Note

A Multidimensional Generalization of Slater's Inequality

Josip E. PeČarić
Department of Mathematics and Physics, Faculty of Civil Engineering, University of Beograd, 11000 Beograd, Yugoslavia
Communicated by Oved Shisha

Received February 22, 1983; revised September 18, 1984

Slater [1] proved the following companion to Jensen's inequality for convex functions:

Suppose that f is convex and nondecreasing (nonincreasing) on (a, b). Then for $x_{1}, \ldots, x_{n} \in(a, b), \quad p_{1}, \ldots, p_{n} \geqslant 0, \quad P_{n}=p_{1}+\cdots+p_{n}>0$, and $p_{1} f_{+}^{\prime}\left(x_{1}\right)+\cdots+p_{n} f_{+}^{\prime}\left(x_{n}\right) \neq 0$, we have

$$
\begin{equation*}
\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \leqslant f\left(\sum_{i=1}^{n} p_{i} x_{i} f_{+}^{\prime}\left(x_{i}\right) / \sum_{i=1}^{n} p_{i} f_{+}^{\prime}\left(x_{i}\right)\right) . \tag{1}
\end{equation*}
$$

An integral analog of this result is also valid. Both results remain true if at any occurrence of $f_{+}^{\prime}(x)$ we write instead any value in the interval $\left[f_{-}^{\prime}(x), f_{+}^{\prime}(x)\right]$.
The following simple generalization of this result was given in [2]:
Suppose that f is a convex function on (a, b). If for $x_{1}, \ldots, x_{n} \in(a, b)$, $p_{1}, \ldots, p_{n} \geqslant 0$, and $p_{1} f_{+}^{\prime}\left(x_{1}\right)+\cdots+p_{n} f_{+}^{\prime}\left(x_{n}\right) \neq 0$, we have

$$
\sum_{i=1}^{n} p_{i} x_{i} f_{+}^{\prime}\left(x_{i}\right) / \sum_{i=1}^{n} p_{i} f_{+}^{\prime}\left(x_{i}\right) \in(a, b),
$$

then (1) is valid.
Note that a similar companion inequality to Jensen-Steffensen's inequality was also given in [2]. Some other inequalities, complementary to Jensen's inequality for convex functions, are given in [3 and 4] (see also [5 and 6]).

All these results hold for convex functions of one variable. However, we shall show that a generalization of Slater's inequality to convex functions of several variables is also valid.

2

If $x, y \in R^{m}, \quad$ say, $x=\left(x_{1}, \ldots, x_{m}\right), \quad y=\left(y_{1}, \ldots, y_{m}\right)$, then $\langle x, y\rangle=$ $x_{1} y_{1}+\cdots+x_{m} y_{m}$. We shall say that a real function f is convex on an open set $I\left(I \subseteq R^{m}\right)$ if the following inequality holds: $f(\lambda x+(1-\lambda) y) \leqslant$ $\lambda f(x)+(1-\lambda) f(y), \forall x, y \in I$ and $\forall \lambda \in[0,1]$.

Theorem. Let $f: I \rightarrow R\left(I \subseteq R^{m}\right)$ be a convex function, and let $x_{1}, \ldots, x_{n} \in I, p_{1}, \ldots, p_{n} \geqslant 0, P_{n}>0$. If $A \in I$ exists such that

$$
\begin{equation*}
\left\langle A, \sum_{k=1}^{n} p_{k} f_{+}^{\prime}\left(x_{k}\right)\right\rangle \geqslant \sum_{k=1}^{n} p_{k}\left\langle x_{k}, f_{+}^{\prime}\left(x_{k}\right)\right\rangle \tag{2}
\end{equation*}
$$

where $f_{+}^{\prime}(x)=\left(f_{1+}^{\prime}(x), \ldots, f_{m+}^{\prime}(x)\right)$ and $f_{1+}^{\prime}, \ldots, f_{m+}^{\prime}$ are right partial derivatives of f, then

$$
\begin{equation*}
\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \leqslant f(A) . \tag{3}
\end{equation*}
$$

