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1. Introduction

Let F be a field, let F〈X〉 be the free algebra generated by the set X = {x1, x2, . . .} of countably

many noncommuting indeterminates, and let f = f (x1, . . . , xd) ∈ F〈X〉 be a nonzero polynomial. We

say that a map φ from an F-algebra A into itself preserves zeros of f if for all a1, . . . , ad ∈ A,

f (a1, . . . , ad) = 0 �⇒ f (φ(a1), . . . , φ(ad)) = 0.

The list of all maps on A that preserve zeros of f must certainly contain scalar multiples of automor-

phisms, for some polynomials it must also contain scalar multiples of antiautomorphisms (say, for

f = x1x2 + x2x1), and for some of them even all maps of the form

φ(x) = αθ(x)+ μ(x), (1)

where α ∈ F , θ : A → A is either an automorphism or an antiautomorphism, and μ is a linear map

from A into its center (say, for f = x1x2 − x2x1). Our goal is to show that under certain restrictions –

in particular, we will confine ourselves to linear maps φ and multilinear polynomials f – the standard

example (1) is also the only possible example of a map preserving zeros of f . We will not bother with

the question for which polynomials (1) can be simplified.

For certain simple polynomials, especially for f = x1x2 and f = x1x2 − x2x1, our problem has a

long and rich history; see, for example [1,7] for historic comments and references. So far not much

is known for general polynomials. For them the problem was explicitly posed by Chebotar et al. [9]

for the matrix algebra A = Mn(F), and some partial solutions were obtained in two recent papers:

[13] considers, in particular, the case where the sum of coefficients of f is a nonzero scalar (without

assuming the linearity of φ), and [10] handles Lie polynomials of degree at most 4. Let us alsomention

a related, yet considerably simpler, problem of describing linear maps that preserve all values of f , i.e.,

φ(f (a1, . . . , ad)) = f (φ(a1), . . . , φ(ad)) for all ai ∈ A. This problem can be solved at a high level of

generality by using functional identities, although for finite dimensional algebras (including Mn(F))
the obtained results are not optimal; see [4] and also [7, Section 6.5].

One of the most fascinating approaches to linear preserver problems on matrix algebras was de-

veloped by Platonov and -Doković [16]. It is based on linear algebraic groups. In Section 2 we will see

that this approach is applicable to our problem. In the matrix algebra A = Mn(F) we will be able to

consider general multilinear polynomials f ; however, we will be forced to impose several technical

restrictions some of which might be superfluous. The general problem from [9] is therefore not yet

completely solved.

InSection3wewill prove three results giving solutions toourproblemfor somespecial polynomials,

but in the context of rather general classes of prime algebras and/or C∗-algebras. More precisely, we

will show that for these polynomials the problem can be reduced to some still nontrivial, but already

solved problems. For polynomials that are not covered in our considerations, or at least cannot be

handled by similar methods, the problem seems to be very intriguing.

2. The matrix algebra case

Themain goal of this section is to prove Theorem2.2. Firstwewill survey thenecessary tools needed

in the proof.

2.1. Remarks on free algebras

Let F be a field and let X = {x1, x2, . . .} be a set of countablymany noncommuting indeterminates.

The free algebra F〈X〉 consists of polynomials in x1, x2, . . .We say that f = f (x1, . . . , xd) ∈ F〈X〉 is a
multilinear polynomial if it is of the form

f = ∑
σ∈Sd

λσ xσ(1) . . . xσ(d),
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where λσ ∈ F and Sd is the symmetric group of degree d. A nonzero polynomial f = f (x1, . . . , xd) ∈
F〈X〉 is said to be a polynomial identity of an F-algebraA if f (a1, . . . , an) = 0 for all a1, . . . , an ∈ A. For

example,A is a commutative algebra if and only if [x1, x2] = x1x2 − x2x1 is its polynomial identity. By

the famous Amitsur–Levitzki theorem, the matrix algebra Mn(F) has a polynomial identity of degree

2n. On the other hand, Mn(F) does not have polynomial identities of degree < 2n; the proof of that

will be used in our arguing.

