are many vertices most of them not being terminal. Fig. 1
figures out the philosophy of the proposed formalism. In the graph of five vertices, vertex 4 is terminal and it then
possess an auto-loop with infinity weighted length and all the remaining weighted lengths are the residence times at
the output vertex being incident with the corresponding edge while it is also an indicator of the successor vertex in the
represented walk.
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Fig. 1. Auto-loop with infinity weighted length only at terminal vertices.

6. A case study: a parallel multiestimation scheme for adaptive control

Parallel continuous and discrete multiestimation schemes have been successfully used to improve the identification
performances compared to that obtained from the use of single estimators to parameterize the adaptive controller,
[3,27,2,18]. In such a way, the transient tracking error performance becomes usually improved significantly compared
with that obtained from the use of a single estimator to parameterize the adaptive controller. In the context of the
proposed formulation, the constraints of the parallel multiestimation structure to parameterize the adaptive controller
will be the following:

• All the single pairs of estimators/adaptive controller associate parameterizations are individually adaptive global
asymptotic stabilizers if no switches in-between them are implemented. All the adaptive controller parameterizations
are pole-placement-based and obtained from the corresponding polynomial diophantine equation whose right-hand
side datum is the denominator polynomial of the reference model transfer function. This property has been proved
from analytical studies, (see, for instance, [2,18]), under simple assumptions on the plant like all unstable zeros, if
any, have to be transmitted to the reference model which has to be stable by obvious reasons. Furthermore, in the
non-ideal case of noisy plant or presence of unmodeled dynamics, an absolute upper-bound of the contributions of
those terms to the output should be known for all time to be used in the estimation scheme via a deadbeat zone to freeze
the estimation when such a bound exceeds a prescribed time-varying threshold related to an absolute upper-bound
of the adaptation error, [3,27,2] .

• All switches in-between the various estimators have to respect a minimum residence time of stay at each estimator/
adaptive controller parameterization pair so that the closed-loop stability be guaranteed.

• The vertices of the associate graph describe each estimator/associate controller adaptive parameterization pair. All
those vertices are stable since each single estimator/controller parameterization with all the remaining ones be-
ing switched off guarantees closed-loop stability. The switching process stops when the performance index of a
estimator is always less than the remaining ones but this is not always guaranteed because of the uncertainties
so that in the general setting up problem, it is not known a priori if terminal vertices are reachable or not in a
certain walk.

If the second description is chosen then auto-loops at all vertices in a walk take place which take into account the
residence times at each estimator/adaptive controller pair.
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Fig. 2. No auto-loop and infinity vertex of the extended graph describing terminal vertices.
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Fig. 3. Auto-loop for the residence time at all vertices.

Now, a discrete time invariant unknown plant is considered whose parameters are estimated via a multiestimation
parallel scheme, each estimation scheme which parameterizes the adaptive controller. The chosen estimator/controller
parameterization pair is chosen at each time by a supervisor which implements switches in-between the various pairs
while respecting a minimum residence time for closed-loop stabilization purposes. Consider the following unstable
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and unknown for controller design plant and reference model specifying the suited closed-loop behavior

H(z) = z2 − 0.6z + 0.0875

z3 − 1.9z2 + 0.73z − 0.195
; Hm(z) = z2 − 0.32z + 0.0255

z3 − 0.6z2 + 0.11z + 0.006
.

Five recursive estimators are used to run in a parallel multiestimation model for the unknown plant parameters which
are all of least-squares-type with initial covariance matrix P

(i)
0 = 105I6×6; ∀i = 1, 2, . . . , 5. The initial values of the

estimates are

	̂(1)T
0 = [−0.85 0.2 − 0.1 0.7 − 0.35 0.075],

	̂(2)T
0 = [−1 0.4 − 0.4 0.9 − 0.45 0.084],

	̂(3)T
0 = [−1.5 0.6 − 0.3 1 − 0.55 0.086],

	̂(4)T
0 = [−2 0.8 − 0.2 1.2 − 0.65 0.088],

	̂
(5)T
0 = [−2.5 1 − 0.15 1.5 − 0.75 0.088].

The minimum number of residence samples is Nr=2 which multiplied by the design sampling period gives the minimum
residence time. The merit figure to decide switches in-between estimators is given by the identification performance
index J

(i)
p (k) = ∑k

�=1

k−�(y� − ŷ

(i)
� )2 which involves a forgetting factor 
 = 0.95. The reference input is a square

wave with amplitude ±1 and a period of 20 samples. The first estimator which parameterizes the adaptive controller is
the first one. The subsequent Fig. 4 show the plant and reference outputs for both the parallel multiestimation scheme
and a single one based on the first estimator The switching map versus time is also shown which ends at the terminal
vertex 4, associated with the fourth estimation/adaptive controller parameterization pair according to the formulation
of Section 4 which is figured out via the walk in Fig. 3 or the corresponding alternative equivalent topological structures
of Figs. 1 and 2. It is seen that the tracking performance of the parallel scheme becomes improved with respect to the
single one (Fig. 4).

7. Conclusions

This paper has considered the problem of describing through graph theory the stability of topological configurations
consisting of switches in-between several parameterizations of linear time-varying dynamic systems. This kind of
situations exist in nature as well as in some practical computational problems like, for instance, that of the use of parallel
multiestimation scheme to obtain a corresponding set of parallel adaptive controller parameterizations from which one
is selected on-line which provides with the best identification performance. The selection of the estimation/adaptive
controller parameterization pair is modified through time and used to generate the control signal to the plant input.
Each of those parameterizations is associated with a vertex of a graph or digraph while edges/arcs linking vertices
represent transitions associated with switches which, if weighted, contain information about the residence times at each
parameterizations. A minimum residence time at certain stable parameterization is requested via tests performed at
certain time intervals in order to keep the closed-loop stability of the whole parameterization. The stability results are
obtained from a previous set of axioms which are built from several previous background results which were obtained
from analytical stability studies (mainly based on Lyapunov theory) as well as from intuition dictates as well as from
basic technical considerations for an appropriate setting up of the topological results. A case study concerning parallel
multiestimation for pole-placement-based adaptive control has also been presented as an example of the developed
formalism.
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