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Abstract

In this paper, we establish functional convergence theorems for second order quadratic variations of
Gaussian processes which admit a singularity function. First, we prove a functional almost sure convergence
theorem, and a functional central limit theorem, for the process of second order quadratic variations, and
we illustrate these results with the example of the fractional Brownian sheet (FBS). Second, we do the
same study for the process of localized second order quadratic variations, and we apply the results to the
multifractional Brownian motion (MBM).
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1. Introduction

The aim of this paper is to provide new results to estimate the regularity parameters of
Gaussian processes. Usual examples are the fractional Gaussian processes (family of processes
that generalizes the d-dimensional fractional Brownian motion). Since the papers [17,20], it is
well known that second order quadratic variations yield strongly consistent and asymptotically
normal estimators of the regularity parameters.
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The convergence of the sequence of second order quadratic variations has already been studied
in [14]. Then, we have generalized it to the case of irregular subdivisions in [5]. In [4], we
have proved an almost sure asymptotic development and a central limit theorem (CLT) for the
sequence of second order quadratic variations. These papers are generalizations of known results
for the fractional Brownian motion, which can be found for instance in [12]. The second order
quadratic variations have been introduced in [7,20].

For the almost sure convergence of first order quadratic variations, a result has been shown
in [3] and extended in [16,22] to a large class of Gaussian processes. In [25], the author has
shown a functional CLT for the quadratic variations of the first order, with an application to time
deformation. In [10,28], the authors have studied more general quadratic variations under the
assumption that the processes are Gaussian and have stationary increments.

The localized quadratic variations have been introduced in [6] to construct estimators of the
Hurst function of multifractional Gaussian processes. Then, these results have been generalized
in [13,23] to localized quadratic variations of any order and of non-Gaussian processes.

In this paper, we consider a Gaussian process X = {X t ; t ∈ [0, 1]}. We denote by M its mean
function and R its covariance function

∀t ∈ [0, 1], Mt = EX t , ∀s, t ∈ [0, 1], R(s, t) = E((X t − Mt )(Xs − Ms)).

In the first part of this paper, we want to establish a functional almost sure convergence
theorem, and a functional central limit theorem, for the sequence of processes of second order
quadratic variations ({Vn(X)t ; t ∈ [0, 1]})n∈N, under suitable conditions on X . The process of
second order quadratic variations Vn(X) = {Vn(X)t ; t ∈ [0, 1]} is defined by

∀t ∈ [0, 1], Vn(X)t =

[(n−1)t]∑
k=1

[
X k+1

n
+ X k−1

n
− 2X k

n

]2
, (1)

where [x] denotes the integer part of x : [x] ∈ Z and [x] ≤ x < [x] + 1. The trajectories of
this process belong to D([0, 1]) (the space of real functions defined on [0, 1], which are right-
continuous and admit limit from the left at each point) endowed with the Skorohod topology. We
also consider the process of linear interpolations vn(X) (as in [25])

∀t ∈ [0, 1[, vn(X)t = Vn(X)t + ((n − 1)t − [(n − 1)t])(∆X (n)
[(n−1)t]+1)

2,

vn(X)1 = Vn(X)1, (2)

where, for 1 ≤ k ≤ n −1, ∆X (n)k is the second order increment of X at point k/n with mesh 1/n

∆X (n)k = X k+1
n

+ X k−1
n

− 2X k
n
. (3)

The trajectories of vn(X) belong to C([0, 1]) (the space of continuous real functions defined on
[0, 1]) endowed with the topology of uniform convergence. The aim of the first part of this paper
is to study the convergence of the process (Vn(X)t )t∈[0,1] (resp. (vn(X)t )t∈[0,1]) in the space
D([0, 1]) (resp. C([0, 1])) when n → +∞.

Next, we illustrate the result with the example of the fractional Brownian sheet (FBS). We
explain why in [14] the authors have not obtained a CLT for all possible values of the Hurst
indices of the FBS. Indeed, the limit is always a Gaussian law but the bias term may become
infinite. Moreover, we correct an error done in [14], about the domain of possible values for the
Hurst indices, in the case where the authors have obtained a classical CLT.
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In the second part of this paper, we adapt the preceding results for the sequence of processes of
second order localized quadratic variations (V loc

n (X))n∈N, under conditions on X . The process
of second order localized quadratic variations V loc

n (X) = {V loc
n (X)t ; t ∈ ]0, 1[} is defined by

∀t ∈ ]0, 1[, V loc
n (X)t =

∑
k∈Vεnn (t)

[
X k+1

n
+ X k−1

n
− 2X k

n

]2
, (4)

where Vεn
n (t) is a neighbourhood of t defined by

Vεn
n (t) =

{
k; 1 ≤ k ≤ n − 1 and

∣∣∣∣ kn − t
∣∣∣∣ ≤ εn

}
, (5)

and εn = f (n), with f : ]0,+∞[ 7−→ ]0,+∞[ such that limx→+∞ f (x) = 0.
Next, we apply these results to the multifractional Brownian motion (MBM), under the

condition that its Hurst function is three times continuously differentiable. Please note that the
functional limit theorem corrects an error made in [13]. Indeed, we show that the limit process
for the CLT of localized quadratic variations of the MBM is a white noise (up to a deterministic
multiplicative normalization), whereas in [13] the limit process is a continuous Gaussian process.

2. Notations

To prove the weak convergence of the processes Vn(X) and vn(X), we use the same
assumptions as those of Bégyn [4], Cohen et al. [14]. First, let us state some notations. We define
the second order increments for the covariance function R, for 0 < h < 1 and h ≤ t ≤ 1 − h:

δh
1 R(s, t) = R(s + h, t)+ R(s − h, t)− 2R(s, t),

δh
2 R(s, t) = R(s, t + h)+ R(s, t − h)− 2R(s, t).

If 1 ≤ j, k ≤ n − 1, one sets

d(n)jk = E(∆X (n)j ∆X (n)k ), j, k = 1, . . . , n − 1,

and, whenever it is possible, we note d jk for d(n)jk .
We define the following quantities that appear in the formulas for the asymptotic variance:
If l ∈ Z and γ ∈ ]0, 1[ ∪ ]1, 2[:

ργ (l) =
(|l − 2|

2−γ
− 4|l − 1|

2−γ
+ 6|l|2−γ

− 4|l + 1|
2−γ

+ |l + 2|
2−γ )

(γ − 2)(γ − 1)γ (γ + 1)
. (6)

If l ∈ Z and γ = 1:

ρ1(l) =
1
2
(|l − 2| log |l − 2| − 4|l − 1| log |l − 1| + 6|l| log |l|

− 4|l + 1| log |l + 1| + |l + 2| log |l + 2|), (7)

with the convention that x log x = 0 if x = 0.
One can check that ∃K > 0,∀l ≥ 2, |ργ (l)| ≤ Kl−2−γ . For γ ∈ ]0, 2[, one sets

‖ργ ‖
2

=

+∞∑
l=2

ργ (l)2. (8)
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We use the following definition of a regularly varying function:

Definition 1. A Borelian function ψ : ]0, a[ −→ R (a > 0) is regularly varying of index β ∈ R
if ψ(h) = hβL(h), where L is a slowly varying function

∀λ > 0, lim
x→0+

L(λx)
L(x)

= 1.