Let F〈X〉0 denote the subalgebra of F〈X〉 generated by 1 and all polynomials of the form

[xk1 , [xk2 , . . . , [xkr−1
, xkr ] . . . ]]. That is to say, F〈X〉0 is the subalgebra generated by 1 and all Lie poly-

nomials of degree ≥ 2. Defining the partial derivative
∂ f
∂xi

of f ∈ F〈X〉 in a self-explanatory manner it

is easy to see that
∂ f
∂xi

is always 0 if f ∈ F〈X〉0. Moreover, if char(F) = 0, then this property is char-

acteristic for elements from F〈X〉0 [12, Proposition 3]. Note that if f = f (x1, . . . , xd) is a multilinear

polynomial, its partial derivative can be simply obtained by formally replacing xi by 1:

∂ f

∂xi
= f (x1, . . . , xi−1, 1, xi+1, . . . , xd).

2.2. The Platonov–-Doković theory

Let K be an algebraically closed field of characteristic 0. We will write Mn for Mn(K). We have

Mn = M0
n ⊕ K · 1, where 1 is the identity matrix, and M0

n is the space of all x ∈ Mn with tr(x) = 0.

Let O(n2) be the subgroup of GL(n2) which preserves the nondegenerate symmetric bilinear form

tr(xy), x, y ∈ Mn. The subgroup of O(n2) consisting of operators which fix the identity matrix 1

will be denoted by O(n2 − 1). The identity components of O(n2) and O(n2 − 1), i.e., subgroups
consisting of matrices whose determinant is 1, will be denoted by SO(n2) and SO(n2 − 1), respec-
tively.

ByGwedenote the subgroup ofGL(n2) consisting of all similarity transformations x �→ axa−1 with

a ∈ GL(n). Next, by P we denote the subgroup of GL(n2)which acts trivially onM0
n andMn/M

0
n , and by

Q the subgroup ofGL(n2)which acts trivially on K1 andMn/K1. Thus,Q consists of all transformations

x �→ x + f (x)1, where f is a linear functional onMn such that f (1) = 0. Let T denote the subgroup of

GL(n2)which acts by scalar transformations on M0
n and K1, and set T1 = T ∩ SL(n2).

By τ we denote the transposition map. However, we will write x′ for the transpose of x. Note that

the group GQT〈τ 〉 consists of all invertible linear transformations σ : Mn → Mn that take one of the

forms σ(x) = αaxa−1 + f (x)1 or σ(x) = αax′a−1 + f (x)1, where α ∈ K∗, a ∈ GL(n), and f is a

linear functional on Mn such that f (1) �= −α.
The algebra of all linear transformations on Mn can be identified with the tensor product algebra

Mn ⊗ M
opp
n , where M

opp
n is the opposite algebra of Mn, via the action (a ⊗ b)(x) = axb, a, b, x ∈ Mn.

With respect to the notations just introduced, the following theorem can be extracted from [16,

Theorems A and B].

Theorem 2.1 (Platonov–-Doković). Let 	 be a proper connected algebraic subgroup of SL(n2), n �= 4,

containing G. Then 	 is one of the groups:

(a) G, GQ, GT1, GQT1,

(b) SO(n2 − 1), SO(n2 − 1)T1, SO(n
2 − 1)P, SO(n2 − 1)Q,

SO(n2 − 1)PT1, SO(n
2 − 1)QT1, SL(n

2 − 1), SL(n2 − 1)T1,
SL(n2 − 1)P, SL(n2 − 1)Q, SL(n2 − 1)PT1, SL(n

2 − 1)QT1,
tSO(n2)t−1 for some t ∈ T1,

(c) GP, GPT1,

(d) t
(
SL(n)⊗ SL(n)opp

)
t−1 for some t ∈ T1.

