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Abstract

This paper presents a case study in the formal specification and verification of a smart card
application. The application is an electronic purse implementation, developed by the smart card
producer Gemplus as a test case for formal methods for smart cards. It has been annotated (by
the authors) with specifications using the Java Modeling Language (JML), a language designed to
specify the functional behavior of Java classes. The reason for using JML as a specification language
is that several tools are available to check (parts of) the specification w.r.t. an implementation. These
tools vary in their level of automation and in the level of correctness they ensure. Several of these
tools have been used for the Gemplus case study. We discuss how the usage of these different tools
is complementary: large parts of the specification can be checked automatically, while more precise
verification methods can be used for the more intricate parts of the specification and implementation.
We believe that having such a range of tools available for a single specification language is an
important step towards the acceptance of formal methods in industry.
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1. Introduction

With the emergence of smart cards, industry has become more interested in techniques
to establish the correctness and security ofthe applications developed. Typical smart
card applications like electronic purses and health care information holders contain
privacy-sensitive information. For the acceptance of the use of smart cards in such
domains, it is necessary that the users trust that detailsof their private life are not
passed on to third parties. Industry has realized that the only way to ensure this is
by the rigorous use of formal techniques for the specification and verification of smart
card applications. Moreover, this is enforcedin higher levels of evaluation schemes like
Common Criteria. This paperdoes not deal with securityaspects like data leakage,
but investigates functional behavior and possible abnormalities such as null pointer
exceptions. Proper functional behavior and safety properties are a first step towards secure
applications. Other researchers investigate how JMLcan be used to specify actual security
features [26].

However, as always, the problem is that formal methods are considered difficult to use.
There is a wide range of tools available that can be used to establish different properties
of an implementation. In general, each tooluses its own specification language. Thus,
with every new tool one has to understand the techniques, underlying theory and the
specification language used. And if one wishes to use different validation techniques on
the same application, one has to adapt the specification accordingly each time. This large
overhead to apply new techniques makes industry reluctant to apply formal methods; if they
use formal methods at all, then preferably with a single tool using a specification language
that they master well. Therefore, a first step to make formal methods more accessible would
be to have a single specification language and different tools that can match (different
aspects of) this specification with an implementation. These tools can then vary in their
level of precision, but also in their ease of use. In general, tools that are very precise and
allow one to check arbitrarily complicated specifications willneed more user interaction
than tools that check a limited subset of the specifications.

An interesting development in this direction is the JML project. JML — short for Java
Modeling Language [18,19] — is an annotation language for Java. It allows one to write
functional behavior specifications for Java programs, using a Java-like syntax. JML is
designed to be relatively easy to understand for an experienced Java programmer. In fact,
by now JML has become the de facto standard source code level specification language for
the functional behavior of Java programs in the academic community. As a result, more and
more tools that aim at the verification of Java programs are adopting JML as the property
specification language (see [3] for anoverview).

This paper reports on work done in this context, using different tools on (parts of) a
single JML specification. For a single applet (consisting of 42 classes and 432 kB in total
of code and documentation) a specification has been written in JML. The specification for
this applet has been checked using ESC/Java [21,12], a tool for automatic static checking
of Java programs, aiming at finding efficiently the most common program errors. Parts of
the specification and implementation also have been verified within the LOOP project [29],
a project that aims at full verification of Java programs using interactive theorem proving.
The LOOP approach has been applied to some algorithms that manipulate data in an
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intricate way, and whose verification falls completely out of the scope of ESC/Java (and
other automatic tools).

Elsewhere the authors have reported on the individual case studies in two separate
papers [2,5] with two separate tools, but here we want to show how the different techniques
complement and contribute to each other in a natural way. We do not want to argue
that a certain approach is better; in fact we think they should both be used. Given an
implementation, for large parts of a specification, it might be sufficient to use static
checking techniques to gain confidence in itscorrectness, but for the crucial algorithms
full verification is necessary. However, the effort needed for verification is actually reduced
by using static checking beforehand, because this can already identify the errors that are
relatively easy to find.

The electronic purse case study that forms the basis for this work has been provided
by Gemplus. It has been developed by several trainees, and later been extended by some
members of the Gemplus research lab.The case study is publicly available.1 It is intended
to be an example of a Java Card2 applet on which different formal methods could be tested.
Gemplus provides the applet without a formal specification: the JML specifications are
ours. It was known beforehand that the code contained bugs, but it gives a reasonable
impression of how Java Card applets are structured. The work done on this case study,
both with ESC/Java and LOOP, convinced smart card manufacturers to adopt JML and (at
least) static checking in their development process.

This paper is structured as follows. In the next section the language JML is introduced,
together with several tools using JML as the input language. In particular, ESC/Java and the
LOOP tool are introduced. Then,Section 3gives more details about the electronic purse
case study. Next,Section 4discusses several aspects of specifying Java Card applications
andSection 5gives an overview of how the purse case study is annotated and checked
using ESC/Java, whileSection 6focuses on asingle class and discusses its verification —
using LOOP — in full detail. Finally,Section 7draws conclusions and sketches a view on
the further use of formal methods in industry.

2. JML

2.1. The language

The development of JML — short for Java Modeling Language [18] — was started by
Gary Leavens and his team at Iowa State University, but is now a community process with
many people involved [19]. There is a group of active users and tool developers, where
new language proposals are discussed before they actually become part of the “official”
language standard.

1 Via http://www.gemplus.com/smart/r_d/publications/case-study/.
2 Java Card is a dialect of Java that is used to program smart card applications. The Java Card language is an

extended subset of Java; in particular it does not contain multi-threading, floats, doubles and multi-dimensional
arrays, but it does contain some additional constructs, such as shareable interfaces, which are used to enable
communication between different applets.

http://www.gemplus.com/smart/r_d/publications/case-study/
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The JML language is designed to be easy and accessible for an average Java
programmer. Therefore, the specifications use Java syntax and are written in the source
code as specially marked comments. Markers/*@ .. @*/ and//@ enable the various
JML tools to recognize the comments as JML annotations.

A simple JML specification consists of pre- and post-conditions for methods (denoted
by the keywordsrequires andensures) and class invariants, restricting the reachable
state space of an object. However, if wanted and needed, much more complicated properties
can be expressed. Here we present only a few language constructs that are necessary for
understanding this paper; we refer to the standard language documents for a full description
of the language [18,19].

First of all, a method specification can contain exceptional postconditions, so-called
exsures or signals clauses. An exceptional postcondition specifies which conditions
should hold, if a method terminates abruptly, because of an exception. A typical usage of
exceptional postconditions is to specify that the exception is thrown before any instance
variables have been changed (thus implicitly preserving the class invariants; see the
example inFig. 1below).

Method specifications also can containmodifies clauses (also known asassign-
able or modifiable clauses, or frame conditions) that restrict which variables may be
changed by a method call. Modifies clauses are crucial when doing modular program
verification [20].

It is also possible to restrict the reachable state space of an object by specifying a
constraint. In JML, this denotes a relation between the pre- and post-state of a method,
restricting how a variable might change. One can for example specify that a variable
is constant or that itcan only increase. Notice that invariants and constraints could be
expressed as pre-post-condition specifications for each method, but by specifying them
explicitly, one gets a higher level of abstraction. Moreover, in this way they immediately
carry over to subclasses, i.e. all methods in subclasses have to respect the invariants and
constraints of superclasses.