The convergence in law will be noted with the symbol
(L)
−→ and, through all the paper, K will

denote a generic positive constant, whose value does not matter.

3. Functional convergences of Vn(X) and vn(X)

Let us give a functional version of Theorem 5 in [4]: the weak convergence in D([0, 1]) of
the process of second order quadratic variations {Vn(X)t ; t ∈ [0, 1]}. Let us note that Theorem 5
in [4] yields the conclusion of Theorem 2 in the case t = 1.

For sake of completeness we recall the assumptions of Theorem 5 in [4].

Theorem 2. Let X be a centred Gaussian process, satisfying:

(1) R is continuous on [0, 1]
2;

(2) Let T = {0 ≤ t ≤ s ≤ 1}. We assume that the derivative ∂4 R
∂s2∂t2 exists on ]0, 1]

2
\ {s = t},

and that there exist a continuous function C : T 7→ R, a real γ ∈ ]0, 2[ and a positive slowly
varying function L :]0, 1] 7→ R such that

∀(s, t) ∈
◦

T ,
(s − t)2+γ

L(s − t)
∂4 R
∂s2∂t2 (s, t) = C(s, t), (9)

where
◦

T denotes the interior of T , i.e.
◦

T = {0 < t < s < 1}.
(3) We assume that there exist q + 1 functions (q ∈ N) g0, g1, . . . , gq from ]0, 1[ to R, q real

numbers 0 < ν1 < · · · < νq and a function φ : ]0, 1[ 7→ ]0,+∞[ such that
(a) if q ≥ 1 then ∀0 ≤ i ≤ q − 1, gi is Lipschitz on ]0, 1[,
(b) gq is 1/2 + εq -Hölderian on ]0, 1[ with 0 < εq ≤ 1/2,
(c) there exists t ∈ ]0, 1[ such that g0(t) 6= 0;
(d) one has

lim
h→0+

1
√

h

(
sup

h≤t≤1−h

∣∣∣∣∣
(
δh

1 ◦ δh
2 R
)
(t, t)

h2−γ L(h)
− g0(t)−

q∑
i=1

gi (t)φ(h)νi

∣∣∣∣∣
)

= 0, (10)

where, if q = 0, then
∑q

i=1 gi (t)φ(h)νi = 0 and where, if q 6= 0, then limh→0+ φ(h) =

0;
(e) there exists a bounded function g̃ : ]0, 1[ −→ R such that:

lim
h→0+

sup
h≤t≤1−2h

∣∣∣∣∣ (δh
1 ◦ δh

2 R)(t + h, t)
h2−γ L(h)

− g̃(t)

∣∣∣∣∣ = 0. (11)

Then, one has almost surely and uniformly in t ∈ [0, 1]:

lim
n→+∞

n1−γ

L
(

1
n

)Vn(X)t =

∫ t

0
g0(x)dx . (12)
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Moreover, the process√
n

 n1−γ

L
(

1
n

)Vn(X)t −

∫ t

0
g0(x)dx −

q∑
i=1

∫ t

0
gi (x)dx · φ

(
1
n

)νq


t∈[0,1]

, (13)

converges in law, when n → +∞, in the space D([0, 1]), towards a Gaussian process Z =

{Z t ; t ∈ [0, 1]} defined by

∀t ∈ [0, 1], Z t =

∫ t

0

√
2g0(x)2 + 4g̃(x)2 + 4‖ργ ‖2C(x, x)2dWx , (14)

and W is the standard Brownian motion.

Remark. (i) Since the functions g0, g̃ and C are bounded, the Kolmogorov criterion yields that
the process Z takes its values in the space C([0, 1]). Moreover, let us note that Z has independent
increments.

(ii) The assumptions are the same as in Theorems 3 and 5 in [4], except for the sequence of
subdivisions and for the function φ. In [4], the assumptions are stronger because we wanted to
show an almost sure asymptotic development.

(iii) Assumption (10) yields that the functions gi , 0 ≤ i ≤ q, are continuous on ]0, 1[.

Proof of theorem 2. To simplify notations, choose the convention ν0 = 0 and set for all
t ∈ [0, 1]

bn(t) =

q∑
i=0

∫ t

0
gi (x)dx · φ

(
1
n

)νi

, (15)

Tn(t) =
√

n
n1−γ

L
(

1
n

)Vn(X)t , (16)

T̃n(t) = Tn(t)− E(Tn(t)). (17)

Step 1. We start with the proof of (12). In the case t = 1, it is done in [4], and one can check that
the same arguments hold for any t ∈ [0, 1]. Then, uniformity in (12) is a simple consequence of
Helly theorem (see [11] pp. 114–115).
Step 2. Next we prove (13).
We split the proof into three steps: first the convergence when n → +∞ of the finite-dimensional
margins of the process T̃n towards margins of Z , next the tightness of the family (T̃n)n∈N in the
space D([0, 1]), and last the convergence announced in (13).
Step 2.1. Let 0 ≤ s ≤ t ≤ 1. One sets

σs,t =

∫ t

s
2g0(x)2 + 4g̃(x)2 + 4‖ργ ‖

2C(x, x)2dx . (18)

One has

(T̃n(t)− T̃n(s))
(L)
−→ N (0, σs,t ), (19)

when n → +∞. Moreover,

lim
n→+∞

Var(T̃n(t)− T̃n(s)) = σs,t . (20)
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In the proof of Theorem 5 in [4], one has shown (19) and (20) in the case s = 0 and t = 1 but
one can check that the same arguments hold for any 0 ≤ s ≤ t ≤ 1. So the proof of (19) and (20)
is a straightforward consequence of the proof of Theorem 5 in [4].

Now we prove the convergence of the finite-dimensional margins of T̃n towards margins of Z .

• First we show that, for all t ∈ [0, 1], T̃n(t) converges towards Z t , when n → +∞. This is a
consequence of (19) with s = 0.

• We show that, for all s, t ∈ [0, 1], (T̃n(s), T̃n(t)) converges in law towards (Zs, Z t ) when
n → +∞. It is clear that one can assume that s ≤ t without loss of generality. One considers
the one-dimensional variable,

Sn(λ, µ) =
n1−γ

L
(

1
n

) (λVn(X)s + µVn(X)t ),

where λ and µ are nonnegative real numbers.

First one has to study the asymptotic property of Var(Sn(λ, µ)). One has

Var(Sn(λ, µ)) =
n2−2γ

L
(

1
n

)2 (λ
2Var(Vn(X)s)+µ2Var(Vn(X)t )+2λµCov(Vn(X)s, Vn(X)t )).