Moreover, if 	 is one of the groups listed in (a), then its normalizer in GL(n2) is a subgroup of GQT〈τ 〉.
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Let us point out that all groups listed in (b) contain SO(n2 − 1). For tSO(n2)t−1, t ∈ T1, this can be

easily checked, while for others this is entirely obvious. Conversely, only the groups from (b) contain

SO(n2 − 1).

2.3. Main theorem

Let f = f (x1, . . . , xd) ∈ F〈X〉 be a nonzero multilinear polynomial of degree d. Our goal is to show

that under suitable assumptions a linear map φ : Mn(F) → Mn(F) that preserves zeros of f is of the
standard form (1). In the present setting this can be more specifically described as

φ(x) = αaxa−1 + f (x)1 or φ(x) = αax′a−1 + f (x)1, (2)

where α ∈ F∗, a ∈ GL(n, F), and f is a linear functional on Mn(F) such that f (1) �= −α.
If dwas≥ 2n, then, by the Amitsur–Levitzki theorem, f could be a polynomial identity, making the

assumption that φ preserves zeros of f meaningless. We will therefore assume that d < 2n. Further,

we will assume that n �= 2, 4. It is well-known that the n = 2 case must be excluded when dealing

with the polynomial x1x2 − x2x1. On the other hand, it seems possible that the exclusion of n = 4 is

unnecessary. We need it in order to apply Theorem 2.1. Another assumption that we have to require

is that char(F) = 0. This one is also used because of applying Theorem 2.1 and is possibly redundant.

Further, we will assume that φ is bijective. This is a usual and certainly necessary assumption in this

context (cf. [8] that deals with the polynomial x1x2 − x2x1 without assuming bijectivity). Finally, we

will assume that φ(1) ∈ F · 1; the (un)necessity of this assumption will be discussed in the next

subsection.

Let usmake a few comments and introduce somenotations before stating and proving the theorem.

We have to warn the reader that, just as in [16], we are assuming a basic familiarity with the concepts

related to linear algebraic groups. A good general reference is Borel’s book [5].

We are going to consider a bijective linear map φ onMn(F) that preserves the set of zeros of f ,

SF = {(a1, . . . , ad) ∈ Mn(F)
d |f (a1, . . . , ad) = 0}.

This is an algebraic set. Indeed, considering SF as a subset of (Fn
2

)d, it is equal to the vanishing set

of polynomials {f ((x1ij), . . . , (xdij))st| 1 � s, t � n}. Using [16, Lemma 3] (or [11, Lemma 1]) it can

be therefore deduced that φ−1 also preserves SF , i.e., it also satisfies the condition we are interested

in (and so, in fact, φ(SF) = SF ). Accordingly, the set of all linear maps satisfying this condition is an

algebraic group. The goal of our theorem is to describe those of its elements that also preserve scalar

matrices.

By K we denote an algebraic closure of F. Since φ ∈ GL(n2, F) ⊆ GL(n2) (= GL(n2, K)) preserves

SF , it also preserves its Zariski closure S in Kn2d. This is an algebraic set, and therefore, by the same

argument as above,

G̃ = {ψ ∈ GL(n2, K)| ψ(S) ⊆ S}
is a group (and ψ(S) = S for every ψ ∈ G̃). By M we denote the (algebraic) subgroup of GL(n2)
consisting of all maps that preserve scalar matrices. Thus φ is contained in the algebraic group G̃ ∩M.

For every algebraic group L defined over F we denote by LF the group of F-rational points of L.We

have (GQT)F = GFQFTF and (GQT〈τ 〉)F consists of elements in GL(n2, F) that are of the form (2); cf.

[16, p. 176]. Thus, if one can establish that

G̃ ∩ M ⊆ GQT〈τ 〉, (3)

then φ, which is defined over F , lies in GFQFTF〈τ 〉 and is therefore of the standard form (2).