Sometimes one also likes to specify explicitly that a condition holds at a particular
point in a method body. For this, JML provides theassert annotation. If a method body
contains such anassert annotation, this means that whenever control reaches this point
in the method body, the associated condition should hold. This can be used for example to
add outlines of correctness proofs to the implementation of a method body — as is used by
the LOOP compiler; see below — but also to state that aparticular control point never can
be reached (usingassert false;).

As mentioned before, the JML specifications use Java syntax. More precisely, the
various conditions are written as side-effect-free boolean-typed Java expressions. To make
the language more expressive and usable, several additional specification constructs are
available. Again, wemention only the few that are relevant for this paper. For further
information we refer to the JML documentation [19].

First of all, there is a special keyword\result that refers to the return value. This
keyword can only be used inensures clauses. One can refer to the value of an expression
E in the pre-state (before method body execution) by writing\old(E). This keywordcan
be used both in theensures andsignals clauses. Keyword\old is used to see how an
expression differs from its original value.
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public class Decimal extends Object{

public static final short MAX_DECIMAL_NUMBER = (short) 32767;
public static final short PRECISION = (short) 1000;

/*@ spec_public @*/ private short intPart = (short) 0;
/*@ spec_public @*/ private short decPart = (short) 0;

/*@ invariant 0 <= intPart && intPart <= MAX_DECIMAL_NUMBER &&
@ 0 <= decPart && decPart < PRECISION;
@
@ model int decimal;
@ represents decimal <- intPart * PRECISION + decPart;
@ depends decimal <- intPart, decPart;
@*/

/*@ behavior
@ requires true;
@ modifies decimal;
@ ensures decimal == v * PRECISION;
@ signals (DecimalException e)
@ v < 0 &&
@ decimal == \old(decimal);
@*/

public Decimal setValue(short v) throws DecimalException{
if(v < 0)

DecimalException.throwIt(DecimalException.DECIMAL_OVERFLOW);
intPart = v;
decPart = (short) 0;
return this;

}
.
.
.

}

Fig. 1. Fragment of the annotated classDecimal.

Finally, to have ahigher level of abstraction in specifications, JML allows one to
declare so-called model variables. These are variables that exist only at the level of the
specification. Declarations of model variables have the same format as declarations of
normal variables, but are preceded by the keywordmodel. Model variables can be related
to concrete variables (orother model variables) byrepresents and depends clauses.
A represents clause specifies how the value of a model variablecan be calculated from
the values of the concrete variables. A depends clause only specifies on which concrete
variables the value of the model variable depends. Hence if all the concrete variables in
the depends clause are unchanged, one can assume that the value of the model variable
is also unchanged, and if the model variable may be modified, the concrete variables
implicitly also may be modified. If a represents clause is given, the information in the
depends clause is redundant. However, since often it is not possible to give the represents
clause — for example when specifying an abstract class — it is useful to also have the
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depends clause. For more information on depends and represents clauses and their use in
modular verification we refer to the work of Leino [20]. ESC/Java provides a lightweight
variation of model variables, calledghost variables.However, since it is not possible to
specify represents and dependsclauses, their use is limited.

To conclude this section,Fig. 1 shows part of the JML specification of the class
Decimal from the case study at hand. The classDecimal represents decimal numbers
as composed of an integer and decimal part (intPart and decPart, respectively).
As JML does not allow us to include private fields in public specifications, we add
/*@ spec_public @*/ immediately before the declarations of these two fields. This
keyword causes the fields to be included in the scope of every specification. The class
invariant restricts the possible values of these variables:intPart is a positivenumber, less
than the constantMAX_DECIMAL_NUMBER— the maximal value of ashort, while decPart
ranges between 0 and the constantPRECISION. The value ofPRECISION is 1000, thus the
classDecimal will represent decimal numbers up to three decimal places.

To denote the value of the decimal number represented, a model variabledecimal
has been declared. The value of this variable depends onintPart anddecPart, and the
represents clause shows how.

As an example, we show the specification of the methodsetValue, which takes a single
argumentv and as a result sets the decimal number to representv.000. We do notexplicitly
specify any precondition for this method3 (it is a defensive specification, as discussed in
Section 4). The method may modifydecimal, thusimplicitly it may modify the variables
intPart anddecPart. If the method terminates normally, the value ofdecimal is set
appropriately (and because of the represents clause and the class invariant this implies that
decPart andintPart are set appropriately). If the method terminates abruptly with a
DecimalException, then this is because the argumentv is less than 0. In this case, the
value ofdecimal (and implicitly of intPart anddecPart) is unchanged.

2.2. The tools

As mentioned before, there is a wide range of tools available using JML as specification
language. This is one of the reasons why JML is becoming the de facto standard
specification language for source code level specification of Java programs. For our case
study, we have used the Extended Static Checker for Java (ESC/Java) [21,12] and the
LOOP compiler [29]. We will describe these tools in some detail,followed by a brief
description of other tools that are available for JML. Again, for a more extensive overview
of the various tools, see [3].

2.2.1. ESC/Java
ESC/Java has been developed at Compaq Research, in the group led by Rustan

Leino [21,12]. Currently, it is no longer maintained by Compaq, but it is available as open
source software. An improvement making it compatible with official JML (ESC/Java 2) is
done by David Cok (Kodak) and Joseph Kiniry (Nijmegen) [10]. At the time of writing

3 Thus, by default, this method has preconditionrequires true;.
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//@ requires o != null;
void m(Object o) {

o.n();
}
ESC/Java finds no problem.
//@ requires true;

void p(Object o) {
o.j();

}
ESC/Java checks whethero is not
null

Fig. 2. ESC/Java example.

and verifying the ESC/Java specifications in this paper, version 2 was not yet available.
Therefore, the ESC/Java version used here is Compaq release 1.2.4.

The initial design goal of ESC/Java was to develop a tool which could efficiently find
common programming errors, such as indexing an array out of bounds or null-pointer
dereferencing. The user can guide the searchfor errors by putting appropriate annotations
in the code. For example, a user might specify that some method argument should always
be a non-null-reference (therequires clause of methodm in Fig. 2). When checking the
method body, the tool will then assume that this is actually the case (thus the callo.n() in
Fig. 2will not raise a null pointer exception), but for every call to this method, it will check
whether the assumption actually holds (thus ESC/Java will warn for a potential problem in
the callm(x) in methodp in Fig. 2, because it cannot ensure thatx is non-null).

ESC/Java proceeds by generating verification conditions, based on the annotations
and the code. The verification conditions are sent to a dedicated theorem prover, called
Simplify.4 ESC/Java issues a warning if Simplify cannot establish the proof obligation.
However, such a warning does not necessarily mean thatthe program is incorrect, as
both Simplify and the modeling of the Java semantics underlying ESC/Java are unsound
and incomplete. The designers chose to accept this, in order to keep the simplicity and
good performance of the tool. Also, if the tool does not issue any warning, this does not
necessarily mean that the program is correct. Again, to keep the performance and simplicity
of the tool, and to avoid many spurious warnings, the designers of the tool do not always
generate all the necessary verification conditions. For example, a loop statement by default
is approximated by a single loop iteration. The ESC/Java manual [21] contains a detailed
list of known sources of unsoundness and incompleteness of the original ESC/Java.