Therefore,

Var(Sn(λ, µ)) =
1
n
(λ2Var(T̃n(s))+ µ2Var(T̃n(t))+ 2λµVar(T̃n(s))

+ 2λµCov(T̃n(s), T̃n(t)− T̃n(s))), (21)

However, one has

Var(T̃n(t)) = Var(T̃n(s))+ Var(T̃n(t)− T̃n(s))+ 2Cov(T̃n(s), T̃n(t)− T̃n(s)),

and with formula (20) it yields

lim
n→+∞

Cov(T̃n(s), T̃n(t)− T̃n(s)) = 0. (22)

Consequently, formulas (21) and (22) yield

lim
n→+∞

nVar(Sn(λ, µ)) = λ2Var(Zs)+ µ2Var(Z t )+ 2λµVar(Zs)

= Var(λZs + µZ t ). (23)

Next, one applies the Lindeberg CLT. For that, one considers Sn(λ, µ) as the Euclidean norm
of the Gaussian vector (Gi ; 1 ≤ i ≤ [(n − 1)t]), with

Gi =
√
λ+ µ

√√√√ n1−γ

L
(

1
n

)∆X (n)i , 1 ≤ i ≤ [(n − 1)s],

Gi =
√
µ

√√√√ n1−γ

L
(

1
n

)∆X (n)i , [(n − 1)s] + 1 ≤ i ≤ [(n − 1)t].
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Therefore, by the classical Cochran theorem, one can find an positive real numbers
(τ1,n, . . . , τan ,n) and one an-dimensional Gaussian vector ξn , such that its components are
independent Gaussian variables N (0, 1) and

Sn(λ, µ) =

an∑
i=1

τi,n(ξ
( j)
n )2.

As in the proof of (30) in [5], one can check that

τ ∗
n = max

1≤i≤an
τi,n

n→+∞
= O

(
1
n

)
.

Consequently, with (23), one gets

lim
n→+∞

τ ∗
n

√
Var(Sn(λ, µ))

= 0,

and so the Lindeberg CLT implies
√

n(Sn(λ, µ)− ESn(λ, µ))
(L)
−→ λZs + µZ t ,

when n → +∞.
Moreover, let us note that

λT̃n(s)+ µT̃n(t) =
√

n(Sn(λ, µ)− ESn(λ, µ)).

Therefore,

λT̃n(s)+ µT̃n(t)
(L)
−→ λZs + µZ t ,

when n → +∞.
Next, one can check that the arguments of the proof of Lemma 4.3 in [25] also hold for

the second order quadratic variations. The Cramer–Wold theorem yields the convergence of the
finite-dimensional margins of the process T̃n towards those of Z .

Step 2.2. To prove the tightness of (T̃n)n∈N inD([0, 1]), one shows that the condition of Theorem
15.6 in [9] is satisfied, i.e. for all 0 ≤ t1 ≤ t ≤ t2 ≤ 1:

E(|T̃n(t)− T̃n(t1)|2|T̃n(t2)− T̃n(t)|2) ≤ K |t2 − t1|2, (24)

for n large enough, where K is a generic positive constant which does not depend on n, t, t1, t2
(the value of K may change from one line to another).
Let us note that if t2 − t1 < 1/n for n large enough, then one has either [(n − 1)t] = [(n − 1)t1]
or [(n − 1)t] = [(n − 1)t2]. So, in this case, one has either Tn(t) = Tn(t1) or Tn(t) = Tn(t2) and
(24) is true for any positive constant K .
Now let us examine the case t2 − t1 ≥ 1/n. By the Cauchy–Schwarz inequality, it is sufficient to
prove that, for all 0 ≤ x ≤ y ≤ 1, y − x ≥ 1/n:

E(|T̃n(y)− T̃n(x)|4) ≤ K |y − x |
2. (25)

One has

Tn(y)− Tn(x) =
√

n
n1−γ

L
(

1
n

) [(n−1)y]∑
k=[(n−1)x]+1

(∆X (n)k )2.
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Therefore, by the Cochran theorem, one can find an(x, y) positive real numbers
(τ1,n(x, y), . . . , τan ,n(x, y)) and one an(x, y)-dimensional Gaussian vector ξn(x, y), such that
its components are independent Gaussian variables N (0, 1) and

Tn(y)− Tn(x) =
√

n
an(x,y)∑

j=1

τ j,n(x, y)ξ ( j)
n (x, y)2,

which implies

T̃n(y)− T̃n(x) =
√

n
an(x,y)∑

j=1

τ j,n(x, y)(ξ ( j)
n (x, y)2 − 1).

As in the proof of Lemma 4.4 in [25], one can check that it yields

E
(
|T̃n(y)− T̃n(x)|4

)
≤ K n2

(
an(x,y)∑

j=1

τ j,n(x, y)2
)2

.

Therefore,

E(|T̃n(y)− T̃n(x)|4) ≤ K n2an(x; y)2τ ∗
n (x, y)4,

where τ ∗
n (x, y) = max1≤ j≤an τ j,n(x, y).

The same proof as in Proposition 30 in [5] yields

τ ∗
n (x, y) ≤ K

1
n
,

where K does not depend on (x, y). Moreover, an(x, y) is less or equal to the dimension of the
vector (∆X (n)k ; [(n − 1)x] + 1 ≤ k ≤ [(n − 1)y]), which yields

an(x, y) ≤ [(n − 1)y] − [(n − 1)x].

Consequently, one has

E(|T̃n(y)− T̃n(x)|4) ≤ K
([(n − 1)y] − [(n − 1)x])2

n2 .

Therefore,

E(|T̃n(y)− T̃n(x)|4) ≤ K
((n − 1)(y − x)+ 1)2

n2 .

Since y − x ≥ 1/n, (25) is satisfied. This proves the tightness of (T̃n)n∈N in D([0, 1]).
Step 2.3. To prove Theorem 2, one uses the decomposition

Tn(t)−
√

nbn(t) = T̃n(t)+ ETn(t)−
√

nbn(t). (26)

One has

lim
n→+∞

sup
0≤t≤1

∣∣ETn(t)−
√

nbn(t)
∣∣ = 0, (27)

because one has shown (27) in the proofs of Theorems 3 and 5 in [4] in the case t = 1 and one
can check that the main inequalities in these proofs are uniform in t .

Next, combining Prokhorov theorem with Steps 2.1 and 2.2, and Slutzky lemma with (26) and
(27), one gets (13). �
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It is clear that the process Z belongs to the space C([0, 1]). It suggests the natural question: is
it possible to find a continuous form of the second order quadratic variations process Vn(X),
such that the convergence announced in (13) also holds in the space C([0, 1])? The answer is
affirmative if one considers the process of linear interpolations vn(X). This is the subject of the
next corollary:

Corollary 3. Under the assumptions of Theorem 2 and the following additional assumptions:

(1) the paths of X are (1 − γ /2 − β)-Hölderian on ]0, 1[ for all 0 < β < 1 − γ /2,
(2)

lim
n→+∞

√
nL

(
1
n

)
= +∞,

the process√
n

 n1−γ

L
(

1
n

)vn(X)t −

∫ t

0
g0(x)dx −

q∑
i=1

∫ t

0
gi (x)dx · φ

(
1
n

)νi


t∈[0,1]

, (28)

converges in law, when n → +∞, in the space C([0, 1]), towards the process Z defined by
formula (14).