Note that SF is invariant under the GF -action given by

g · (a1, . . . , ad) := (g(a1), . . . , g(ad)).

Hence its closure S is also invariant under GF , so that GF ⊆ G̃. Since char(F) = 0 and G is connected,

the rational points GF are Zariski-dense in G [5, Corollary 18.3]. From this one infers that G = GF ⊆ G̃;
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moreover, G ⊆ G̃ ∩ M. In a similar fashion, by first noticing that SF is closed under multiplication by

nonzero scalars in F we see that G̃ ∩ M is closed under multiplication by nonzero scalars in K; that is,

if a ∈ G̃ and λ ∈ K∗, then λa ∈ G̃ ∩ M.

Let us also mention that if H is an arbitrary algebraic group, then its identity component (i.e., the

connected component with respect to Zariski topology that contains the identity) is also an algebraic

group, and moreover, it is a normal subgroup of H [5, Proposition 1.2].

We now have enough information to prove the following theorem.

Theorem 2.2. Let F be a field with char(F) = 0, let f ∈ F〈X〉 be amultilinear polynomial of degree d ≥ 2,

and let φ : Mn(F) → Mn(F) be a bijective linear map that preserves zeros of f and satisfies φ(1) ∈ F · 1.
Assume that n �= 2, 4 and d < 2n. Then φ is of the standard form (2).

Proof. As noticed above, it suffices to establish (3). We claim that it is enough to prove

SO(n2 − 1) �⊆ G̃. (4)

Indeed, assume (4) holds. Consider H = (G̃ ∩ M)∩ SL(n2) and let H1 be the identity component of H.

Then H1 is an algebraic group, it is connected, and, since G ⊆ G̃ ∩M, it contains G. Therefore H1 is one

of the groups listed in Theorem 2.1. As H1 ⊆ G̃ ∩ M and (4) holds, we may exclude the possibilities

listed in (b). Furthermore, as the groups from (c) and (d) are not contained in M, H1 must be one of

the groups listed in (a). Theorem 2.1 now tells us that the normalizer of H1 in GL(n2) is a subgroup

of GQT〈τ 〉. Since H1 is a normal subgroup of H it follows that H is contained in GQT〈τ 〉. Now pick

α ∈ G̃ ∩ M. As mentioned above, G̃ ∩ M is closed under multiplication by nonzero scalars. Therefore

det(α)−1α ∈ H ⊆ GQT〈τ 〉. AsGQT〈τ 〉 is also closed undermultiplication by nonzero scalars it follows

that α = det(α)
(
det(α)−1α

) ∈ GQT〈τ 〉. This proves (3).
Thus, let us prove (4). Assume first that d is an even number. Set k = d

2
+ 1 and note that k ≤ n.

Consider the sequence of d matrix units

e11, e12, e22, e23, e33, e34, . . . , ek−1,k−1, ek−1,k. (5)

The product of these matrices in an arbitrary order except in the given one is equal to zero. Therefore,

for anappropriatepermutation (a1, . . . , ad)of thematrices (5) (corresponding to anonzero coefficient

of f ) we have f (a1, . . . , ad) �= 0. Now define a linear transformation θ onMn(K) according to

θ(e12) = e21, θ(e21) = e12, θ(e11) = e33, θ(e33) = e11,

and θ fixes all other matrix units. A bit tedious but straightforward verification shows that θ lies in

SO(n2 − 1). Now, θ maps the matrices from (5) into the matrices

e33, e21, e22, e23, e11, e34, . . . , ek−1,k−1, ek−1,k.

Their product in an arbitrary order is 0, so that f (θ(a1), . . . , θ(ad)) = 0. This implies that θ �∈ G̃.

Namely, if θ was in G̃ then θ−1 would map SF into S which is contained in the set of zeros of f . Thus

(4) is proved in this case.

