On multiplying large periodic integers. I

by J. H. B. Kemperman *
Dept. of Mathematics, The University of Rochester, Rochester, New York 14627, U.S.A.

Communicated at the meeting of September 29, 1979

abstract

Let z be a positive integer which is obtained as the product of several large integers each with a periodic digit behavior. We investigate the periodic behavior for the leading digits of z and for the least significant digits of z and further study the relations between the two periodic behaviors.

1. Introduction

Let g be a fixed integer, $g \geqslant 2$, to be used as a number base. Further x will be a positive integer. It can be uniquely represented as

$$
x=x_{1}+x_{2} g+x_{3} g^{2}+\ldots=\left(\ldots x_{3} x_{2} x_{1}\right)_{g}
$$

with x_{j} as a digit, (that is, $x_{j} \in\{0,1, \ldots, g-1\}$), and $x_{j}=0$ for j large. Let $N=N(x)$ be such that

$$
x=\left(x_{N}, x_{N-1}, \ldots, x_{2}, x_{1}\right)_{g}=\sum_{j=1}^{N} x_{j} g^{j-1} \text { with } x_{N} \neq 0 .
$$

By a period of x (to the base g) we shall mean an integer with $1<T \leqslant N / 2$ and such that $x_{j+T}=x_{j}$ whenever $1 \leqslant j<j+T \leqslant N=N(x)$. The (possibly empty) set of all such periods will be denoted as $\mathscr{T}(x)$. One easily verifies

[^0]that $T_{1}, T_{2} \in \mathscr{T}(x), T_{1}<T_{2}$, imply $T_{2}-T_{1} \in \mathscr{T}(x)$. Moreover, $T_{1}+T_{2} \in \mathscr{T}(x)$, provided $T_{1}+T_{2} \leqslant N / 2$.

If $\mathscr{T}(x)$ is non-empty then all the periods T of x are multiples of a common period T_{0}. For, let T_{0} denote the smallest element in $\mathscr{T}(x)$. One has $h T_{0} \in \mathscr{T}(x)(h=1,2, \ldots)$ as long as $h T_{0} \leqslant N / 2$. Let T be an arbitrary period of x. If it is not a multiple of T_{0} then $h T_{0}<T<(h+1) T_{0}$ for some positive integer h. Here, $h T_{0}<T \leqslant N / 2$ thus $h T_{0} \in \mathscr{T}(x)$ hence $T^{\prime}=T-h T_{0}$ would be a member of $\mathscr{T}(x)$ strictly smaller than T_{0}.

The integer x is said to be periodic (to the base g) if it has at least one period T. Naturally, this is most interesting when T is quite small relative to $N(x)$. It would follow that $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ can be extended to an infinite sequence $\left\{x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}, \ldots\right\}$ such that $x_{i+r}^{\prime}=x_{j}^{\prime}$ for all $j \geqslant 1$; ($x_{j}^{\prime}=x_{j}$ for $1 \leqslant j \leqslant N)$. This extension is unique and does not depend on the particular period T, since it is always a multiple of the minimal period T_{0}.

We will say that x is purely periodic if it possesses a period T which divides N. Then also the minimal period T_{0} of x will be a divisor of $N=N(x)$.
remark. The restriction $T \leqslant N / 2$ in the definition of period is essential. Let us define a quasi-period of x as any integer $1 \leqslant T<N=N(x)$ such that $x_{j+T}=x_{j}$ whenever $1 \leqslant j<j+T \leqslant N$. We claim that different quasiperiods may lead to different periodic extensions. Moreover, a quasiperiod need not be a multiple of the minimal quasi-period T_{0}, not even when $T_{0} \leqslant N / 2$ (in which case x is periodic).

For example, $x=(1213121)_{10}$ has $N=7$, no period, while 4 and 6 are quasi-periods leading to different periodic extensions. Similarly, for $x=(12185121)$ with $N=8$ and quasi-periods 5 and 7. The integer $x=(112111211)_{10}$ has $N=9$, a period $T_{0}=4$ and a quasi-period $T=7$. Similarly, $x=(12112121121)_{10}$ with $N=11, T_{0}=5$ and $T=8$ (which lead to different periodic extensions).

The main problem

Let z be a positive integer which has been derived from a few large periodic integers $x^{(m)}$, each with a relatively small period T_{m}, by a short calculation involving the operations of addition, subtraction and multiplication. Then often the sequence of leading digits of z and the sequence of least significant digits of z each have an outspoken periodic behavior. In the present paper we will study this phenomenon and also certain connections between the two periodic behaviors, especially for the case that the $x^{(m)}$ are purely periodic.

