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Slater [1] proved the following companion to Jensen’s inequality for
convex functions:

Suppose that f is convex and nondecreasing (nonincreasing) on (&, b).
Then for x,,.,x,€(a b), piy.p.=20, P,=p,+ - +p,>0, and
pfi(x)+ -+ pafilx,) #0, we have

P;Z P fx)< f( $ pfx,.f;(xi)/ 5 p,-fux,-)). (1)

i=1 i=1

An integral analog of this result is also valid. Both results remain true if
at any occurrence of f;(x) we write instead any value in the interval
L/ (x) fi(x)]

The following simple generalization of this result was given in [2]:

Suppose that f is a convex function on (g, b). If for x,,.., x,€(a, b),
Pises P20, and p, fl(x1)+ -+ + p.fi(x,) #0, we have

S pix.fi(x) / S pfl(x)e(a,b)

i=1 i=1

then (1) is valid.

Note that a similar companion inequality to Jensen—Steffensen’s
inequality was also given in [2]. Some other inequalities, complementary
to Jensen’s inequality for convex functions, are given in [3 and 4] (see also
[5 and 6]).
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All these results hold for convex functions of one variable. However, we
shall show that a generalization of Slater’s inequality to convex functions of
several variables is also valid.

If x, yeR™, say, Xx={X{yu Xp)y V=(V1rw V) then <(x, y)=
X, y1+ - +X,, V. We shall say that a real function f is convex on an
open set I (I< R™) if the following inequality holds: f(Ax+ (1—41) y)<
M)+ (1 =4 f(p), Vx, yel and YVAe [0, 1].

THEOREM. Let f:I- R (IS R™) be a convex function, and let
X1y Xo €L P1yy pa20, P,>0. If A€ exists such that

<A, 5 pkf;(xk>>>i PeCxn 1 (x>0 @)
k=1 k=1

where f[(X)=(f14+(X)p» frns(x)) and fi, .., i, are right partial
derivatives of f, then

> Z Pif(x) < f(A). 3)

"11

Proof. 1f fis convex on I, then
F(A) 2 fxi) + <A —xp, [L(x0)D,
ie.,
J(A)Z f(x,) + <A, fL(x) ) — Cxps fL(x)D

for k=1,.., n
Multiply the kth inequality by p, and add the inequalities thus obtained;
we obtain

fA4)P,> 3 pkf<xk)+<A ) pkf+<xk)>— T ol 1 (x)

k=1 = k=1

since (2) holds.

COROLLARY. Let f,  X;=(X{g,s Xim)reees X = (Xn1eees Xpim)s  Plseees P
satisfy the conditions of the theorem. If f is also nondecreasing (nonin-
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creasing) in each of its m variables and if p, f;, (x,)+ = p,f;.(x,)#0
(j=1,.., m), then (3) is valid if

A=(A4,,.,4,)
=<ZZ=1 Pexe f14 (k) 2i_) pkkaf;n+(xk)>
Yio1 Pt (xe) o Z/'é:l PicSm+ (Xp) '

Proof. Observe that Ael since A; is a convex combination of
X jseres Xy SinCE

<A, 5 pkf+'<xk)> z P, L= 3 P S A (x)
k=1

k=1 j=1

I
I Mz

—

4;

>
i s

Pkf}+(xk)= i i kakjf,"+(xk)
1

J=lk=1

N [\/J=

e xafy ()= B pedr S50,

k
the theorem implies the corollary.

Remark. One can prove the integral analogs of the above results (i.e.,
generalizations of inequality (4) of [1]).
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