The case where d is odd requires only minor modifications. One has to consider the matrix units

e11, e12, e22, e23, . . . , ek−1,k, ek,k,

where k = d+1
2

≤ n, and then follow the above argument. �

2.4. Preserving scalar matrices

It seems plausible that the assumption from Theorem 2.2 that φ(1) ∈ F · 1 can be removed. To

this end one should examine carefully the groups from (c) and (d). However, apparently this would

require a detailed and tedious analysis making the proof much lengthier. We have therefore decided

to omit this problem in its full generality here, and perhaps return to it in a more technical paper. We

will now restrict our attention to polynomials from F〈X〉0, which are of special interest in view of [10].
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For these polynomials the argument based on the Platonov–-Doković theory is rather short. However,

we will use an alternative approach, based on the following elementary lemma which is perhaps of

independent interest.

Lemma 2.3. Let f ∈ F〈X〉, where F is an arbitrary field, be a multilinear polynomial of degree d. Let n ≥ 2

be such that d < 2n. If c ∈ Mn(F) satisfies

f (c, a2, . . . , ad) = f (a1, c, a3, . . . , ad) = · · · = f (a1, . . . , ad−1, c) = 0 (6)

for all a1, . . . , ad ∈ Mn(F), then c ∈ F · 1.
Proof. Pick an arbitrary rank one idempotent e ∈ Mn(F). Then the algebra (1 − e)Mn(F)(1 − e) is
isomorphic to Mn−1(F), so it contains matrix units hij , 1 ≤ i, j ≤ n − 1, i.e., elements satisfying

hijhkl = δjkhil and
∑n−1

k=1 hkk = 1 − e.

Without loss of generality we may assume that x1x2 . . . xd is a monomial of f . We set (s, t) :=
( d
2

− 1, d
2
) if d is even and (s, t) := ( d−1

2
, d−1

2
) if d is odd. In any case we have t ≤ n − 1. Examining

all possible monomials of f one easily notices that

e · f (e, c, h11, h12, h22, h23, . . . , hst) · ht1 = ech11.

Since f (e, c, h11, h12, h22, h23, . . . , hst) = 0 by our assumption, we thus have ech11 = 0. Similarly, by

permuting the hij ’s, we see that echkk = 0 for every k. Accordingly, ec(1− e) = 0. In a similar fashion,

by using f (a1, . . . , ad−2, c, ad) = 0, we get (1 − e)ce = 0. Hence it follows that c commutes with

every rank one idempotent e. But then c ∈ F · 1. �

Corollary 2.4. Let F be a field with char(F) = 0, let f ∈ F〈X〉0 be a multilinear polynomial of degree

d ≥ 2, and let φ : Mn(F) → Mn(F) be a bijective linear map that preserves zeros of f . Assume that

n �= 2, 4 and d < 2n. Then φ is of the standard form (2).

Proof. In view of Theorem 2.2 it suffices to prove that c := φ(1) lies in F · 1. This is an immediate

consequence of Lemma 2.3. Namely, since f ∈ F〈X〉0 we have

f (1, b2, . . . , bd) = f (b1, 1, b3, . . . , bd) = · · · = f (b1, . . . , bd−1, 1) = 0

for all bi ∈ Mn(F), and hence (6) follows. �

3. Some special polynomials

In this section we will consider some special multilinear polynomials

f (x1, x2, . . . , xd) = ∑
σ∈Sd

λσ xσ(1)xσ(2) . . . xσ(d) (7)

forwhichourproblemcanbehandled in rather general classesof algebras. Specifically,wewill consider

polynomials f satisfying one of the following conditions:

∂d−1f

∂x2∂x3 . . . ∂xd
�= 0, (A)

∂d−1f

∂x2∂x3 . . . ∂xd
= 0 and

∂d−2f

∂x3∂x4 . . . ∂xd
�= 0, (B)

∂d−1f

∂x2∂x3 . . . ∂xd
= 0 and f (x, x, . . . , x, y) �= 0. (C)

The conditions (B) and (C) are independent. For example,

x1x2x3 + x3x1x2 + x2x3x1 − x2x1x3 − x1x3x2 − x3x2x1
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(i.e., the standard polynomial of degree 3) satisfies (B) and does not satisfy (C), while

x1(x2x3 − x3x2)− (x2x3 − x3x2)x1

satisfies (C) and does not satisfy (B).