As an example, choose $g=10$, and consider the purely periodic integers

$$
\begin{aligned}
& x=x(m)=(2121 \ldots 21)_{10}=21\left(10^{2 m}-1\right) / 99 \\
& y=y(n)=(847847 \ldots 847)_{10}=847\left(10^{3 n}-1\right) / 999
\end{aligned}
$$

with m and n large. The first has $N(x)=2 m$ decimal digits and period 2.

The second has $N(y)=3 n$ and period 3. Their product would be equal to

$$
z=z(m, n)=x(m) y(n)=\left(10^{2 m}-1\right)\left(10^{3 n}-1\right) \zeta
$$

where

$$
\zeta=\left(\frac{21}{9}\right)\left(\frac{84}{9} \frac{7}{9}\right)=(0 . \overline{179846513})_{10}
$$

has a purely repeating decimal expansion of period 9 with repeating blocks $\bar{w}=(179846513)$. Letting $k^{\prime}=\min (2 m, 3 n)-2$, the first k^{\prime} significant decimal digits of $z(m, n)$ will show the following periodic pattern:

$$
z(m, n)=(1798465131798465131798 \ldots)_{10}
$$

Next, let us consider the sequence of least significant digits of $z(m, n)$. Working modulo 10^{k}, it is obvious that the last k decimal digits of the positive integer $z(m, n)$ are independent of the particular choice of m and n as long as $k<\min (2 m, 3 n)$. It turns out that then

$$
z=z(m, n)=(1798 \ldots 53486820153486820153487)_{10} .
$$

That is, except for the final digit 7, the tail of the decimal expansion of $z(m, n)$ is also periodic of period 9 , this time with blocks (682015348). It is also true that the tail of the decimal expansion of $z-1$ is purely periodic with period block (820153486). Moreover, it so happens that

$$
(179846513)_{10}+(820153486)_{10}=(999999999)_{10}
$$

We will see that this example is not an exception but quite typical instead.
In the Sections 2 and 3 we develop all the necessary tools. These sections are elementary and self-contained, partly expository and parallel to the theory of g-adic numbers as treated in [1] and [5]. However, g-adic numbers are never mentioned explicitely. The reader may prefer to skim first through the illustrations and running discussion of part II (section 4).

2. Arithmetic modulo g^{k}

Let M be a fixed positive integer, $M \geqslant 2$, (usually, $M=g^{k}$ with k large). If two real numbers u and v differ by a multiple of M then we write $u \equiv v(\bmod M)$. For instance, $-1=(999 \ldots 99)_{10}\left(\bmod 10^{k}\right)$, where the latter integer has at least k digits 9 .

Let R_{M} denote the (commutative) ring of integers modulo M. An element $x \in R_{M}$ is called a zero-divisor if $x y=0$ for some $y \in R_{M}$ with $y \neq 0$. If x corresponds to the integer u this means that $(u, M) \geqslant 2$.

Let S_{M} denote the set of all $x \in R_{M}$ which are not zero-divisors; (they correspond to the integers u with $(u, M)=1)$. If $x, y \in S_{M}$ then also $x y \in S_{M}$.

Two pairs (r_{1}, s_{1}) and (r_{2}, s_{2}) in $R_{M} \times S_{M}$ will be said to be equivalent if $r_{1} s_{2}=r_{2} s_{1}$; we will write $\left(r_{1}, s_{1}\right) \sim\left(r_{2}, s_{2}\right)$. One easily verifies that this is an equivalence relation. Let $[r / s]$ denote the equivalence class which contains the pair $(r, s) \in R_{M} \times S_{M}$. Thus $\left[r_{1} / s_{1}\right]=\left[r_{2} / s_{2}\right]$ if and only if
$r_{1} s_{2}=r_{2} s_{1}$. One easily verifies that a well-defined commutative ring is obtained by defining $\left[r_{1} / s_{1}\right]$. [$\left.r_{2} / s_{2}\right]=\left[r_{1} r_{2} / s_{1} s_{2}\right]$ and $\left[r_{1} / s_{1}\right]+\left[r_{2} / s_{2}\right]=\left[r_{1} s_{2}+\right.$ $\left.+r_{2} s_{1} / s_{1} s_{2}\right]$, (with $r_{i}=R_{M}$ and $s_{i} \in S_{M}$).
If the $r_{i} \in R_{M}$ and $s_{i} \in S_{M}$ are represented by integers u_{i} and v_{i}, respectively, then the relation $\left[r_{1} / s_{1}\right]=\left[r_{2} / s_{2}\right]$, (that is, $\left(r_{1}, s_{1}\right) \sim\left(r_{2}, s_{2}\right)$), will be expressed as

$$
\begin{equation*}
u_{1} / v_{1} \equiv u_{2} / v_{2}[\bmod M] . \tag{2.1}
\end{equation*}
$$