The specification language that is used by ESC/Java is not exactly a subset of JML.
Al ready some work has been done on integrating the two languages [8] and currently work
on this is continuing. However, for this paper the exact differences are not relevant. It is
sufficient to know that ESC/Java supports the specification constructs described above,
except for theconstraint andmodifies construct and the support for model variables.

2.2.2. LOOP tool
The LOOP tool has been developed at the University of Nijmegen. Its purpose is to offer

a sound environment within the theorem prover PVS [25] in which formal verification of
JML specifications written for Java source code can be performed. What is usually called

4 Seehttp://research.compaq.com/SRC/esc/Simplify.html.

http://research.compaq.com/SRC/esc/Simplify.html
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Fig. 3. LOOP tool schema.

the LOOP tool actually consists of a collection of tools. The relation between the different
parts is shown inFig. 3.

Java source code and associated JML specifications are fed into the LOOP compiler
which generates PVS code. The Java sourcecode is translated to PVS logical theories
which are based on the handwritten “semantic prelude”. This prelude defines sequential
Java in all its details. The JML specificationsare translated into PVS predicates. The aim
is to show that the predicates generated from the JML annotation hold for the translated
Java source code. The actual interactive verification work thus takes placeinsidePVS.

In the LOOP translation of Java methods to PVS theories, the structure of the methods
remains intact. While proving, we can therefore step through the method body using
different techniques. The following list gives an overview of available techniques for
proving the correctness of a method given its specification.

(1) All Java language constructs have appropriateHoare rulesassociated with them [17].
Al l these rules are proved correct in terms of the underlying semantics. The Hoare
rules are used to split up the proof obligation in several smaller proof obligations. For
example, the Hoare rule for composition splits up the proof obligation in two parts.
The downside of reasoning with Hoare rules is that they require user interaction. The
Hoare rule for composition needs an intermediate predicate which is the post-condition
for thefirst statement, and the pre-condition for the second one.

(2) To avoid excessive userinteraction, severalWeakest Precondition(WP) tech-
niques [16] can be applied to enable automatic proofs of non-recursive programs. Like
the Hoare rules, the Weakest Precondition rules are also proved correct in terms of the
underlying Java semantics.

(3) When a proof is completely split up and decomposed after applying Hoare or Weakest
Precondition rules, the remaining proof obligations, if any, must be verified by
“semantic rules” and logical deduction. These semantic rules are either generated
by the LOOP compiler, or present in the semantic prelude [14]. The semantic rules
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describe the actual Java semantics. Applying these rules eventually brings a Q.E.D.,
or an unprovable formula.

The three proof methods above are used in combination. Sometimes a method body is too
long to be handled by WP (PVS might fail due to lack of resources). The body is then split
up by Hoare rules. When a proof obligation is on the granular level (i.e. assignments) we
revert to using semantic rules.

Because the whole system is sound (modulo thesoundness of PVS, and the handwritten
semantic prelude of course), specifications verified by LOOP can be trusted. The biggest
downside of doing such heavyweight verification work is the cost of user interaction.

For example, when applying the Hoare rule for composition on statements1;s2, an
intermediate predicate has to be constructed to serve as a post-condition fors1 and a pre-
condition fors2. Constructing intermediate predicates in PVS is painstaking because one
has to write these in terms of the semantic prelude. Fortunately, we can avoid constructing
such a predicate in PVS by writing intermediate predicatesin the Java code using in-line
JML assertions. The LOOP tool converts these assertions to intermediate predicates in
terms of the semantic prelude. Implementing support for in-line assertions is part of the
plan to reduce user interaction. Apart from in-line assertions, there is also support for
loop variants (JML keyworddecreasing) and invariants (JML keywordmaintaining).
The JML used by the LOOP compiler is a subset of JML. We do not, for example, cover
quantifications outside behavior specifications. The core of JML is supported though.
We alsoadded some modifiers for JML assert statements (assert) saying whether the
previous assert still holds.

2.2.3. Other tools
To illustrate the wide range of formal techniques that are available when one decides to

use JML as specification language, we briefly survey several other tools that use JML as
specification language.

When the development of JML started, it was intended to be used with a runtime
assertion checker (as advocated in the Design by Contract approach in Eiffel [23]). The
JML tool, which is developed at Iowa State University, does exactly this: it translates
annotations into runtime checks. When running the translated code on example input, every
time an assertion is violated, an exception is thrown.

Further, at MIT one uses JML as the specification language for Daikon [9], which is a
tool for invariant detection. Based on several test runs, this tool tries to establish possible
class invariants.

There are also several tools which are inspired by ESC/Java. Chase [6], developed at
INRIA Sophia Antipolis, is a tool for checking the modifies clauses, an aspect of JML
which is not treated by ESC/Java. At Compaq, a tool called Calvin [13] has been developed.
Calvin can be used to check properties about multi-threaded programs. It uses a technique
to reduce the proof obligations to proof obligations on single threads (using appropriate
annotations), which then can be checked using ESC/Java.

Further, at Gemplus, a tool called Jack has been developed [4]. Jack works similar to
ESC/Java, in that it generates proof obligations based on the annotations and then sends
those off to a prover, but it aims at being sound and complete. Jack has been designed in
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Fig. 4. The electronic purse.

such a way that it can interface different proof tools (currently AtelierB, Simplify and Coq).
Further, Jack has been integrated with a standard IDE, which makes it easy to use for a Java
developer. Other tools for full program verification using interactive theorem provers are
Jive and Krakatoa. The Jive tool [24], which is developed in Kaiserslautern, implements
a Hoare logic for Java [27] and generates proof obligations for PVS or Isabelle.5 The
Krakatoatool [22] is developed at INRIA Rocquencourt. It uses the Why tool [11] to
generate verification conditions as Coq proof obligations.

3. The Gemplus electronic purse

The Gemplus electronic purse is a smart card application that has been developed to
serve as a realistic example for researchers working on formal methods for the Java Card
platform [1]. However, it istoo big to fit on most of the cards that are currently available.

Any Java Card application consists of two parts: the terminal side, implementing the
configuration and communication functionalities, and the card side, implementing the
Java Card application itself (seeFig. 4). These two sides communicate with each other
by sending APDU (Application Protocol Data Unit) messages, which is an ISO standard
defining the way in which commands and data are structured. In Java Card, the APDU is a
class with a member of type byte array containing the raw data.

On the card side, the electronic purseprovides the card holder with banking
functionalities such ascredit, debit and currency change. The card side of the purse
application contains three kinds of applets:loyalty applets, thecard issuer appletand the
purse applet. These applets communicate with each other by means of shared interfaces,
the standard mechanism of communication between applets. When the purse applet wishes
to call a methodof a loyalty applet, it requests the loyalty applet for an object implementing
the loyalty shareable interface.The loyalty applet then decides whether to give the purse a
reference to such a shareable interface object.

The card issuer applet keeps information of the card holder such as name and identifier
and PIN code, which is necessary to initialize the card.