3.1. Polynomials satisfying (A)

We begin with an elementary lemma.

Lemma 3.1. Let f be amultilinear polynomial satisfying (A). SupposeA is a unital algebra andφ : A → A
is a linear map preserving zeros of f and satisfying φ(1) ∈ F∗1. If a, b ∈ A are such that ab = ba = 0,

then φ(a)φ(b)+ φ(b)φ(a) = 0.

Proof. Without loss of generality wemay assume thatφ(1) = 1. Namely, ifφ(1) = λ1with 0 �= λ ∈
F , then we can replace φ by λ−1φ which also preserves zeros of f and does map 1 into 1.

From ab = ba = 0 we infer

f (a, b, 1, . . . , 1) = f (b, a, 1, . . . , 1) = 0,

and hence

f (φ(a), φ(b), 1, . . . , 1) = f (φ(b), φ(a), 1, . . . , 1) = 0.

We write f as in (7). Note that (A) simply means that

λ := ∑
σ∈Sd

λσ �= 0.

Since

f (φ(a), φ(b), 1, . . . , 1)+ f (φ(b), φ(a), 1, . . . , 1)

= ∑
σ−1(1)<σ−1(2)

λσφ(a)φ(b)+ ∑
σ−1(2)<σ−1(1)

λσ φ(b)φ(a)

+ ∑
σ−1(1)<σ−1(2)

λσ φ(b)φ(a)+ ∑
σ−1(2)<σ−1(1)

λσφ(a)φ(b)

= λ
(
φ(a)φ(b)+ φ(b)φ(a)

)
,

it follows that φ(a)φ(b)+ φ(b)φ(a) = 0. �

Recall that a Jordan epimorphism on an algebra A is a surjective linear map θ satisfying θ(a2) =
θ(a)2 for every a ∈ A.

Theorem 3.2. Let f be a multilinear polynomial of degree d ≥ 2 satisfying (A), and let A be a unital C∗-
algebra. If a continuous surjective linear map φ : A → A preserves zeros of f and satisfies φ(1) ∈ C

∗ · 1,
then φ is a scalar multiple of a Jordan epimorphism.

Proof. The conclusion of Lemma 3.1 makes it possible for us to directly apply [2, Theorem 3.3]. The

statement of this theorem togetherwith awell-known fact that Jordan epimorphisms preserve unities

[15, Corollary 3, p. 482] immediately gives the desired conclusion. �

Corollary 3.3. Assume the conditions of Theorem 3.2. If A is a prime algebra, then φ is a scalar multiple

of either an epimorphism or an antiepimorphism.

Proof. If A is prime, then epimorphisms or antiepimorphisms are the only Jordan epimorphisms by

Herstein’s theorem [14]. �
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3.2. Polynomials satisfying (B)

The treatment of (B) is similar to that of (A).

Lemma3.4. Let f be amultilinear polynomial satisfying (B). SupposeA is a unital algebra andφ : A → A
is a linear map preserving zeros of f and satisfying φ(1) ∈ F∗1. If a, b ∈ A are such that ab = ba = 0,

then φ(a)φ(b) = φ(b)φ(a).

Proof. We can reword (B) as∑
σ∈Sd

λσ = 0 and μ := ∑
σ−1(1)<σ−1(2)

λσ �= 0.

Therefore ∑
σ−1(2)<σ−1(1)

λσ = −μ.