Let us stress that (2.1) does not assert that $u_{1} / v_{1} \equiv u_{2} / v_{2}(\bmod M)$ but only that $u_{1} v_{2} \equiv u_{2} v_{1}(\bmod M)$. For instance, $3 / 7 \equiv 9 / 1[\bmod 10]$. However, if x and y are integers then the relations $x / 1 \equiv y / 1[\bmod M]$ and $x \equiv y(\bmod M)$ are identical.

Let $s \in S_{M}$ be fixed. Then the map $x \rightarrow x s$ of R_{M} into itself is injective. Since R_{M} is finite, this map is also onto. Hence, for each $r \in R_{M}$, there exists a unique $x \in R_{M}$ with $x s=r$, equivalently, $[r / s]=[x / 1]$. Identifying [$x / 1]$ with x, we see that the above ring of equivalence classes is nothing but R_{M} itself. Our treatment (which is well-known, see [3] p. 67) shows that in R_{M} one may freely divide by elements $s \in S_{M}$. Moreover, relative to multiplication, addition, subtraction by elements in R_{M} or division by elements in S_{M}, the resulting quotients r / s can be handled just as in ordinary grade school arithmetic.

3. The sequence of least significant digits

In the sequel, k will be a fixed positive integer and g a fixed base. Consider a nonnegative integer z which is given in the form

$$
\begin{equation*}
z=F\left(x^{(1)}, \ldots, x^{(M)}\right) \tag{3.1}
\end{equation*}
$$

where F denotes a polynomial with integer coefficients. Further, $x^{(m)}$ denotes a nonnegative integer such that the sequence of its last k digits (to the base g) is a periodic sequence of period $T_{m},(m=1, \ldots, M)$, (where $T_{m} \leqslant k / 2$). In other words,

$$
\begin{equation*}
x^{(m)}=\left(\ldots \bar{w}^{(m)} \bar{w}^{(m)} \bar{w}^{(m)} \ldots \bar{w}^{(m)}\right)_{g}\left(\bmod g^{k}\right) \tag{3.2}
\end{equation*}
$$

with $\bar{w}^{(m)}=\left(w_{1}^{(m)}, \ldots, w_{T_{m}}^{(m)}\right)$ as a given block of T_{m} digits $w_{j}^{(m)},(m=1, \ldots, M)$. Among other things, we are interested in the problem of determining the periodic behavior of the sequence of last k digits of the resulting integer z.

Consider a nonnegative integer x having the following behavior:

$$
\begin{equation*}
x \equiv(\ldots \bar{w} \bar{w} \bar{w} \bar{w} \bar{u})_{g}\left(\bmod g^{k}\right) \tag{3.3}
\end{equation*}
$$

Here,

$$
\bar{w}=\left(w_{1}, w_{2}, \ldots, w_{T}\right) \text { and } \bar{u}=\left(u_{1}, u_{2}, \ldots, u_{h}\right)
$$

denote blocks of $T \geqslant 1$ digits w_{j} and $h \geqslant 0$ digits u_{j}, respectively. If $h=0$ then \bar{u} stands for the empty block. Thus, the sequence of the k least
significant digits of x ends as follows:

$$
\ldots w_{T-1} w_{T} w_{1} w_{2} \ldots w_{T} w_{1} w_{2} \ldots w_{T} u_{1} u_{2} \ldots, u_{h}
$$

To the blocks \bar{u} and \bar{w} we will associate the integers

$$
\left\{\begin{array}{l}
u=\left(u_{1}, u_{2}, \ldots, u_{h}\right)_{g}=u_{1} g^{h-1}+u_{2} g^{h-2}+\ldots+u_{h} \tag{3.4}\\
w=\left(w_{1}, w_{2}, \ldots, w_{T}\right)_{g}=w_{1} g^{T-1}+w_{2} g^{T-2}+\ldots+w_{T}
\end{array}\right.
$$