The purse applet implements the basic operations of credit, debit and currency change,
and also implements mechanisms for installing, selection and de-selection of the applet.
The purse applet interacts with loyalty applets in such a way that whenever the card holder
has made a purchase, the loyalty applet can use this information to increase an internal
counter of loyalty points. These loyalty points can be used later to make purchases.

5 In fact, Jive does not use JML, but it uses a JML-like language.
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/*@
@ requires aid != null;
@ modifies data[*];
@ ensures (\forall int i; 0 <= i & i < nbLoyalties ==>
@ (\forall int k; 0 <= k & k < data[i].aid.length ==>
@ data[i].aid[k] == aid.theAID[k]) ==>
@ !data[i].logfullInformation);
@*/

void removeNotification(AID aid) {
byte i = 0;
while(i < nbLoyalties) {

AllowedLoyalty al = data[i];
if(al.getAID().equals(aid)) {

al.dontKeepInformed();
}
else i++;

}
}

Fig. 5. Example heavyweight specification.

The purse applet keeps track of the balance of the purse, the transactions done by
the purse, the different currency changes that have taken place and the different loyalty
programs that the card holder is subscribed to. Certain operations can be done only for a
restricted set of users, which can be recognized for instance by requiring a PIN code. The
purse applet defines the different access conditions and also binds these access conditions
to operations. So, when the card holder wishes to do some operation, the purse application
will check whether the card holder has the appropriate permissions.

Finally, the electronic purse contains several classes implementing cryptographic
concepts. In this case study we did not study this.

4. Specifications for smart card applets

When writing behavioral specifications, several issues concerning the style of
specifications have to be considered. Notice that many of these issues are relatively
independent of the typicalities of smart card applications. However, the choices that we
make are often influenced by the application domain. The first subsection discusses several
of these issues, and explains our choices for this case study. The second subsection
discusses the existing specifications for the Java Card API.

4.1. Specification style

4.1.1. Lightweight vs. heavyweight specifications
The first point one has to decide upon is how “heavy” a specification should be. That is,

does one just want to specify under which conditions (no) exceptions will occur, or does
one also want to specify exactly which postconditions are established, i.e. the complete
behavior of a method or class.
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Naturally, the more information that is given by a specification, the better it reflects the
behavior of a program. However, in some cases the postcondition of a method might be too
complicated to formulate or would basically require repeating the method implementation.
One also has to remember that giving specifications only makes sense when one has
reasonable confidence that the specification is correct. Thus, when specifying methods with
complicated control structures or data manipulations and checking these specifications
with an automatic tool such as ESC/Java, it might not make sense to specify complicated
postconditions, because one can never rely on their correctness, given the limitations of
such tools. Ifone wishes to actually specify and verify such complex postconditions, one
should use e.g. LOOP and do full verification.

Additionally, it is also important to consider what is the return of the investment put
into writing specifications, i.e. how does the number of bugs found relate to the amount of
time spent on writing the specifications. If most bugs can be found by writing lightweight
specifications only, one seriously has to consider whether it is worth the extra effort
of making heavier specifications. This issue is very important in industry, where every
investment has to be economically justified. Thus, it is important to find the right balance
between completeness and reliability of a specification.

To illustrate this,Fig. 5contains a heavyweight specification ofremoveNotification
in classLoyaltiesTable. Theprecise behavior of this method is not so important, but
what is important to see is that this method contains two loops (one explicitly in the
while statement, and one implicitly in the callaid.equals), and the postcondition
aims at describing precisely the intended behavior of these loops. However, in this case
ESC/Java is not able to establish whether the postcondition is correct; one would need full
verification — using e.g. LOOP — for this.

With respect to this, we also would like to emphasize that even so-called lightweight
specifications are useful, because they describe exactly under which conditions (no)
exceptions will occur. For the correct functioning of a program, unexpected exceptions
are often a bigger threat than the risk of incorrect calculations. Also, programmers tend to
pay more attention to the correctness of a computation than to whether it will handle all
possible cases and will not throw an unexpected exception.

The work that is done in this case study illustrates how the tools that one has
at hand influence the level of detail in the specifications. Most of the specifications
have been checked with ESC/Java, so that one cannot rely on the correctness of
postconditions for methods with complicated control structures or data manipulations, such
asremoveNotification in Fig. 5. Similarly, for the addition and multiplication methods
in the classDecimal, ESC/Java cannot establish any postcondition other thantrue. In
contrast, using the LOOP tool, specifications describing the complete behavior of these
two methods have been verified, as discussed inSection 6.

4.1.2. Defensive vs. offensive specifications
Independently of the question how complete one’s specifications should be, one also

has to decide whether to write defensive or offensive specifications.
An offensive method implementation requires that its input parameters are valid and

correct. It will not test whether this is the case; it is up to the caller of the method to
ensure it. If the method is called with inappropriate parameters, nothing can be guaranteed
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Offensive specification form() Defensive specification form()
/*@ requires a != null; /*@ requires true;

@ ensures Q; @ ensures Q;
@ signals (E) false; @ signals (E) \old(a) == null;
@*/ @*/

void m(int[] a) { void m (int[] a) {
... ...
} }

Fig. 6. Offensive vs. defensive specification.

about its behavior. In contrast, a defensive method implementation does not make any
requirements on its input parameters: before manipulating them it will check for their
validity. Typically, it will throw an exception if the input is invalid (or do some sort of
error recovery, e.g. replacing it by some default value).

When writing specifications, this aspect of the method’s behavior will be made explicit,
An offensive specification will state in itsprecondition under which conditions the method
will function correctly (i.e. as specified). Nothing is guaranteed on the behavior of the
method, if the precondition is not respected. When the program is verified, for each
method call to the method, one will be obliged toshow that the precondition is respected.
A defensive specification, however, will not make any requirements on the caller of the
method (i.e. its precondition will berequires true;), but it will typically specify which
exceptions are thrown when the input parameters are invalid.Fig. 6 sketches an offensive
and a defensive specification for the same method. When verifying the program, in the
offensivecase, one has to verify that the preconditiona != null is respected for each call
to the methodm(). In thedefensive case, no proof obligation exists for the precondition, but
one has to take into account that the method might finish abruptly, because of an exception,
if it is called with a == null.

Often,offensive specifications are consideredas the better way to write specifications
(see e.g. [23]). However, it might be the case that it is prescribed explicitly that no
assumptions may be made on the state of the caller. In such cases it is necessary to write
defensive specifications. This choice is ultimately governed by an object’s interface to the
outside world. For example, for a private method it might still be possible to write an
offensive specification, if all calls to this method guarantee the precondition.

In this case study we started writing specifications for existing code. At first we decided
to leave the code unchanged.6 Therefore we write defensive specifications for methods that
make explicit tests on the values of their arguments, thus following the implementation.
However, as discussed inSection 5, we also found several places where unnecessary tests
were made and the exceptional cases never could occur.

6 However, when writing formal specifications one gets a good idea about possible improvements. Therefore,
Section 6presents the verification of an improved versionof the code (for the Decimal class only).
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4.1.3. Level of abstraction of specifications
When writing readable specifications, it is important to have a reasonable level of

abstraction. Two techniques for achieving a higher level of abstraction are the use of pure
methods, i.e. side-effect-free methods, and the use of model variables in specifications.
Both are provided by JML and supported by the LOOP compiler, but ESC/Java does not
support them (except for the use of ghost variables, which is a more limited variation of
model variables).