Remark. If there exists a constant K > 0 such that

∀(s, t) ∈
◦

T ,
∣∣∣∣ ∂2 R
∂s∂t

(s, t)
∣∣∣∣ ≤

K
(s − t)γ

,

then the Kolmogorov criterion yields that the paths of X are (1 − γ /2 − β)-Hölderian on ]0, 1[,
for all 0 < β < 1 − γ /2.

Proof of corollary 3. We keep the notations of the proof of Theorem 2. One has

√
n

 n1−γ

L
(

1
n

)vn(X)t − bn(t)

 =
√

n

 n1−γ

L
(

1
n

)Vn(X)t −
n1−γ

L
(

1
n

)E(Vn(X)t )


+ ETn(t)−

√
nbn(t)

+ ((n − 1)t − [(n − 1)t])
√

n
n1−γ

L
(

1
n

) (∆X (n)
[(n−1)t]+1)

2.

(29)

In steps 2.1 and 2.2 of the proof of Theorem 2, one has shown that the first term of the right-
hand side of (29) converges towards the process Z when n → +∞, in D([0, 1]). Limit (27)
implies that the second term of the right-hand side of (29) converges towards 0 when n → +∞,
uniformly in t ∈ [0, 1]. For the third term, one has supt∈[0,1]((n − 1)t − [(n − 1)t]) ≤ 1. The
assumption on the Hölder regularity of the paths of X yields that this term converges almost
surely towards 0 when n → +∞, uniformly in t ∈ [0, 1].
Consequently, the process√

n

 n1−γ

L
(

1
n

)vn(X)t − bn(t)

 ; t ∈ [0, 1]

 ,
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converges towards the process Z in D([0, 1]), when n → +∞. Since the considered processes
have continuous paths, the convergence also holds in the space C([0, 1]). �

3.1. Case of processes with stationary increments

Under the assumptions of Theorem 2, and the additional assumption that X has stationary
increments, one can check that the functions g0, g̃ and t 7→ C(t, t) are constant. Therefore,
in this case, the process Z defined in (14) is equal to the standard Brownian motion up to a
multiplicative constant.

If X is the standard fractional Brownian motion with Hurst index H ∈ ]0, 1[ i.e.

∀s, t ∈ R, R(s, t) =
1
2
(s2H

+ t2H
− |s − t |2H ), (30)

one gets

∀t ∈ [0, 1], Z t = σFBM,H Wt ,

with

σ 2
FBM,H = 2(4 − 22H )2 + (22H+2

− 7 − 32H )2

+ (2H)2(2H − 1)2(2H − 2)2(2H − 3)2‖ρ2−2H ‖
2, (31)

as it has been defined in [4] p.26.

3.2. Application to the fractional Brownian sheet

For H1, H2 ∈ ]0, 1[, H1 ≤ H2, one considers the two-dimensional standard fractional
Brownian sheet of index (H1, H2), denoted by SH1,H2 = {SH1,H2

t , t ∈ R2
} and defined as the

unique centred Gaussian process with covariance function

∀u, v ∈ R2, Cov(SH1,H2
u , SH1,H2

v ) =
1
4
(|u1|

2H1 + |v1|
2H1 − |u1 − v1|

2H1)

× (|u2|
2H2 + |v2|

2H2 − |u2 − v2|
2H2), (32)

where u = (u1, u2) and v = (v1, v2). This field has been introduced in [21] and studied in [2,
15].

In [14], the authors have presented estimators of H1, H2 and of the field axes, constructed
from one realization. For that, they consider the restriction of SH1,H2 along a radial segment
[AB] with length L > 0. The distance between the segment and the origin is Lε > 0; the angle
of the segment with respect to the field axes is α. One assumes that for all k ∈ Z, α 6= kπ/2. The
restriction of SH1,H2 along [AB] yields a centred Gaussian process X = {X t ; t ∈ [0, 1]} with
covariance function

∀s, t ∈ [0, 1], R(s, t) =
1
4

L2(H1+H2)(|s + ε|2H1 + |t + ε|2H1 − |s − t |2H1)

× (|s + ε|2H2 + |t + ε|2H2 − |s − t |2H2)

× | cosα|
2H1 | sinα|

2H2 . (33)
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On the one hand, according to the computations of Cohen et al. [14], the function C , defined

on
◦

T by

∀s, t ∈
◦

T , C(s, t) = (s − t)4−2H1
∂4 R
∂2s∂2t

(s, t),

which can be extended to a continuous function on T . Moreover, one has, for all t ∈ [0, 1]

C(t, t) = L2(H1+H2)| cosα|
2H1 | sinα|

2H2 H1(2H1 − 1)(2H1 − 2)(2H1 − 3)(t + ε)2H2 ,

if H1 < H2, and

C(t, t) = 2L4H1 | cosα|
2H1 | sinα|

2H1 H1(2H1 − 1)(2H1 − 2)(2H1 − 3)(t + ε)2H1 ,

if H1 = H2. Hence, X satisfies assumption (2) of Theorem 2 with L(h) = 1 and γ = 2 − 2H1.
On the other hand, one can check that

R(t + δ j h, t + δkh) =
1
4

L2(H1+H2)| cosα|
2H1 | sinα|

2H2 [4(t + ε)2(H1+H2)

+ 4(H1 + H2)(δ j + δk)(t + ε)2(H1+H2)−1h

− 2|δ j − δk |
2H1(t + ε)2H2 h2H1

− 2|δ j − δk |
2H2(t + ε)2H1 h2H2

− 2H2(δ j + δk)|δ j − δk |
2H1(t + ε)2H2−1h2H1+1

− 2H1(δ j + δk)|δ j − δk |
2H2(t + ε)2H1−1h2H2+1

+ |δ j − δk |
2(H1+H2)h2(H1+H2)

+ 2H1(2H1 − 1)(δ2
j + δ2

k )(t + ε)2(H1+H2)−2h2

+ H2(2H2 − 1)(δ2
j + δ2

k )(t + ε)2(H1+H2)−2h2

+ 2H1 H2(δ j + δk)
2h2

] + h2+2H1η
(1)
t (h)+ h3η

(2)
t (h),

where, for j, k = 1, 2, 3, one sets δ j , δk = −1, 0, 1. Moreover, one can check that the functions
η
(i)
t , i = 1, 2, are such that

sup
0<h<1

sup
h≤t≤1−h

|η
(i)
t (h)| < +∞.