($u=0$ if $h=0$). Note that $0<u<g^{h}$ and $0<w<g^{T}$. Further w and \bar{w} determine each other if T is known, similarly for u and \tilde{u} when h is known. It follows from (3.3) and (3.4) that

$$
x \equiv u+w\left(1+g^{T}+g^{2 T}+\ldots+g^{(j-1) T}\right) g^{h}\left(\bmod g^{k}\right),
$$

provided the positive integer j satisfies $j T+h \geqslant k$. Hence,

$$
\left(g^{T}-1\right) x \equiv\left(g^{T}-1\right) u+w\left(g^{\prime T}-1\right) g^{h} \equiv\left(g^{T}-1\right) u-w g^{h}\left(\bmod g^{k}\right) .
$$

Consequently, using the notations of Section 2 with $M=g^{k}$, we have the central relation

$$
\begin{equation*}
x \equiv \xi\left[\bmod g^{k}\right], \text { where } \xi=u-w g^{h} /\left(g^{T}-1\right) . \tag{3.5}
\end{equation*}
$$

Conversely, (3.5) with u and w of the form (3.4) (where $u_{j}, w_{j} \in\{0,1, \ldots$, $g-1\}$) implies for x the regular behavior (3.3).

Consider the special case $h=0$. Then

$$
x \equiv(\ldots \bar{w} \bar{w} \bar{w} \bar{w})_{g}\left(\bmod g^{k}\right),
$$

that is, the last k digits of x form a periodic sequence of period T (provided $k>2 T$). And in this case (3.5) simplifies to

$$
\begin{equation*}
x \equiv-w /\left(g^{T}-1\right)\left[\bmod g^{k}\right] . \tag{3.6}
\end{equation*}
$$

In particular, for $m=1, \ldots, M,(3.2)$ is equivalent to

$$
\begin{equation*}
x^{(m)} \equiv \xi^{(m)}\left[\bmod g^{k}\right], \text { where } \xi^{(m)}=-w_{m} /\left(g^{T_{m}}-1\right), \tag{3.7}
\end{equation*}
$$

with

$$
w_{m}=\left(w_{1}^{(m)}, w_{2}^{(m)}, \ldots, w_{T_{m}^{(m)}}^{(m)}, \text { thus, } w_{m} \in\left\{0,1, \ldots, g^{T_{m}-1}\right\}\right.
$$

It follows from (3.1), (3.7) and the remarks in Section 2 that the given nonnegative integer z satisfies

$$
\begin{equation*}
z \equiv \zeta\left[\bmod g^{k}\right], \tag{3.8}
\end{equation*}
$$

where ζ is the rational number defined by

$$
\begin{equation*}
\zeta=F\left(\xi^{(1)}, \xi^{(2)}, \ldots, \xi^{(M)}\right) . \tag{3.9}
\end{equation*}
$$

It is an easy matter to compute the number ζ. It remains to determine the resulting behavior of the sequence of the k least significant digits of z.

Observe that ζ can be written as

$$
\begin{equation*}
\zeta=r / s \quad \text { with } s \geqslant 1,(g, s)=1 \tag{3.10}
\end{equation*}
$$

(r and s integers; we do not require that $(r, s)=1$). Every prime factor of s must be a prime factor of $g^{T_{m}}-1$, for some $m \in\{1,2, \ldots, M\}$. Moreover, the rational number ζ is independent of k.

The theory of g-adic numbers (see [5] pp. 14-17) implies that any rational number ζ of the type (3.10) can be brought into the form

$$
\begin{equation*}
\zeta=u-w g^{n} /\left(g^{T}-1\right) \tag{3.11}
\end{equation*}
$$

Here, $T \geqslant 1, h \geqslant 0, u$ and w are integers (independent of k), while

$$
\begin{equation*}
u \in\left\{0,1, \ldots, g^{h}-1\right\} ; w \in\left\{0,1, \ldots, g^{T}-1\right\} . \tag{3.12}
\end{equation*}
$$

In view of the criterion (3.5), it follows that (3.8) is equivalent to
(3.13) $z \equiv(\ldots \bar{w} \bar{w} \bar{w} \bar{w} \bar{u})_{g}\left(\bmod g^{k}\right)$,
with \bar{w} as the block of digits associated to w and T, \bar{u} as the block of digits associated to u and h. That is,

$$
\bar{w}=\left(w_{1}, w_{2}, \ldots, w_{T}\right) ; \bar{u}=\left(u_{1}, u_{2}, \ldots, u_{h}\right)
$$

with the u_{j} and w_{j} as digits such that (3.4) holds. This reduces the problem to a calculation of the decomposition (3.11), (3.12).
mudustration. As an example, consider the illustration used in Section 1. That is, take $g=10$ and z as the product $z=x y$ of the periodic positive integers $x=(2121 \ldots 21)_{10}$ and $y=(847847 \ldots 847)_{10}$ having $2 m \geqslant k$ and $3 n \geqslant k$ decimal digits, respectively. Thus, z is of the form (3.1) with $M=2 ; \quad F^{\prime}(x, y)=x y ; \quad T_{1}=2, \bar{w}^{(1)}=(2,1)$, thus, $\xi^{(1)}=-21 / 99 ;$ further, $T_{2}=3, \bar{w}^{(2)}=(8,4,7)$, thus, $\xi^{(2)}=-847 / 999$.