Since within this case study most of the specifications are checked using ESC/Java,
the specificationsoften are more verbose than we would have liked. In particular, most of
the specifications are written in terms of the concrete variables and without introducing
any abstractions. However, for the classDecimal specifications with and without model
variables exist.Fig. 1 (in Section 2.1) contains part of the specification ofDecimal with
model variables. As an example, the same methodsetValue is specified as follows for
checking with ESC/Java.

/*@
@ requires true;
@ modifies intPart, decPart;
@ ensures intPart == v;
@ ensures decPart == (short) 0;
@ ensures \result == this;
@ signals (DecimalException) v < 0;
@*/

public Decimal setValue(short v) throws DecimalException{ ... }

An example where abstraction could improve the readability of the specification is in the
communication between card and terminal. As explained above, this communication takes
place by sending so-called APDUs, which are commands encoded as arrays. However,
when writing specifications one would prefer to do this in terms of the abstract notion of
commands, instead of in terms of the contents of the APDU buffer.

4.2. Specifications for the Java Card API

We used the specifications for the Java Card API written by Erik Poll and other
members of the LOOP project [28] as thebasis for this work. In short, these are offensive
specifications that describe when methods are guaranteed not to throw unwanted runtime
exceptions. We cannot present here the JML specifications for the whole Java Card API,
but as an example wediscuss the methodarrayCopy of the Java Card API.

/*@ requires src!=null & srcOff>=0 & srcOff+length<=src.length
@ & dest!=null & destOff>=0 & destOff+length<=dest.length
@ & length>=0;
@ modifies dest[*];
@ ensures (\forall int i; (i<=0 & i<dest.length) ==>
@ (destOff<=i & i<destOff+length) ?
@ dest[i] == src[srcOff + (i - destOff)] :
@ dest[i] == \old(dest[i]));
@ ensures \result == destOff+length;
@ signals (TransactionException e)
@ e._reason == TransactionException.BUFFER_FULL &
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@ JCSystem._transactionDepth == 1;
@ signals (NullPointerException) false;
@ signals (ArrayIndexOutOfBoundsException) false;
@*/

public static final native short arrayCopy(
byte[] src, short srcOff, byte[] dest, short destOff,
short length)

throws ArrayIndexOutOfBoundsException, NullPointerException,
TransactionException;

The methodarrayCopy copieslength bytes located at positionsrcOff in array src
to positiondestOff in destination arraydest. Theprecondition for this method requires
thatsrc anddest have the right size and that the number of bytes for copying is a positive
number. The postcondition specifies that if the method terminates without raising any
exception, then the method will have copiedlength bytes fromsrc starting in the position
srcOff, to dest starting in the positiondestOff. Otherwise, the method terminates
abruptly raising an exception of typeTransactionException but the method will never
raise aNullPointerException or ArrayIndexOutOfBoundsException exception.

This is the kind of specifications that can be checked efficiently automatically:
a strong precondition about array variables, ranges of values in which arrays can
be accessed and conditions preventing the array variables of being null. This strong
precondition allows one to specify that certain exceptions never can be raised; in this case
ArrayIndexOutOfBoundsException and NullPointerException. However, notice
that this is not the case for the exceptionTransactionException: this exception can
occur if for example the card holder decides to remove his card before the session is
finished.

5. Checking the specifications for the electronic purse

After having discussed the general issues involved in writing specifications for smart
card applications, this section focuses on the actual specifications for the electronic purse.
As said before, we wrote a formal specification — using JML — for most classes
of the Gemplus electronic purse case study. The majority of these specifications have
been checked only with ESC/Java, butthe specifications for the classDecimal have
been verified completely, using LOOP technology. The next section discusses the LOOP
verification in more detail; this section presents the general ideas behind the specification,
and in particular it shows how relatively lightweight use of formal methods — using
automatic tools only — can already help to improve an application.We show in particular
how the formal specification helped to identify ambiguities and inconsistencies in the
informal documentation and unnecessary checks in the implementation. However, this does
not mean that full verification is not necessary: the verifications as described in the next
section fall completely out of the scope of what can be checked with ESC/Java. On the
other hand, the verification with ESC/Java on the entire purse falls out of the scope of the
LOOP tool because the purse is simply too large. Manageable parts of source code that can
be verified with LOOP are in the order of hundreds of lines of code.
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Elsewhere [5], we have already reported on the different kinds of errors and possibilities
for improvement that we found in the case study with ESC/Java. Here we will not discuss
these in full detail, but we will give a more general overview of the typical kind of problems
that can easily be found by automatic tools. However, to give an indication: we found
roughly 20 errors and possibilities for improvement. Further, we found approximately 25
unreachable code fragments. Notice that most of these errors are straightforward to find,
requiring only simple specifications.

When writing the specifications, we decided to take the codeas it is as a starting point.
Only when we found real mistakes in the code, would we change it, but we did not change
the design or general structure. However, writing formal specifications forces one to think
carefully about the code, and often it makesone aware of possibilities for improvement.
Therefore, the verifications in the next section are actually done on an improved version of
the classDecimal.

Since most of the specifications are checked only with ESC/Java, we cannot have
unlimited trust in their correctness. Therefore, we aimed at writing specifications that were
as “heavy” as possible, but where we still could feel confident in the outcome of the tool.
The full annotations — with an overview of remaining warnings — are available on a web-
site.7 Typically, if one wishes to do full verification on fragments of the code, the remaining
warnings and the methods containing loops or recursion are the most interesting, i.e. they
are the most likely to still contain errors.

Whenchecking the specifications, one is often forced to work in a bottom-up manner.
First one has to annotate the classes that are at the bottom of the class hierarchy and that
are used by many of the other classes, e.g. in this case study the utility classes. Afterwards,
using these specifications, one can go up higher in the class hierarchy.

Wefound that writing and checking the formal specifications in particular was important
for the following two reasons:

• formal specifications helpto maintain the consistency between documentation and
implementation and to avoid ambiguities in the documentation; and

• formally specifying class invariants — which exist often implicitly in the programmer’s
mind — allows one to show the redundancy of tests on the wellformedness of object
states.

We will illustrate these aspects with some examples.

5.1. Informal documentation vs. formal specification

Over time, the electronic purse case study has been developed by several
people (trainees and employees of Gemplus). Looking at the documentation and the
implementation, it is evident that these different developers have not always worked with
the same ideas in mind. For example, in the classDecimal, the informal documentation
reads:

7 See http://www-sop.inria.fr/ lemm e/v erif icar d/e lect roni c_p urse.

http://www-sop.inria.fr/lemme/verificard/electronic_purse
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Two important notes about a decimal number: it is limited to 32767 (short
representation) and the decimal part must be done in the interval [000, 999].