It yields

sup
h≤t≤1−h

∣∣∣∣∣
(
δh

1 ◦ δh
2 R
)
(t, t)

h2H1
− L2(H1+H2)| cosα|

2H1 | sinα|
2H2

× [(4 − 22H1)(t + ε)2H2 − (4 − 22H2)(t + ε)2H1 h2(H2−H1) + 2(4 − 22(H1+H2))h2H2 ]

∣∣∣∣∣
h→0+

= O(h2).

Let us note that it corrects an error made in [14] formula (40).
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Moreover, with the same method, one can prove that

lim
h→0+

sup
h≤t≤1−h

∣∣∣∣∣ (δh
1 ◦ δh

2 R)(t + h, t)
h2H1

−
1
2

L2(H1+H2)| cosα|
2H1 | sinα|

2H2

× [(t + ε)2H2(22H1+2
− 7 − 32H1)+ (t + ε)2H1(22H2+2

− 7 − 32H2)h2(H2−H1)]

∣∣∣∣∣
= 0.

Thus, X satisfies assumption (3) of Theorem 2 with

q = 2,
ν1 = 2(H2 − H1),

ν2 = 2H2,

ε2 = 1/2,
φ(h) = h,

g0(t) = L2(H1+H2)| cosα|
2H1 | sinα|

2H2(4 − 22H1)(t + ε)2H2 ,

g1(t) = L2(H1+H2)| cosα|
2H1 | sinα|

2H2(4 − 22H2)(t + ε)2H1 ,

g2(t) = L2(H1+H2)| cosα|
2H1 | sinα|

2H2(4 − 22(H1+H2)),

g̃(t) =
1
2

L2(H1+H2)| cosα|
2H1 | sinα|

2H2(22H1+2
− 7 − 32H1)(t + ε)2H2 ,

in the case H1 < H2, and

q = 1,
ν1 = 2H1,

ε1 = 1/2,
φ(h) = h,

g0(t) = 2L4H1 | cosα|
2H1 | sinα|

2H1(4 − 22H1)(t + ε)2H1 ,

g1(t) = L4H1 | cosα|
2H1 | sinα|

2H1(4 − 24H1),

g̃(t) = L4H1 | cosα|
2H1 | sinα|

2H1(22H1+2
− 7 − 32H1)(t + ε)2H1 ,

in the case H1 = H2.
Therefore, one can apply Theorem 2 to X . It yields that, if 0 < H1 ≤ H2 < 1{

√
n
(

n2H1−1Vn(X)t − ψ0(t)−
1

n2(H2−H1)
ψ1(t)−

1
n2H2

ψ2(t)
)

; t ∈ [0, 1]

}
(L)
−→ {Z t ; t ∈ [0, 1]},

with obvious notations. One sees that this central limit theorem is of a classical form, which
means that one has{√

n(n2H1−1Vn(X)t − ψ(t)); t ∈ [0, 1]

}
(L)
−→ {Z t ; t ∈ [0, 1]},

where ψ(t) is not related to n, if and only if H2 > H1 + 1/4 or H1 = H2 > 1/4 (here it also
corrects an error done in [14] Proposition 2, where the condition is H1 = H2 < 3/4).
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Let us note that one has the same results for the process of linear interpolations vn(X),
because, from the remark of Corollary 3, it is clear that the paths of X are (H1 − β)-Hölderian
for all 0 < β < H1.

In the next section, we consider the second order localized quadratic variations to have
the same kind of results for multifractional processes. We obtain a weaker convergence in
distribution, because the limit process is not smooth.

4. Functional convergence of V loc
n (X)t

Let α ∈]0, 1[. In this section, we establish a new version of Theorem 2 for the process of
second order localized quadratic variations (V α,loc

n (X)t ; t ∈ [0, 1]), which is defined by

∀t ∈ ]0, 1[, V α,loc
n (X)t =

∑
k∈Vαn (t)

[
X k+1

n
+ X k−1

n
− 2X k

n

]2
,

where Vαn (t) is a neighbourhood of t defined by

Vαn (t) =

{
k; 1 ≤ k ≤ n − 1 and

∣∣∣∣ kn − t
∣∣∣∣ ≤

1
nα

}
. (34)

Let us note that the number of elements of this set, noted ]Vαn (t), satisfies

]Vαn (t)
n→+∞

∼ 2n1−α.

Theorem 4. Let X be a centered square integrable process, with Gaussian increments, satisfying

(1) R is continuous on [0, 1]
2;

(2) Let T = {0 ≤ t ≤ s ≤ 1}. We assume that the derivative ∂4 R
∂s2∂t2 exists on ]0, 1]

2
\{s = t}, and

that there exist a continuous function C : T 7→ R and a continuously differentiable function
γ : [0, 1] 7→ ]0, 2[ such that

∀(s, t) ∈
◦

T , (s − t)2+
γs+γt

2
∂4 R
∂s2∂t2 (s, t) = C(s, t), (35)

where
◦

T denotes the interior of T ;
(3) We assume that there exist q+1 functions (q ∈ N) g0, g1, . . . , gq from ]0, 1[ to R, q functions

ν1, ν2, . . . , νq from ]0, 1[ to ]0,+∞[, and a function φ : ]0, 1[ 7→]0,+∞[ such that
(a) if q ≥ 1 then ∀t ∈ ]0, 1[, 0 < ν1(t) < ν2(t) < · · · < νq(t);
(b) if q ≥ 1 then ∀0 ≤ i ≤ q − 1, gi is Lipschitz on ]0, 1[;
(c) gq is 1/2 + εq -Hölderian on ]0, 1[ with 0 < εq ≤ 1/2;
(d) there exists t ∈ ]0, 1[ such that g0(t) 6= 0;
(e) For all t ∈ ]0, 1[,

lim
h→0+

1
√

h

(
sup

t−hα≤s≤t+hα

∣∣∣∣∣
(
δh

1 ◦ δh
2 R
)
(s, s)

h2−γs
− g0(s)−

q∑
i=1

gi (s)φ(h)νi (s)

∣∣∣∣∣
)

= 0, (36)
where if q = 0 then ∀s ∈ ]0, 1[,

∑q
i=1 gi (s)φ(h)νi (s) = 0, and where if q 6= 0 then

limh→0+ φ(h) = 0.
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(f) there exists a bounded function g̃ : ]0, 1[ −→ R such that for all t ∈ ]0, 1[:

lim
h→0+

sup
t−hα≤s≤t+hα

∣∣∣∣∣
(
δh

1 ◦ δh
2 R
)
(s + h, s)

h2−γs
− g̃(s)

∣∣∣∣∣ = 0. (37)

Then, for all t ∈ ]0, 1[, one has almost surely

lim
n→+∞

n1−γt +αV α,loc
n (X)t = 2g0(t). (38)

Moreover, the finite-dimensional laws of the process{
n

1−α
2

(
n1−γt +αV α,loc

n (X)t − 2g0(t)− 2
q∑

i=1

gi (t)φ
(

1
n

)νq (t)
)}

t∈]0,1[

, (39)

converge, when n → +∞, towards those of a centred Gaussian process Z loc
= {Z loc

t ; t ∈ ]0, 1[},
whose covariance function is defined by

∀s, t ∈ ]0, 1[, R(s, t) =

{
4g0(t)2 + 8g̃(t)2 + 8‖ργ ‖

2C(t, t)2 if s = t,
0 if s 6= t.