Consequently, $z=x y$ satisfies (3.8) with $\zeta=\left(\frac{21}{9}\right)\left(\frac{84}{9} \frac{7}{9}\right)$. Moreover,

$$
\zeta=7-10(\overline{682015348})_{10}=7-10 w /\left(10^{9}-1\right),
$$

where w is the 9 -digit integer $w=(682015348)_{10}$. Therefore, (3.11) holds with $T=9, h=1$ and $u=7$. This in turn is equivalent to

$$
z \equiv(\ldots \bar{w} \bar{w} \bar{w} \bar{w} 7)_{10}\left(\bmod 10^{k}\right)
$$

with \bar{w} as the 9 -digit block $\bar{w}=(682015348)$.
Let us turn to the problem of determining the decomposition (3.11), (3.12). The treatment below includes a proof that this decomposition is always possible and has many interesting byproducts.

We start with a rational number ζ of the canonical form (3.10), (possibly calculated from (3.7) and (3.9)). Further z will denote a nonnegative integer satisfying (3.8).

If $s=1$ then everything is trivial. For, then ζ itself is an integer and (3.8) simply says that $z \equiv \zeta\left(\bmod g^{k}\right)$. If $\zeta \geqslant 0$ then (3.11) holds with $u=\zeta ; w=0 ; T \geqslant 1$ arbitrary and $h>0$ so large that $\zeta<g^{h}$. If $\zeta<0$ then (3.11) holds with $h>0$ such that $|\zeta| \leqslant g^{h} ; u=g^{h}+\zeta ; w=g^{T}-1$ and $T>1$ arbitrary.

For convenience, we will assume $s \geqslant 2$ from now on. By T we shall denote the smallest integer $T \geqslant 1$ with $g^{T} \equiv 1(\bmod s)$. One has $1 \leqslant T \leqslant$ $\leqslant \phi(s) \leqslant s-1$, with ϕ as the Euler ϕ-function.
It suffices to construct a representation of the form

$$
\begin{equation*}
\zeta=r / s=u-g^{h}(R / s) \tag{3.14}
\end{equation*}
$$

where h is a nonnegative integer, while u and R satisfy

$$
\begin{equation*}
u \in\left\{0,1, \ldots, g^{h}-1\right\} ; R \in\{0,1, \ldots, s\} \tag{3.15}
\end{equation*}
$$

($u=0$ when $h=0$).
For, suppose one has a decomposition as in (3.14), (3.15). Let λ be the positive integer such that $g^{T}-1=\lambda s$. Then

$$
R / s=w /\left(g^{T}-1\right) \text { with } w=\lambda s
$$

Since $0 \leqslant R / s<1$, one has that $w \in\left\{0,1, \ldots, g^{T}-1\right\}$. Consequently, (3.14), (3.15) imply that ζ has the required representation (3.11), (3.12). And the latter implies in turn the important property (3.13) for z.

Remark. Let $\bar{w}=\left(w_{1}, \ldots, w_{T}\right)$ denote the block associated to w and T, (see (3.4)). Then one has the expansion

$$
\begin{equation*}
R / s=w /\left(g^{T}-1\right)=(. \bar{w} \bar{w} \bar{w} \ldots)_{g}=g^{-h}(u-\zeta) ; \tag{3.16}
\end{equation*}
$$

(here, the period T is minimal when $(R, s)=1$, see [2] p. 111). Comparing (3.13) and (3.16), it is obvious that the sequence of the last k digits of z is closely related to the usual expansion to the base g of the rational number ζ associated to z. For a special case this was also observed by Knuth [4] p. 180, 497.