This informal documentation immediately suggests that an appropriate class invariant
would be the following (whereMAX_DECIMAL_NUMBER is 32767 andPRECISION is 1000).

invariant 0 <= intPart && intPart <= MAX_DECIMAL_NUMBER &&
0 <= decPart && decPart < PRECISION;

Notice that this class invariant is straightforward to write given the informal class
documentation; no difficult formalizations are needed. However, having written this formal
class invariant enables one to use the different JML tools to check whether this invariant
is maintained everywhere. This is useful, because from the implementation of the class, it
becomes clear that not all developers have adhered to this design decision about decimal
numbers. For example, having this formal invariant allows one to detect immediately that
there is a problem with the methodoppose.

public Decimal oppose(){
intPart = (short) -intPart;
decPart = (short) -decPart;
return this;

}

This method should not be declaredpublic, because it can break the class invariant,
by makingintPart anddecPart negative.

Having a formal class specification, instead of informal documentation only, cannot
avoid all inconsistencies. For example, the classDecimal also contains methods
isPositif and isNegatif, which denote whether the value is positive or negative,
respectively. Since these methods do not break the class invariant, one does not
immediately detect that they are useless, given the informal documentation. However,
using the different JML tools it is easy to show that the results of these methods are actually
constant values, and thus that these methods do not give any new information. For example,
the methodisNegatif can be specified as follows.

/*@
@ ensures \result == false;
@*/

public boolean isNegatif(){
return (compareTo((short) 0) < (short) 0 );

}

Formal specifications do not only help to maintain an implementation over time, but
because of their precise semantics they can also help to avoid the ambiguities, which
typically occur in natural language documentation. To illustrate this, we take an example
from the classTransaction. In this class, an instance variabletype is declared as follows.

/* the transaction type: debit or credit */
/*@ spec_public @*/ private byte type;

Since the class also contains the following constant declarations:



70 C.-B. Breunesse et al. / Science of Computer Programming 55 (2005) 53–80

/* the transaction status */
public static final byte TYPE_CREDIT = (byte)50;
/* the transaction status */
public static final byte TYPE_DEBIT = (byte)51;

it seems natural to specify the following class invariant.8

/*@ invariant type == TYPE_CREDIT ||
@ type == TYPE_DEBIT;
@*/

However, when checking whether this invariant is respected by all methods in the
class, it turns out that it is not: the class contains a methodreset() which contains the
assignmenttype = INDETERMINE;, whereINDETERMINE is another constant declared in
the class. One could consider this as an error — given the documentation — but it also
seems reasonable that this is done on purpose. After all, when initializing or resetting a
transaction, one cannot say whether it will be a credit or debit operation, and also neither
of them is a typical default value. Having a formal specification would clarify the initial
intention of the developer, and would allow one to signal this problem earlier.

To summarize, we would like to stress that writing a — relatively easy — formal
specification, instead of informal documentation helps to maintain the consistency of
an implementation over time and to avoid ambiguities. When design decisions, such
as restricting the possible range of a variable, are specified formally, each time the
implementation is modified thevarious JML tools can be used to check whether the design
decisions have not been violated. And if they are violated, one is forced to decide whether
the design decision or the implementation has to be changed. Notice that many of these
violations can be detected by automatic tools, thus they can be found with quick checks —
over and over again— during the development process.

5.2. Class invariants

In fact, class invariants do not only serve toformally specify certain design decisions;
they can also be used as a formal motivation that certain tests are unnecessary. To illustrate
this, we consider the methodsetTaux,9 also from the classTransaction.

void setTaux(Decimal tx) throws ISOException {
try{

taux.setValue(tx);
}
catch(DecimalException e){

//@ assert false;
ISOException.throwIt(PurseApplet.DECIMAL_OVERFLOW);

}
}

8 Notice that there exist several programming languages in which this class invariant could be described
precisely using enumeration types. Violations are then found immediately by type checking.

9 Taux is the French word for rate.
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This method has a parametertx, which isan instance of classDecimal. Thus, we know
thattx respects the class invariant forDecimal, as specified. The method then assignstx
to the instance variabletaux, using thesetValue method of the classDecimal. Since
this method can throw an exception, the call tosetValue is put in atry-catch statement.
However, given the specification ofsetValue and since the argumenttx is a legal instance
of classDecimal, respecting its invariant, we can actually prove that this exception will
never be thrown. This is emphasized by the//@ assert false; annotation, which
means that this part of the program text will never be reached. In fact, because of the
class invariant ofDecimal, wecan give the following method specification forsetTaux.

/*@ requires tx != null;
@ modifies taux.intPart, taux.decPart;
@ ensures taux.intPart == tx.intPart;
@ ensures taux.decPart == tx.decPart;
@ signals (ISOException) false;
@*/

Notice in particular that we do nothave to specify any conditions ontx.intPart or
tx.decPart; it is sufficient that weknow thattx respects its class invariant.

As another example on the use of class invariants, we consider the classAccess-
Condition. The electronic purse is implemented in such a way that certain operations
can be performed only when the card is in a particular state. The classAccessCondition
implements operations to check whether the card is in the appropriate state.Following the
documentation of the electronic purse, there is a variablecondition, whichcan have only
one of the following constant values:FREE, LOCKED, SECRET_CODE, SECURE_MESSAGING
or SECRET_CODE and SECURE_MESSAGING. This last combination is represented by the
bitwise or of the two constants. This restriction on the variablecondition is easily
expressed as a class invariant.

public static final byte FREE = (byte)1;
public static final byte LOCKED = (byte)2;
public static final byte SECRET_CODE = (byte)4;
public static final byte SECURE_MESSAGING = (byte)8;
/*@ spec_public @*/ private byte condition = FREE;

/*@ invariant condition == FREE ||
@ condition == LOCKED ||
@ condition == SECRET_CODE ||
@ condition == SECURE_MESSAGING ||
@ condition == (SECRET_CODE | SECURE_MESSAGING)
@*/

When deciding whether the card is in the appropriate state to perform a certain
operation, thisis basically implemented by a case distinction (a Javaswitch statement),
as in this methodverify.

/*@ signals (AccessConditionException) false;
@*/

private final boolean verify(byte c)
throws AccessConditionException {

byte t = (byte)0;
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switch(condition) {
case FREE: return true;
case SECRET_CODE: return [...]
case SECURE_MESSAGING: return [...]
case SECRET_CODE | SECURE_MESSAGING: return [...]
case LOCKED: return false;
default:

//@ assert false;
t = AccessConditionException.CONDITION_COURANTE_INVALIDE;
AccessConditionException.throwIt(t);
return false;

}
}

For our exposition, it is not important what this method actually computes, but we
are interested in its structure. The case distinction distinguishes all possible values of the
variablecondition, as specified by the class invariant. Thus, the default clause will never
be reached. Again, this is emphasized by our//@ assert false; annotation. Notice that
since the default clause never will be reached, the method will never throw an exception,
as expressed by the exceptional postcondition.In fact, because of the class invariant it is
possible to removecompletely thethrows clause from this method declaration.

Thus to summarize, we would like to emphasize that many class invariants can be
specified fairly easily: they directly reflect the informal documentation and do not contain
any complicated specification constructs. Moreover, they also can be checked efficiently.
Automatic checking techniques, such as ESC/Java, can easily find places where invariants
are violated. Finally, an additional advantage of properly specifying class invariants is that
it allows one to avoid unnecessary tests, because objects are known to respect their class
invariants.