(40)

Remark. (i) One has stated a result with the convergence of the finite-dimensional laws because
the limit process is a white noise and so it is not measurable (see [26] chapter VI exercise (2,18)).

(ii) Assumption (36) yields that the functions gi , 0 ≤ i ≤ q, are continuous on ]0, 1[.

Proof of theorem 4. We proceed as in the proofs of Theorems 3 and 5 in [4]. In all the proof,
we note Vn(t) for Vαn (t), whenever it is possible.
Step 1. We start with the proof of (38).
Step 1.1. Let t ∈ ]0, 1[. Prove that

lim
n→+∞

n1−γt +α

2
EV α,loc

n (X)t = g0(t). (41)

One has∣∣∣∣n1−γt +α

2
EV α,loc

n (X)t − g0(t)
∣∣∣∣ =

∣∣∣∣∣∣n
1−γt +α

2

∑
k∈Vn(t)

dkk − g0(t)

∣∣∣∣∣∣
≤

n1+α

2

∑
k∈Vn(t)

dkk

∣∣∣∣n−γt − n
−γ

(
k
n

)∣∣∣∣
+

nα−1

2

∑
k∈Vn(t)

∣∣∣∣∣ dkk

n
γ
(

k
n

)
−2

− g0

(
k
n

)∣∣∣∣∣
+

∣∣∣∣∣∣n
α−1

2

∑
k∈Vn(t)

g0

(
k
n

)
− g0(t)

∣∣∣∣∣∣
= L1 + L2 + L3.

By a Taylor expansion, one has

|n−γt − n−γ ( k
n )| =

∣∣∣∣γt − γ

(
k
n

)∣∣∣∣ n
−γ

(
k
n

)
e−βk,n log n log n,
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where |βk,n| ≤
∣∣γ (t)− γ

( k
n

)∣∣. Moreover, assumption (36) implies that n
2−γ

(
k
n

)
dkk is bounded

in n uniformly in k ∈ Vn(t). It yields

L1 ≤

∣∣∣∣γt − γ

(
k
n

)∣∣∣∣ eβ
∗
n log n log n,

where β∗
n = supk∈Vn(t) |βk,n|. Since γ is Lipschitz, previous inequality yields

lim
n→+∞

L1 = 0.

Moreover, one has

L2 ≤ sup
k∈Vn(t)

∣∣∣∣∣ dkk

n
γ
(

k
n

)
−2

− g0

(
k
n

)∣∣∣∣∣ .
With assumption (36), it yields

lim
n→+∞

L2 = 0.

One also has

lim
n→+∞

L3 = 0,

because g0 is a Lipschitz function.

Step 1.2. Prove that, for all t ∈ ]0, 1[, one has almost surely

lim
n→+∞

n1−γt +α(V α,loc
n (X)t − EV α,loc

n (X)t ) = 0. (42)

Since the localized and normalized second order quadratic variation can be considered as the
Euclidean norm of a Gaussian vector, one can apply the classical Cochran theorem, which yields
that there exist ]Vn(t) nonnegative real numbers (λk,n; k ∈ Vn(t)), and a ]Vn(t)-dimensional
vector (Y (k)n ; k ∈ Vn(t)) whose components are independent reduced Gaussian variables, such
that

n1−γt +αV α,loc
n (X)t =

∑
k∈Vn(t)

λk,n(Y (k)n )2. (43)

Following [5] formula (25) p. 699, the Hanson and Wright inequality (see [18]) yields that
there exists K > 0 such that for all 0 < a < 1

P(n1−γt +α|V α,loc
n (X)t − EV α,loc

n (X)t | > a) ≤ 2 exp
(

−
K a2

λ∗
n

)
,

where K > 0 and λ∗
n = max{λk,n; k ∈ Vn(t)}. With the arguments of the proof of (30) p. 701

in [5], and the fact that g0 is Lipschitz, one can prove that

λ∗
n

n→+∞
= O

(
1

n1−α

)
.

Thus, if one sets

a2
n =

2 log n
K n1−α

,
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one has

lim
n→+∞

an = 0,

+∞∑
n=0

P

 n2−γt

]Vn(t)φ
(

1
n

)νq (t)
|V α,loc

n (X)t − EV α,loc
n (X)t | > an

 < +∞,

and the Borel–Cantelli lemma yields (42).

Step 2. Next we prove (39).

Step 2.1. Prove that there exist a constant K > 0 and a sequence of positive real numbers (an)n∈N
such that limn→+∞ an = 0, such that if 0 ≤ t ≤ s ≤ 1, j ∈ Vn(s), k ∈ Vn(t) and j − k ≥ 3
then,

|d2
jk − C(s, t)2nγs+γt −4ρ γs+γt

2
( j − k)2| ≤ K

nγs+γt −4

( j − k − 2)γs+γt +4 an . (44)

We follow the proof of (31) in [4]. One has

d jk =

∫ j+1
n

j
n

du
∫ u

u−
1
n

dv
∫ k+1

n

k
n

dx
∫ x

x−
1
n

∂4 R
∂s2∂t2 (v, y)dy

=

∫ j+1
n

j
n

du
∫ u

u−
1
n

dv
∫ k+1

n

k
n

dx
∫ x

x−
1
n

C(v, y)

(v − y)
γv+γy

2 +2
dy.

Therefore,

|d jk − C(s, t)n
γs+γt

2 −2ρ γs+γt
2
( j − k)|

≤ ‖C‖∞

∫ j+1
n

j
n

du
∫ u

u−
1
n

dv
∫ k+1

n

k
n

dx
∫ x

x−
1
n

∣∣∣∣∣ 1

(v − y)2+
γv+γy

2

−
1

(v − y)2+
γs+γt

2

∣∣∣∣∣ dy

+

∫ j+1
n

j
n

du
∫ u

u−
1
n

dv
∫ k+1

n

k
n

dx
∫ x

x−
1
n

|C(v, y)− C(s, t)|

(v − y)2+
γs+γt

2
dy, (45)

where ‖C‖∞ = supt∈T |C(s, t)|.
Taylor formula and the following inequality:

∀w ∈ R,
∣∣ew − 1

∣∣ ≤ 2e
|w|

2 sinh
(

|w|

2

)
,

yield that one has∣∣∣∣∣ 1

(v − y)2+
γv+γy

2

−
1

(v − y)2+
γs+γt

2

∣∣∣∣∣ ≤
2

(v − y)2+
γs+γt

2
e

‖γ ′
‖∞

2
1

nα log(v−y)

× sinh
(

‖γ ′
‖∞

2
1

nα
log(v − y)

)
.
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Furthermore, on the set of integration {(v, y) :
j−1
n ≤ u −

1
n ≤ v ≤ u ≤

j+1
n , k−1

n ≤ x −
1
n ≤

y ≤ x ≤
k+1

n }, one has

1
n

≤
j − k − 2

n
≤ v − y ≤

j − k + 2
n

≤ s − t +
2

nα
+

2
n

≤ K ,

where K is a positive constant. This proves that the first term of the right-hand side of (45) is
bounded by

K
n
γs+γt

2 −2

( j − k − 2)
γs+γt

2 +2
a(1)n ,

where (a(1)n )n∈N is a sequence of positive real numbers such that limn→+∞ a(1)n = 0.
For the second term of the right-hand side of (45), the uniform continuity of C on T implies

that it is bounded by the same expression with a different sequence (a(1)n )n∈N. Then (44) is a
direct consequence.