It remains to show that ζ has a representation (3.14), (3.15). Particularly simple is the case that

$$
\begin{equation*}
-1 \leqslant \zeta \leqslant 0, \text { that is, }-s \leqslant r \leqslant 0 \tag{3.17}
\end{equation*}
$$

For, then (3.14), (3.15) hold with $h=0, u=0$ and $R=-r$. Moreover (3.13) and (3.16) imply
(3.18) $z \equiv(\ldots \bar{w} \bar{w} \bar{w} \bar{w})_{g}\left(\bmod g^{k}\right)$,
where \bar{w} is the same block (of length T) as in the expansion
(3.19) $-\zeta=-r / s=(. \bar{w} \bar{w} \bar{w} \bar{w} \ldots)_{g}$.

Next, we like to reduce the general case to the special case (3.17). For this purpose, let us introduce integers v_{j} and R_{j} such that
(3.20) $r / s=v_{j}-g^{j}\left(R_{j} / s\right)$ and $v_{j} \in\left\{0,1, \ldots, g^{j}-1\right\}$,
$(j=0,1,2, \ldots)$. In particular,
(3.21) $\quad v_{j} s \equiv r\left(\bmod g^{j}\right)$ and $v_{j} \in\left\{0,1, \ldots, g^{j}-1\right\}$.

Since (3.21) has precisely one solution v_{j} and R_{j} is determined by $R_{j}=\left(v_{j} s-r\right) / g^{j}$, we see that, for each $j \geqslant 0$, there is a unique such pair v_{j}, R_{j}. For instance, $v_{0}=0$ and $R_{0}=-r$.

One is ready if there exists an index j with $0 \leqslant R_{j} \leqslant s$. For, then (3.20) implies that (3.14) and (3.15) hold with $h=j, u=v_{j}$ and $R=R_{j}$. Moreover, from the remarks following (3.15), $0 \leqslant R_{j} \leqslant s$ would imply that

$$
\begin{equation*}
z \equiv\left(\ldots \bar{w}^{(j)} \bar{w}^{(j)} \bar{w}^{(f)} \bar{v}^{(j)}\right)_{g}\left(\bmod g^{k}\right) \tag{3.22}
\end{equation*}
$$

with $\bar{w}^{(j)}$ as the block of T digits associated to the integer $w^{(f)} \in\{0,1, \ldots$, $\left.g^{T}-1\right\}$ defined by

$$
\begin{equation*}
R_{f} / s=w^{(j)} /\left(g^{T}-1\right)=\left(. \bar{w}^{(j)} \bar{w}^{(j)} \bar{w}^{(j)} \ldots\right)_{g} \tag{3.23}
\end{equation*}
$$

Further $\bar{v}^{(j)}$ denotes the block of j digits corresponding to $v_{j} \in\{0,1, \ldots$, $\left.g^{f}-1\right\}$.

It will be convenient to introduce a fixed integer f such that

$$
f g \equiv 1(\bmod s)
$$

Let a_{j} denote the integer defined by $(f g)^{j}=1+a_{y} s$. Then $r / s=-a_{y} r+$ $+g^{j}\left(f^{f} r / s\right)$, showing that the first condition (3.20) holds with $v_{j}=-a_{j} r+$ $+b_{j} g^{j}$ and $R_{j}=-f^{j} r+b_{j} s$, whatever the value b_{j}. By an appropriate choice of the integer b_{j}, one can also satisfy the second condition (3.20). In fact, one has the explicit formulae

$$
\begin{equation*}
v_{j}=\left\{-a_{j} r / g^{j}\right\} g^{j}=\left\{\left(r / s g^{j}\right)\left(1-(f g)^{f}\right)\right\} g^{j}=\left\{(-\zeta)\left(f^{j}-g^{-j}\right)\right\} g^{j}, \tag{3.24}
\end{equation*}
$$

with $\{y\}=y-[y]$ as the non-integral part of y. Similarly,

$$
b_{j}=-\left[-a_{j} r g^{-f}\right]=-\left[(-\zeta)\left(f^{\prime}-g^{-f}\right)\right]
$$

and

$$
\begin{equation*}
R_{j} / s=(-\zeta) f^{\prime}-\left[(-\zeta) f^{j}+\varepsilon_{f}\right], \text { where } \varepsilon_{j}=\zeta g^{-j} . \tag{3.25}
\end{equation*}
$$

It is easily seen that, for t as an integer, $0 \leqslant t / s-[t / s+\varepsilon]<1$ as soon as $-1 / s \leqslant \varepsilon<1 / s$. Choosing $t=-r f^{\prime}$, we see from (3.25) that $0 \leqslant R_{j} \leqslant s$ holds as soon as $-1 / s<(r / s) g^{-1}<1 / s$ which is true for $g^{j}>|r|$.