Wemay assume, for the same reason as in the proof of Lemma 3.1, that φ(1) = 1. If a, b ∈ A are such

that ab = ba = 0, then

f (a, b, 1, . . . , 1) = 0,

and hence

f (φ(a), φ(b), 1, . . . , 1) = 0.

Since

f (φ(a), φ(b), 1, . . . , 1) = ∑
σ−1(1)<σ−1(2)

λσ φ(a)φ(b)+ ∑
σ−1(2)<σ−1(1)

λσ φ(b)φ(a),

it follows that μ
(
φ(a)φ(b)− φ(b)φ(a)

)
= 0, i.e., φ(a) and φ(b) commute. �

Theorem 3.5. Let f be a multilinear polynomial of degree d ≥ 2 satisfying (B), and letA be a unital prime

C∗-algebra that is not isomorphic to M2(C). If a continuous bijective linear map φ : A → A preserves

zeros of f and satisfies φ(1) ∈ C
∗ · 1, then there exist α ∈ C, an automorphism or an antiautomorphism

θ of A, and a linear functional f on A such that φ(a) = αθ(a)+ f (a)1 for all a ∈ A.

Proof. Lemma 3.4 makes it possible for us to apply [2, Corollary 3.6], which immediately gives the

result. �

3.3. Polynomials satisfying (C)

The condition (C) means that there exist λ1, . . . , λd ∈ F , not all zero, such that

d∑
i=1

λi = 0 and f (x, x, . . . , x, y) =
d∑

i=1

λix
d−iyxi−1.

The simplest case where f = x1x2 − x2x1 was considered in [6, Theorem 2]. This result was one of

the earliest applications of functional identities. Incidentally, [6, Theorem 2] was used in the proof of

[2, Corollary 3.6], and therefore indirectly also in the proof of Theorem 3.5. What we would now like

to show is that using the advanced theory of functional identities one can handle, in a more or less

similar fashion, a more general situation where f satisfies (C).

Functional identities can be informally described as identical relations on rings that involve arbi-

trary (“unknown") functions. The goal is to describe these functions, or, when this is not possible, to
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determine the structure of the ring in question. For a full account on functional identities, as well as

to some other notions that will appear below, we refer to the book [7].

Theorem 3.6. Let f be a multilinear polynomial of degree d ≥ 2 satisfying (C), let char(F) �= 2, 3, and let

A be a centrally closed prime F-algebra with dimF A > d2. If a bijective linear map φ : A → A preserves

zeros of f , then there existα ∈ F, an automorphism or an antiautomorphism θ ofA, and a linear functional

f on A such that φ(a) = αθ(a)+ f (a)1 for all a ∈ A.

Proof. As f (x, x, . . . , x, x2) is obviously 0 if f satisfies (C), we have

f (φ(a), φ(a), . . . , φ(a), φ(a2)) = 0

for all a ∈ A, i.e.,

d∑
i=1

λiφ(a)
d−iφ(a2)φ(a)i−1 = 0.

A complete linearization of this identity leads to a situation where [7, Theorem 4.13] is applicable

under suitable assumptions on A and φ. In view of [7, Theorems 5.11 and C.2], these assumptions are

fulfilled in our case since φ is surjective and dimF A > d2. The conclusion is that φ(ab + ba) is a

quasi-polynomial. As char(F) �= 2, this is equivalent to the existence of λ ∈ F andmapsμ, ν : A → F

(with μ linear) such that

φ(a2) = λφ(a)2 + μ(a)φ(a)+ ν(a)

for every a ∈ A. Since φ is also injective and char(F) �= 3, the result now follows from [6, Theorem

2]. �

It is worth pointing out that all prime C∗-algebras are centrally closed [3, Proposition 2.2.10]. Let

us also mention that infinite dimensional algebras are not excluded in Theorem 3.6; only algebras of

“small" dimension ≤ d2 are.
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