Step 2.2. Let t ∈ ]0, 1[. Prove that

lim
n→+∞

n3−2γt +αVar V α,loc
n (X)t = 8g0(t)2 + 16g̃(t)2 + 16‖ργt ‖

2C(t, t)2. (46)

We follow the proof of theorem 5 in [4].
Isserlis formulas (see [19]) yield

Var V α,loc
n (X)t = 2

∑
k∈Vn(t)

d2
kk + 4

∑
k< j; j,k∈Vn(t)

d2
jk . (47)

• First, prove that

lim
n→+∞

n3−2γt +α
∑

j−k≥3; j,k∈Vn(t)

d2
jk = 2C(t, t)2

+∞∑
l=3

ργt (l)
2. (48)

From (44) with s = t and the dominated convergence theorem, one has

lim
n→+∞

n4−2γt

]Vn(t)

∑
j−k≥3; j,k∈Vn(t)

d2
jk = lim

n→+∞

C(t, t)2

]Vn(t)

∑
j−k≥3; j,k∈Vn(t)

ργt ( j − k)2

= C(t, t)2
+∞∑
l=3

ργt (l)
2,

which yields (48).
• Following the proofs of (34), (35), (36) in [4] and the preceding proof of (48), one gets

lim
n→+∞

n3−2γt +α

2
∑

k∈Vn(t)

d2
kk + 4

∑
1≤ j−k≤2; j,k∈Vn(t)

d2
jk


= 8g0(t)2 + 16g̃(t)2 + 16ργt (2)

2C(t, t)2. (49)

Hence, (46) is a consequence of (47)–(49).

Step 2.3. Prove that, if s, t ∈ ]0, 1[, s > t :

lim
n→+∞

n3−γs−γt +αCov (V α,loc
n (X)s, V α,loc

n (X)t ) = 0. (50)
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Isserlis formulas (see [19]) yield

Cov(V loc
n (X)s, V α,loc

n (X)t ) = 2
∑

j∈Vn(s)

∑
k∈Vn(t)

d2
jk ≥ 0. (51)

Let us note that if j ∈ Vn(s) and k ∈ Vn(t) then j − k ≥ (s − t −
2

nα )n. Therefore, there exists
K > 0 such that for large n

∀ j ∈ Vn(t), k ∈ Vn(s), j − k − 2 ≥ K n. (52)

Moreover, (44) yields that there exists a constant K > 0 such that if j ∈ Vn(s) and k ∈ Vn(t):

d2
jk ≤ K

nγs+γt −4

( j − k − 2)γs+γt +4 ,

which implies

n4−γs−γt

√
]Vn(s)]Vn(t)

Cov (V α,loc
n (X)s, V α,loc

n (X)t )

≤
K

√
]Vn(s)]Vn(t)

∑
j∈Vn(s)

∑
k∈Vn(t)

1
( j − k − 2)γs+γt +4

≤
K

nγs+γt +4

√
]Vn(s)]Vn(t)

≤ K
n1−α

nγs+γt +4 ,

and this last inequality proves (50).

Step 2.4. Prove that the finite-dimensional margins of T̃n
loc converge towards those of Z loc where

∀t ∈ ]0, 1[, T loc
n (t) = n

3
2 −γt +

α
2 V α,loc

n (X)t ,

and

∀t ∈ ]0, 1[, T̃n
loc
(t) = T loc

n (t)− E(T loc
n (t)).

As in the proof of Theorem 2, step 2.1, one only proves the convergence in law of
(T̃n

loc
(s), T̃n

loc
(t)) towards (Z loc

s , Z loc
t ) for all s, t ∈ ]0, 1[, s > t . One considers

Sloc
n (λ, µ) = λT loc

n (t)+ µT loc
n (s),

where λ and µ are nonnegative real numbers.
From (46) and (50), one has

lim
n→+∞

Var (Sloc
n (λ, µ)) = λ2Var (Z loc

s )+ µ2Var (Z loc
t )

= Var (λZ loc
s + µZ loc

t ). (53)

Next, one applies the Lindeberg CLT. For that, one considers Sloc
n (λ, µ) as the Euclidean norm

of the Gaussian vector (Gi ; i ∈ Vn(t) ∪ Vn(s)), with

Gi =
√
λ

√
n

3
2 −γt +

α
2 ∆X (n)i , if i ∈ Vn(t),

Gi =
√
µ

√
n

3
2 −γs+

α
2 ∆X (n)i , if i ∈ Vn(s).
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Therefore, by the classical Cochran theorem, one can find an nonnegative real numbers
(τ1,n, . . . , τan ,n) and one an-dimensional Gaussian vector ξn , such that its components are
independent Gaussian variables N (0, 1) and

Sloc
n (λ, µ) =

an∑
i=1

τi,n(ξ
(i)
n )2.

As in the proof of Theorem 6 pp. 24–25 in [4], one can check that:

τ ∗
n = max

1≤i≤an
τi,n

n→+∞
= O

(
1

n
1−α

2

)
.

Consequently, with (53), one gets

lim
n→+∞

τ ∗
n

√
Var(Sn(λ, µ))

= 0,

and so the Lindeberg CLT implies

λT̃n
loc
(t)+ µT̃n

loc
(s) = Sloc

n (λ, µ)− E(Sloc
n (λ, µ))

(L)
−→ λZ loc

t + µZ loc
s ,

when n → +∞.
Next, one can check that the arguments of the proof of Lemma 4.3 in [25] also hold for the

second order localized quadratic variations. Consequently, the Cramer–Wold theorem yields the
convergence of the finite-dimensional margins of the process T̃n

loc towards those of Z loc. �

4.1. Application to the multifractional Brownian motion

Let H : R −→ ]0, 1[ be a three-times continuously differentiable function. One considers a
multifractional Brownian motion B(H) =

{
B(H)t ; t ∈ R

}
with Hurst function H . It is defined

with the following harmonizable representation

∀t ∈ R, B(H)t =
1

D(Ht )

∫
R

eit x
− 1

|x |
Ht +

1
2

dWx , (54)

where W is a random Brownian measure on R (see [8]), and from formula 7.2.13 in [27]:

∀H ∈ ]0, 1[, D(H) =

√∫
R

|eix − 1|2

|x |2H+1 dx =

√
π

HΓ (2H) sin(Hπ)
. (55)