This completes the proof of the existence of a representation (3.14), (3.15). In the sequel, h will be defined by

$$
\begin{equation*}
h=h_{\min }=\min \left\{j: j \geqslant 0,0 \leqslant R_{j} \leqslant s\right\} . \tag{3.26}
\end{equation*}
$$

We have shown that h is finite (and our estimates show that $h<1+$ $+\left[\log _{g}|r|\right]$). Moreover, (3.14), (3.15) holds with $u=v_{h}$ and $R=R_{h}$, while (3.22), (3.23) hold with $j=h$.

ALGORITHM. For actual calculations (of $h, u=v_{h}$ and R_{h}), the following recursive scheme is to be preferred above (3.24), (3.25).

From the definition (3.21) of v, there exist unique digits

$$
\begin{equation*}
z_{t} \in\{0,1, \ldots, g-1\}, \quad(i=1,2, \ldots) \tag{3.27}
\end{equation*}
$$

such that

$$
\begin{equation*}
v_{j}=z_{1}+z_{2} g+\ldots+z_{j} g^{j-1} \text { for all } j>0 \tag{3.28}
\end{equation*}
$$

$\left(v_{0}=0\right)$. Moreover, from (3.20) applied to two consecutive values j,
(3.29) $\quad\left(g R_{j+1}-R_{j}\right) / s=\left(v_{j+1}-v_{j}\right) / s, \quad(j>0)$,
therefore, (3.28) implies that
(3.30) $\quad R_{j+1}=\left(R_{j}+z_{j+1} s\right) / g, \quad(j>0)$.

Recall that $R_{0}=-r$. Given R_{f}, the digit $z_{j+1} \in\{0,1, \ldots, g-1\}$ is uniquely determined by the requirement that $R_{j}+z_{j+1} s$ be divisible by g. Afterwards, one calculates R_{j+1} from (3.30), then z_{j+2} and so on.

If both R_{j} and s are expressed to the base g, then in calculating z_{j+1} one only needs to pay attention to the very last digits ϱ_{j} and σ of R_{j} and s, and further to the sign of R_{j}. Let e be the unique digit such that $e \sigma \equiv-1(\bmod g)$, that is $e s \equiv-1(\bmod g)$. Then $z_{j+1} \equiv e R_{j}(\bmod g)$. If $R_{j}>0$ this is the same as $z_{j+1} \equiv e \varrho_{j}(\bmod g)$.

As a concrete example, if $g=10$ and $\zeta=-87 / 13$ then we get the following calculation, (where $\sigma=3$ and $e=3$).

87	$R_{0}=87$	$\varrho_{0}=7$	$z_{1}=1$
13			
10	$R_{1}=10$	$\varrho_{1}=0$	$z_{2}=0$
00			
1	$\boldsymbol{R}_{2}=1$	$\varrho_{2}=1$	$z_{3}=3$
39			
4	$\boldsymbol{R}_{3}=4$	$\varrho_{3}=4$	$z_{4}=2$
26			
3	$R_{4}=3$	$\varrho_{4}=3$	$z_{5}=9$
117			
12	$R_{5}=12$	$\varrho_{5}=2$	$z_{6}=6$
78			
9	$R_{6}=9$	$\varrho_{6}=9$	$z_{7}=7$
91			
10	$R_{7}=10$	$\varrho_{7}=0$	$z_{8}=0$

Already after one step it is true that $0<R_{j}<13$. The first digit is $z_{1}=1$. From there on, the digits recur in blocks (032967) of length 6. This is naturally related to the fact that $R_{1} / s=10 / 13=(\overline{769230})_{10}$, see (3.38).
comments. Observe from (3.30) and $0<z_{j+1}<g-1$ that

$$
\begin{equation*}
0<R_{j}<s \text { implies } 0<R_{j+1}<s \tag{3.31}
\end{equation*}
$$

Hence, from (3.26),
(3.32) $0 \leqslant R_{j} \leqslant s$ for all $j \geqslant h$, while $R_{j} \notin[0, s]$ for all $j<h$.

Further note, from (3.28) and (3.30), that

$$
\begin{equation*}
\zeta=r / s=z_{1}+z_{2} g+\ldots+z_{j} g^{j-1}-g^{j}\left(R_{j} / s\right) \tag{3.33}
\end{equation*}
$$

From (3.30), if one R_{j} is divisible by s then all are. Since $\zeta=r / s=-R_{0} / s$, this happens precisely when ζ is an integer. In that case, one must have for all $j \geqslant h$ that either $R_{j}=0$ or $R_{j}=s$. It is clear from (3.33) that, for ζ as a nonnegative integer, one must have $R_{j}=0$ and $z_{j+1}=0$ for all $j>h$. Similarly, if ζ is a negative integer then $R_{j}=s$ and $z_{j+1}=g-1$ for all $j>h$, (where h depends on ζ).