6. Focus on a single class: the verification of Decimal

Next, we switch our attention to the specification and full verification of a single
class:Decimal. The specification and verification of theoriginal Decimal class was done
earlier [2]. This section is about the specification and verification of amodifiedDecimal
class: one that fulfills our wishes in terms of clearer, shorter Java code and specifications
that are supplemental to the ones constructed and checked using ESC/Java [5]. When we
refer to theDecimal class, we mean ourmodifiedvariant. Note that the specifications for
theDecimal class in this section are “out of scope” for fully automatic tools as ESC/Java.

TheDecimal class receives special attention because:

• it is an independent, self-contained class. Hence, the verification is independent of other
specifications of the purse as well. This simplifies the verification process;

• theDecimal class is a backbone of the purse applet. Therefore verification is important,
and its correctness is critical to the proper functioning of the purse applet. Many classes
in the purse useDecimal as a library class;

• it is not only a backbone of the applet (so is the class that handles the APDU
communications, for example) but it is also a functional class that does the actual
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arithmetic needed to increase the balance on the card. Functional specifications can
be expressed well using JML;

• its size is limited. Large Java classes with elaborate methods are very costly to specify
and verify. TheDecimal class consists of 40 methods, roughly 1.5 kB, whereas the
whole purse is 432 kB of source code.

TheDecimal class, the header of which is shown inFig. 1, is used in thepurse to store
real numbers with a precision of three digits. Because floats do not exists in Java Card,
theDecimal class is the place where this kind of arithmetic is defined. Two fields of type
short are used for storage. When storing the value 3.493, the floored value 3 is put in
field intPart and the rest value as whole number 493 is stored in fielddecPart. Negative
numbers arenot allowed.10 This information is reflected in the class invariant.

/*@ invariant 0 <= intPart && intPart <= MAX_DECIMAL_NUMBER &&
@ 0 <= decPart && decPart < PRECISION;
@*/

To ease reasoning, an abstract field is added to theDecimal class specification to denote
the stored value. The value of the abstract field has a one-on-one relationship withintPart
anddecPart, denoted by itsrepresents clause, repeated here for convenience.

/*@ model int decimal;
@ represents decimal <- intPart * PRECISION + decPart;
@*/

This so-called “representation function” is a function over the instance variables
intPart anddecPart. The abstract value of 3.493 is equal to 3493.

Out of the40 members that make upDecimal, in thenext subsection we give an outline
of the specification and verification of only one method, the one thatmultiplies decimals.
This method is interesting because it is the most complicated one and because its original
implementation is “incorrect”. Furthermore, it uses Java rounding tricks which give us the
possibility to show our LOOP techniques w.r.t. reasoning with bounded arithmetic. Last but
not least it shows the need of unbounded integral types in specifications, which is further
discussed inSection 6.2.

Methodmul uses methodadd to produce its result. The specification ofadd is shown
below. Details about its verification can be found elsewhere [2].

/*@ requires 0 <= f && f < PRECISION &&
@ 0 <= e && e <= MAX_DECIMAL_NUMBER &&
@ e + intPart + 1 <= MAX_DECIMAL_NUMBER;
@ modifies decimal;
@ ensures decimal == \old(decimal) + e * PRECISION + f;
@ signals(Exception e) false;
@*/

private void add(short e, short f) { .. }

10 They arenot allowed inour version. Whether or not they could occur in the original version of Gemplus
remains unclear; seeSection 5.1.
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Argumentse andf contain respectively the integer and decimal part of the number to
add. Because the argument toadd is not aDecimal object, the pre-condition explicitly
describes to which boundse andf must adhere. ForDecimal objects, these same bounds
are described in the invariant.

6.1. Implementation and specification ofmul

Multiplication of decimalsis difficult because of rounding. Suppose we have two
Decimal objects which represent decimal numbersa.b and e. f wherea ande are the
corresponding values ofintPart andb and f are the corresponding values ofdecPart.
Mathematically speaking, multiplication ofa.b ande. f can be written as the sum of four
simpler multiplications.

a.b ∗ e. f = a ∗ e+ a ∗ 0. f + 0.b ∗ e+ 0.b ∗ 0. f. (1)

The first three of these multiplications can be computed using theadd method, becausea
ande are natural numbers. For examplea ∗ e is computed by:

for ( short i = (short) 0; i < e; i++) {
add(a, 0);

}

which means in English: doe timesadd a.
The tricky part is the last multiplication in (1), namely 0.b ∗ 0. f , which iscalled the

“rest-part”. Becauseb and f are less than 1000, we know that 0.b∗0. f = (b∗ f )/106. The
result of(b ∗ f )/106 is always less than 1, and because we are only interested in the three
most significant digits (out of six), we want to calculate the truncated value of the rest-part:
�(b ∗ f )/103�, which thus lies within[0, 1000〉. This truncated value must then be stored
in decPart. A very reasonable solution is thus to writeadd(0, ((b * f)/1000)).
Unfortunately this is not possible in Java Card. Argumentsb andf are shorts, and the result
of their multiplication possibly does not fit in a short, which is the biggest type available.
We also cannot writeadd(0,(b/1000 * f/1000)) because in Java(b * f)/1000 is
not always equal to(b/1000) * (f/1000) due to premature rounding ofb/1000 and
f/1000. Remember, in Java(347/10) * 10 == 340.

Gemplus circumvented the above problem in theirmul method for which we wrote
a specification [2]. Unfortunately, their calculation of the rest-part is wrong. The
specification for Gemplus’s privatemul is given below. Theoriginal code [2] is not very
relevant here. The arguments ofmul are two shorts, an integer and a decimal part. These
values are multiplied with theintPart anddecPart of the this object. Theensures
clause defines the four multiplications of (1), where the rest-part is constructed by some
complicated rounding. The Gemplus multiplication code satisfies the specification below,
but mathematically speaking it is not defining a multiplication.

/*@ requires 0 <= f && f < PRECISION &&
@ 0 <= e && e <= MAX_DECIMAL_NUMBER &&
@ (e + 1) * (intPart + 1) < MAX_DECIMAL_NUMBER;
@ modifies decimal;
@ ensures decimal ==
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@ e * \old(intPart) * PRECISION
@ +
@ \old(intPart) * f
@ +
@ e * \old(decPart)
@ +
@ /// difficult rest-part, given by four options
@ ( (f > 100 && \old(decPart) > 100)
@ ?
@ ( ((\old(decPart)/10) * (f/10)) / 10 )
@ :
@ ( (f > 100 && \old(decPart) <= 100)
@ ?
@ ( (\old(decPart) * (f/10)) / 100 )
@ :
@ ( (f <= 100 && \old(decPart) > 100)
@ ?
@ ( ((\old(decPart)/10) * f) / 100 )
@ :
@ ( (\old(decPart) * f) / 1000 ))));
@ signals(Exception e) false;
@*/
private void mul(short e, short f) { ... }

The rest-part above is composed of case distinctions. Suppose we multiply 0.999 with
itself; the answer given according to the above spec is 0.980. In precision arithmetic the
answer to this multiplication is 0.998001. Rounded to three digits, this makes 0.998.

In the Nijmegen implementation we chose precision arithmetic. An advantage is that
the specification of the rest-part becomes trivial. The private specification for the newmul
is shown below.