Computations yield that B(H) is a centred Gaussian process with covariance function given by
(see [1])

∀s, t ∈ R, Cov(B(H)s , B(H)t ) = R(H)(s, t) = f (Hs, Ht )(|s|Hs+Ht + |t |Hs+Ht

− |s − t |Hs+Ht ), (56)

where for all x, y ∈ ]0, 1[, f (x, y) =
D( x+y

2 )2

2D(x)D(y) .
This field has been introduced independently in [8,24] and the identification of the Hurst

function has been performed in [6,13].
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On the one hand, computations yield, for all s, t ∈
◦

T :

∂4 R(H)

∂s2∂t2 (s, t) = (s − t)Hs+Ht −3ψ(s, t)−
1
2
(Hs + Ht )(Hs + Ht − 1)

× (Hs + Ht − 2)(Hs + Ht − 3)(s − t)Hs+Ht −4,

where ψ(s, t) is a continuous function on [0, 1]
2. Therefore, assumption (2) of Theorem 4 is

satisfied with γt = 2 − 2Ht .
On the other hand, computations also yield

(δh
1 ◦ δh

2 R(H))(s, s) = 2 f (Hs, Hs+h)hHs+Hs+h + 2 f (Hs−h, Hs)hHs−h+Hs

− f (Hs−h, Hs+h)(2h)Hs−h+Hs+h + ηs(h),

where

ηs(h) = f (Hs+h, Hs+h)(s + h)2Hs+h − 2 f (Hs, Hs+h)(s Hs+Hs+h + (s + h)Hs+Hs+h )

− 2 f (Hs−h, Hs)((s − h)Hs−h+Hs + s Hs−h+Hs )+ 4 f (Hs, Hs)s2Hs

+ f (Hs−h, Hs+h)((s − h)Hs−h+Hs+h + (s + h)Hs−h+Hs+h )

+ f (Hs−h, Hs−h)(s − h)2Hs−h .

One can check that ηs(0) = η′
s(0) = η′′

s (0) = 0. Therefore Taylor formula implies that

ηs(h) =

∫ h

0

(h − x)2

2
η(3)s (x)dx,

and since for all t ∈ ]0, 1[, (s, x) 7→ ηs(x) is three times differentiable on [t −hα, t +hα]×[0, h]

(for h small enough), one has for all t ∈ ]0, 1[:

sup
t−hα≤s≤t+hα

|ηs(h)|
h→0+

= O(h3).

Consequently, for all t ∈ ]0, 1[:

lim
h→0+

1
√

h

(
sup

t−hα≤s≤t+hα

∣∣∣∣∣ (δh
1 ◦ δh

2 R(H))(s, s)
h2Hs

− (4 − 22Hs )

∣∣∣∣∣
)

= 0.

And with the same method, one can prove that for all t ∈ ]0, 1[:

lim
h→0+

sup
t−hα≤s≤t+hα

∣∣∣∣∣ (δh
1 ◦ δh

2 R(H))(s + h, s)
h2Hs

−
1
2
(22Hs+2

− 7 − 32Hs )

∣∣∣∣∣ = 0.

Therefore, B(H) satisfies assumption (3) of Theorem 4 with

q = 0,
ε0 = 1/2,
g0(t) = 4 − 22Ht ,

g̃(t) =
1
2
(22Ht +2

− 7 − 32Ht ).

Consequently, Theorem 4 yields that, for all t ∈ ]0, 1[, one has almost surely

n2Ht −1+αV α,loc
n (B(H))t

n→+∞
= 2(4 − 22Ht ). (57)
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Moreover, the finite-dimensional laws of the process{
n

1−α
2 (n2Ht −1+αV α,loc

n (B(H))t − 2(4 − 22Ht )); t ∈ [0, 1]

}
, (58)

converge, when n → +∞, towards those of a centred Gaussian process Z loc
= {Z loc

t ; t ∈ ]0, 1[},
whose covariance function is defined by

∀s, t ∈ ]0, 1[, R(s, t) =

{
2σ 2

FBM,Ht
if s = t,

0 if s 6= t,
(59)

where σ 2
FBM,Ht

has been defined in (31).
Let us note that the last formula corrects an error in formula (10) p. 7 in [13], in the case s 6= t .
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[2] A. Ayache, S. Léger, M. Pontier, Drap brownien fractionnaire, Potential Analysis 17 (1) (2002) 31–43.
[3] G. Baxter, A strong limit theorem for Gaussian processes, Proceedings of the American Mathematical Society 7

(1956) 522–527.
[4] A. Bégyn, Asymptotic expansion and central limit theorem for quadratic variations of Gaussian processes, Bernoulli

(in press).
[5] A. Bégyn, Quadratic variations along irregular subdivisions for Gaussian processes, Electronic Journal of

Probability 10 (2005) 691–717.
[6] A. Benassi, S. Cohen, J. Istas, Identifying the multifractional function of a Gaussian process, Statistics and

Probability Letters 39 (1998) 337–345.
[7] A. Benassi, S. Cohen, J. Istas, S. Jaffard, Identification of filtered white noises, Stochastic Processes and their

Applications 75 (1998) 31–49.
[8] A. Benassi, S. Jaffard, D. Roux, Gaussian processes and pseudodifferential elliptic operators, Revista

Iberoamericana Mathematica 13 (1) (1997) 19–89.
[9] P. Billingsley, Convergence of Probability Measures, Wiley, 1968.

[10] P. Breuer, P. Major, Central limit theorems for Non-linear functionals of Gaussian fields, Journal of Multivariate
Analysis 13 (1983) 425–441.

[11] G. Choquet, Cours de Topologie, 2nd edition, Masson, 1992 (in French).
[12] J. Coeurjolly, Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths,

Statistical Inference for Stochastic Processes 4 (2) (2001) 199–227.
[13] J. Coeurjolly, Identification of the multifractional Brownian motion, Bernoulli 11 (6) (2005) 987–1009.
[14] S. Cohen, X. Guyon, O. Perrin, M. Pontier, Singularity functions for fractional processes, and application to

fractional Brownian sheet, Annales de l’I.H.P. 42 (2) (2006) 187–205.
[15] D. Feyel, A. de la Pradelle, On fractional Brownian processes, Potential Analysis 10 (3) (1999) 273–288.
[16] E. Gladyshev, A new limit theorem for stochastic processes with Gaussian increments, Theory of Probability and

Applications 6 (1) (1961) 52–61.
[17] X. Guyon, J. León, Convergence in law of the H-variations of a stationary Gaussian process in R, Annales de
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l’Institut Henri Poincaré. Probabilités et Statistiques 33 (1997) 407–436.
[21] A. Kamont, On the fractional anisotropic wiener field, Probability and Mathematical Statistics 18 (1996) 85–98.
[22] R. Klein, E. Gine, On quadratic variations of processes with Gaussian increments, Annals of Probability 3 (4)

(1975) 716–721.
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