Proof. If f is convex on I, then

$$
f(A) \geqslant f\left(x_{k}\right) \mid\left\langle\Lambda \cdots x_{k}, f_{+}^{\prime}\left(x_{k}\right)\right\rangle,
$$

i.e.,

$$
f(A) \geqslant f\left(x_{k}\right)+\left\langle A, f_{+}^{\prime}\left(x_{k}\right)\right\rangle-\left\langle x_{k}, f_{+}^{\prime}\left(x_{k}\right)\right\rangle
$$

for $k=1, \ldots, n$.
Multiply the k th inequality by p_{k} and add the inequalities thus obtained; we obtain

$$
\begin{aligned}
f(A) P_{n} & \geqslant \sum_{k=1}^{n} p_{k} f\left(x_{k}\right)+\left\langle A, \sum_{k=1}^{n} p_{k} f_{+}^{\prime}\left(x_{k}\right)\right\rangle-\sum_{k=1}^{n} p_{k}\left\langle x_{k}, f_{+}^{\prime}\left(x_{k}\right)\right\rangle \\
& \geqslant \sum_{k=1}^{n} p_{k} f\left(x_{k}\right)
\end{aligned}
$$

since (2) holds.
Corollary. Let $f, \quad x_{1}=\left(x_{11}, \ldots, x_{1 m}\right), \ldots, x_{n}=\left(x_{n 1}, \ldots, x_{n m}\right), \quad p_{1}, \ldots, p_{n}$ satisfy the conditions of the theorem. If f is also nondecreasing (nonin-
creasing) in each of its m variables and if $p_{1} f_{j+}^{\prime}\left(x_{1}\right)+\cdots p_{n} f_{j+}^{\prime}\left(x_{n}\right) \neq 0$ ($j=1, \ldots, m$), then (3) is valid if

$$
\begin{aligned}
A & =\left(A_{1}, \ldots, A_{m}\right) \\
& =\left(\frac{\sum_{k=1}^{n} p_{k} x_{k 1} f_{1+}^{\prime}\left(x_{k}\right)}{\sum_{k=1}^{n} p_{k} f_{1+}^{\prime}\left(x_{k}\right)}, \ldots, \frac{\sum_{k=1}^{n} p_{k} x_{k m} f_{m+}^{\prime}\left(x_{k}\right)}{\sum_{k=1}^{n} p_{k} f_{m+}^{\prime}\left(x_{k}\right)}\right) .
\end{aligned}
$$

Proof. Observe that $A \in I$ since A_{j} is a convex combination of $x_{1 j}, \ldots, x_{m j}$. Since

$$
\begin{aligned}
\left\langle A, \sum_{k=1}^{n} p_{k} f_{+}^{\prime \prime}\left(x_{k}\right)\right\rangle & =\sum_{k=1}^{n} p_{k}\left\langle A, f_{+}^{\prime}\left(x_{k}\right)\right\rangle=\sum_{k=1}^{n} p_{k} \sum_{j=1}^{m} A_{j} f_{j+}^{\prime}\left(x_{k}\right) \\
& =\sum_{j=1}^{m} A_{j} \sum_{k=1}^{n} p_{k} f_{j+}^{\prime}\left(x_{k}\right)=\sum_{j=1}^{m} \sum_{k=1}^{n} p_{k} x_{k j} f_{j+}^{\prime}\left(x_{k}\right) \\
& =\sum_{k=1}^{n} p_{k} \sum_{j=1}^{m} x_{k j} f_{j+}^{\prime}\left(x_{k}\right)=\sum_{k=1}^{n} p_{k}\left\langle x_{k}, f_{+}^{\prime}\left(x_{k}\right)\right\rangle
\end{aligned}
$$

the theorem implies the corollary.
Remark. One can prove the integral analogs of the above results (i.e., generalizations of inequality (4) of [1]).

References

1. M. L. Slater, A companion inequality to Jensen's inequality, J. Approx. Theory 32 (1981), 160-166.
2. J. E. PeČarić, A companion to Jensen-Steffensen's inequality, J. Approx. Theory 44, 1985.
3. P. Lah and M. Ribarič, Converse of Jensen's inequality for convex functions, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 412-460 (1973), 201-205.
4. D. S. Mitrinović and P. M. Vasić, The centroid method in inequalities, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 498-541 (1975), 3-16.
5. P. M. Vasić and J. E. Pečarić, On the Jensen inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 634-677 (1979), 50-54.
6. P. R. Beesack, On inequalities complementary to Jensen's, Canad. J. Maih. 35 (1983), 324-338.