/*@ requires 0 <= f && f < PRECISION &&
@ 0 <= e && e <= MAX_DECIMAL_NUMBER &&
@ (e + 1) * (intPart + 1) < MAX_DECIMAL_NUMBER;
@ modifies decimal;
@ ensures decimal =
@ e * \old(intPart) * PRECISION
@ +
@ \old(intPart) * f
@ +
@ e * \old(decPart)
@ +
@ (f * \old(decPart)) / PRECISION;
@ signals(Exception e) false;
@*/

The only problem left is to write an implementation that conforms to this specification
without overflow. Note again that an implementation would be trivial (same as the spec) if
Java Card would have integers. The new code formul is shown below.

void mul(short e, short f){
// intPart.decPart * e.f ==
// intPart * e +
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// 0.decPart * e +
// intPart * f +
// 0.decPart * 0.f
short a = intPart;
short b = decPart;

intPart = (short)0;
decPart = (short)0;

// a * e + 0.b * e
for (short i = (short)0; i < e; i++) {

add(a, b);
}

// a * 0.f
for (short i = (short)0; i < a; i++){

add((short) 0, f);
}

// 0.b * 0.f
short a1 = (short)(b / 100);
short a2 = (short)((b - a1 * 100) / 10);
short a3 = (short)(b - a1 * 100 - a2 * 10);

short d1 = (short)((a1 * f) / 10);
short d2 = (short)((a2 * f) / 100);
short d3 = (short)((a3 * f) / 1000);
short gross = (short)(d1 + d2 + d3);

short e1 = (short)((a1 * f - d1 * 10) * 100);
short e2 = (short)((a2 * f - d2 * 100) * 10);
short e3 = (short) (a3 * f - d3 * 1000);
short rest = (short)(e1 + e2 + e3);

add((short)0, (short)(gross + (rest / 1000)));
}

The rest-part of the newmul is computedby two shortsgross andrest, which are
both additions of three shorts:d1, d2, d3 ande1, e2, e3, respectively. The construction of
these shorts is explained by unfolding the rest-part(decPart * f)/ 1000 below.In the
following equationsdecPart andf are calleda andb respectively. When we writeai , we
mean thei th digit of a (counting from left to right).

(a ∗ b)/1000= ((a1 a2 a3) ∗ b) /1000.

Numbera consists of 3 digits.

=



100 ∗ a1 ∗ b
+ 10 ∗ a2 ∗ b
+ a3 ∗ b


 /1000.
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Multiplication a ∗ b can therefore be split in 3.

=



(c1 c2 c3 c4 0 0)

+ (c′
1 c′

2 c′
3 c′

4 0)

+ (c′′
1 c′′

2 c′′
3 c′′

4)


 /1000.

The results of each of the 3 multiplications are namedc, c′ andc′′.

=






(c1 c2 c3 0 0 0)

+ (c′
1 c′

2 0 0 0)

+ (c′′
1 0 0 0)


 +




(c4 0 0)

+ (c′
3 c′

4 0)

+ (c′′
2 c′′

3 c′′
4)





 /1000.

Numbersc, c′ andc′′ are split in 2.

=



(c1 c2 c3)

+ ( c′
1 c′

2)

+ ( c′′
1)


 +




(c4 0 0)

+ (c′
3 c′

4 0)

+ (c′′
2 c′′

3 c′′
4)


 /1000.

The division by 1000 is distributed over these two components.

=



d1
+ d2
+ d3


 +




e1
+ e2
+ e3


 /1000.

The names intt font correspond to fields in themul method. All the parts of this
multiplication can be computedwithout the risk of overflow.

The specification of themul method has been verified by a combination of Hoare
logic and Weakest Precondition reasoning. Suitable intermediate predicates are inserted
as JML assertions in the method body (not shown), and proved. The two for-loops require
appropriate (in)variants (not shown). A 32-bit bounded representation for Java’s numeric
types has been used, see [15], in the translations of both Java and JML expressions.
The semantics of 16-bit Java Card is preserved, because in the code no integer types are
declared, and all casts are explicit.

6.2. Integral semantics in specifications

By evaluating all JML expressions in a bounded integral representation, overflow can
occur in specifications. It is an issue under debate in the JML community what the right
semantics of integral types in specifications should be; see [7]. Ideally, one would want to
use the unbounded (mathematical) integers in specifications. This has the advantage that
one does not have to worry about overflow in specifications. The disadvantage is that by
using two different kinds of integral semantics, expressions can have different values in
Java and JML; for exampleInteger.MAX_VALUE + 1 == Integer.MIN_VALUE is true
in Java, but false in unbounded JML.
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Themul method specified and verified in the previous subsection is invoked by a public
mul method which has aDecimal objectd as argument, instead of two shorts. Its post-
condition can be written completely in terms of model fieldsdecimal andd.decimal.

/*@ requires d != null &&
@ (d.intPart + 1) * (intPart + 1) < MAX_DECIMAL_NUMBER;
@ modifies decimal;
@ ensures decimal == \old(decimal * d.decimal) / 1000;
@ signals(Exception e) false;
@*/

public Decimal mul(Decimal d) {
mul(d.getIntPart(), d.getDecPart());
return this;

}

Unfortunately, this specification cannot be proved using bounded 32-bit integral
semantics. The result of\old(decimal * d.decimal) possibly does not fit in an
integer. When the JML community agrees on how to deal with bounded and unbounded
specifications, the LOOP tool will be adjusted appropriately. Until then, the integral
semantics of JML and Java remain coupled in LOOP technology, so it is either all bounded
or all unbounded semantics.

7. Conclusions

This paper discusses experiences with the specification and verification of an industrial
smart card case study, using JML. One of the advantages of the JML specification
language is that it comes with a spectrum of validation tools, ranging from runtime
assertion checking through static checking to interactive verification. The case study
in this experience report washandled by the two latter verification techniques, using
Compaq’s ESC/Java tool and the LOOP tool from the University of Nijmegen. It turned
out that ESC/Java works best for relatively lightweight specifications, for which it can
give immediate feedback. It filtered out many common programming errors from the
entire purse applet. The LOOP tool can also be used on such lightweight specifications,
but it is typically applied to more detailed functional specifications in selected smaller
code fragments. In this case study a precise high-level specification for theDecimal
class underlying the purse was developed, implemented (in a different way than the purse
developers originally did), and proven correct. The verification was done interactively, via
a combination of Hoare logic and Weakest Precondition reasoning. This has demonstrated
that using different levels of verification, with corresponding tools, gives an attractive (and
feasible) combination of global checking and selected local verification.

Part of this verification effort was developing the specifications. One would hope that,
in the future, advancedprogrammers will write such specifications themselves. This would
considerably reduce the effort spent on such verification projects.The whole verification
underwent several updates and adaptations (w.r.t. [2,5]), so it is hardto estimate the
investment. But if we would have to start from scratch, the application of ESC/Java to the
whole purse involves a couple of weeks’ work. Applying the LOOP tool to theDecimal
class only involves a similar investment.
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As a result of this (and other) work, JML has developed into the standard specification
language for Java Card (e.g.within the Europeanproject VerifiCard [30]).

Future work involves a further development of the JML language, integration of tools
around JML, and addressing scalability issues(especially for interactive tools such as
LOOP).
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