On the other hand, if ζ is not an integer then $R_{j}=0$ and $R_{j}=s$ are impossible, showing that $0<R_{j}<s$ for all $j \geqslant h$. Further, from (3.20) and (3.22), $g^{j} R_{j} \equiv-r(\bmod s)$, thus, $R_{j} \equiv-f^{j} r(\bmod s)$. Since $g^{T} \equiv 1(\bmod s)$ one has $f^{T} \equiv 1(\bmod s)$, hence, $R_{j+T} \equiv R_{j}(\bmod s)$. Consequently, (even if ζ is an integer), one has

$$
\begin{equation*}
R_{j+T}=R_{j} \text { and thus } z_{j+T+1}=z_{j+1} \text { for all } j \geqslant h \tag{3.34}
\end{equation*}
$$

On the other hand, $z_{h+w} \neq z_{h}$ (if $h \geqslant 1$). This follows for instance from (3.30) applied for $j=h-1$ and $j=h+T-1$, where $R_{h}=R_{h+T}$ but $R_{h-1} \neq R_{h+T-1}$, (since the second belongs to $[0, s]$ and the first does not).
The fraction $-R_{j} / s$ in (3.33) is equivalent $\left[\bmod g^{k}\right]$ to an integer (see Section 2). Hence, it follows from (3.8) and (3.38) that

$$
\begin{equation*}
z \equiv z_{1}+z_{2} g+\ldots+z_{j} g^{j-1}\left(\bmod g^{j}\right) \text { whenever } 0 \leqslant j \leqslant k \tag{3.35}
\end{equation*}
$$

One may conclude from (3.35) that the digits $z_{1}, z_{2}, \ldots, z_{k}$ which we computed from the algorithm (3.30) (with R_{j+1} an integer) are precisely the k least significant digits in the representation of the integer z to the base g. This justifies the notation z_{i} for the digits in (3.28).

Another way of proving (3.35) is to note, using (3.32), that (3.22) is valid for all $j>h$. Here,

$$
\begin{equation*}
\bar{v}^{(\prime)}=\left(z_{j}, z_{j-1}, \ldots, z_{1}\right) \tag{3.36}
\end{equation*}
$$

is the block of the j digits of the integer v_{j} (with $0 \leqslant v_{j}<g^{j}$; see (3.28)). Afterwards, comparing (3.22) and (3.35), it also follows that the block $\bar{w}^{(j)}$ in (3.22), (3.23) must be of the form

$$
\begin{equation*}
\bar{w}^{(j)}=\left(z_{j+T}, z_{j+1-1}, \ldots, z_{j+1}\right) . \tag{3.37}
\end{equation*}
$$

And (3.23) becomes

$$
\left\{\begin{array}{l}
R_{j} / s=\left(. \bar{w}^{(1)} \bar{w}^{(j)} \bar{w}^{(j)} \ldots\right)_{g}=\left(. \overline{z_{j+1} z_{j+T}-1 \cdots z_{j+1}}\right)_{g}= \tag{3.38}\\
=\left(. z_{j+T} z_{j+T}-1 \ldots z_{j+1} z_{j+T} z_{j+T-1} z_{j+1} z_{j+T} \ldots\right)_{g},
\end{array}\right.
$$

provided $\boldsymbol{j}>\boldsymbol{h}$.

Thus, starting from R_{j} / s with $j \geqslant h$, the usual long division algorithm yields in succession the digits $z_{j+T}, z_{j+T-1}, \ldots, z_{j+1}, z_{j+T}, z_{j+T-1}, \ldots$. In particular,

$$
g r_{i}=z_{j+T-1} s+r_{i+1} ; 0<r_{i+1}<s, \text { for } i=0,1, \ldots, T-1,
$$

where $r_{0}=R_{f}$; (naturally, $r_{i}=R_{j+T-i}$ for $i \leqslant T$).
Instead, the algorithm (3.30) starting from R_{j} (with $j \geqslant h$) yields in succession the digits $z_{j+1}, z_{j+2}, \ldots, z_{j+T}, z_{j+T+1}=z_{j+1}, z_{j+2}, \ldots$, thus, the same digits but in opposite order.
(To be continued)

[^0]: * This research was supported in part by the National Science Foundation.

