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ABSTRACT 

Let z be a positive integer which is obtained as the product of several large integers 
each with a periodic digit behavior. We investigate the periodic behavior for the 
leading digits of z and for the least significant digits of z and further study the 
relations between the two periodic behaviors. 

1. Introduction 
Let g be a fixed integer, g> 2, to be used as a number base. Further z 

will be a positive integer. It can be uniquely represented as 

x=xl+x@+x~g2+ . . . =(... Z!jZ$cl)# 

with q as a digit, (that is, ccj E (0, 1, . . ., g- l}), and q= 0 for j large. 
Let N=N(s) be such that 

x= (XN, m-1, .**, x2, x1)0= i; xd-' with xN# 0. 

By a (period of z (to the base g) we shall mean an integer with 1~ T < N/2 
and such that CC~+T = xl whenever 1 <j-c j-t- T Q N = N(x). The (possibly 
empty) set of all such periods will be denoted as Y(x). One easily verifies 
~-__ 
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that T1, Tz E Y(z), TI < Tz, imply TS - TI E Y(x). Moreover, TI + TZ E F(x), 
provided TI + Tz Q N/2. 

If Y(x) is non-empty then all the periods T of z are multiples of a 
common period To. For, let To denote the smallest element in Y(z). 
One has hTo ET(X) (h=l, 2, . ..) as long as hTo< N/2. Let T be an 
arbitrary period of 5. If it is not a multiple of TO then hToc T < (h + 1)To 
for some positive integer h. Here, hTo < T < N/2 thus hTo E F(x) hence 
T’=T - hTo would be a member of Y(X) strictly smaller than TO. 

The integer z is said to be periodic (to the base g) if it has at least one 
period T. Naturally, this is most interesting when T is quite small relative 
to N(x). It would follow that (~1, ~2, . . . . ZN> can be extended to an infinite 
sequence {c&, &, & . . .} such that &+T=x~ for all j> 1; (& =q for 
1 gj < N). This extension is unique and does not depend on the particular 
period T, since it is always a multiple of the minimal period TO. 

We will say that x is purely periodic if it possesses a period T which 
divides N. Then also the minimal period TO of 2 will be a divisor of 
N=N(x). 

REMARK. The restriction T < N/2 in the definition of period is essential. 
Let us define a quasi-period of z as any integer 1 <T < N = N(s) such 
that z5+T =x5 whenever 1 <j < j+ T Q N. We claim that different quasi- 
periods may lead to different periodic extensions. Moreover, a quasi- 
period need not be a multiple of the minimal quasi-period TO, not even 
when TO< N/2 (in which case x is periodic). 

For example, ~=(1213121)10 has N=7, no period, while 4 and 6 are 
quasi-periods leading to different periodic extensions. Similarly, for 
z=(12185121) with N=8 and quasi-periods 5 and 7. The integer 
2=(112111211)~0 has N=9, a period To=4 and a quasi-period T=7. 
Similarly, x=(12112121121)~o with N=ll, To=5 and T=8 (which lead 
to different periodic extensions). 

The main problem 
Let z be a positive integer which has been derived from a few large 

periodic integers z(m), each with a relatively small period T,,,, by a short 
calculation involving the operations of addition, subtraction and multipli- 
cation. Then often the sequence of leading digits of z and the sequence 
of least significant digits of z each have an outspoken periodic behavior. 
In the present paper we will study this phenomenon and also certain 
connections between the two periodic behaviors, especially for the case 
that the x(m) are purely periodic. 

As an example, choose g = 10, and consider the purely periodic integers 

s=x(m)=(2121 . . . 21)10=21(102m- 1)/99, 
y=y(n)=(847847 . . . 847)10 = 847( 103n - 1)/999, 

with m and n large. The first has N(x) = 2m decimal digits and period 2. 
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The second has N(y) = 3n and period 3. Their product would be equal to 

z=z(m, ?&)=z(77&)y(n)=(10~~-1)(1@~-1)~ 
where 

(= (;;)(;$;) = (0.1798465i$)10 

has a purely repeating decimal expansion of period 9 with repeating 
blocks fi=(179846513). Letting k’= min (2m, 3n)-2, the Jirst k’ signifi- 
cant decimal digits of z(m, n) will show the following periodic pattern: 

z(m, n) = (1798465131798465131798 . ..)lo. 

Next, let us consider the sequence of least significant digits of z(nz, n). 
Working modulo lOk, it is obvious that the last k decimal digits of the 
positive integer x(m, n) are independent of the particular choice of m 
and n as long as k< min (2nz, 3n). It turns out that then 

z=z(m, n)=(1798 . . . 53486820153486820153487)10. 

That is, except for the final digit 7, the tail of the decimal expansion of 
z(m, n) is also periodic of period 9, this time with blocks (682015348). 
It is also true that the tail of the decimal expansion of z- 1 is purely 
periodic with period block (820153486). Moreover, it so happens that 

We will see that this example is not an exception but quite typical instead. 
In the Sections 2 and 3 we develop all the necessary tools. These sections 

are elementary and self-contained, partly expository and parallel to the 
theory of g-adic numbers as treated in [l] and [5]. However, g-adic 
numbers are never mentioned explicitely. The reader may prefer to 
skim first through the illustrations and running discussion of part II 
(section 4). 

2. Arithmetic modulo gk 
Let Jf be a fixed positive integer, iV> 2, (usually, M=gk with k large). 

If two real numbers u and v differ by a multiple of M then we write 
u = w (mod M). For instance, - 1 = (999 . . . 99)lo (mod lOk), where the 
latter integer has at least k digits 9. 

Let RM denote the (commutative) ring of integers modulo M. An 
element x E RM is called a zero-divisor if my= 0 for some y E RM with 
y# 0. If x corresponds to the integer u this means that (u, M) > 2. 

Let SM denote the set of all x E RM which are not zero-divisors ; (they 
correspond to the integers u with (u, M) = 1). If x, y E SM then also my E: Sad. 

Two pairs (rr, 81) and (~2, 82) in RM x SM will be said to be equivalent 
if risz = rzsl ; we will write (ri, 81) N (~2, 82). One easily verifies that this 
is an equivalence relation. Let [r/s] denote the equivalence class which 
contains the pair (r, s) ERM x SM. Thus [rr/si] = [rz/&J if and only if 
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9~s =rssl. One easily verifies that a well-defined commutative ring is 
obtained by defining [Q/&J. [rs/ss] = [rrrs/siss] and [ri/si] + [rs/ss] = [Q82 + 

+r2sr/si~s], (with rt=R~ and % E Slur). 
If the ri E RM and s{ E SM are represented by integers UC and vr, re- 

spectively, then the relation [ri/si] = [rs/s2], (that is, (~1, 81) N (rs, 4), will 
be expressed as 

(2.1) ul/vl E zc& [mod M]. 

Let us stress that (2.1) does not assert that W/VI = ~4~s (mod M) but 
only that ulvs 3 usq (mod M). For instance, 3/7 G 9/l [mod lo]. How- 
ever, if z and y are integers then the relations x/l 3 y/l [mod M] and 
x E y (mod N) are identical. 

Let s E SM be fixed. Then the map x + xs of RM into itself is injective. 
Since RM is finite, this map is also onto. Hence, for each T e RM, there 
exists a unique 2 E RM with xs = r, equivalently, [r/s] = [x/l]. Identifying 
[x/l] with x, we see that the above ring of equivalence classes is nothing 
but RM itself. Our treatment (which is well-known, see [3] p. 67) shows 
that in RM one may freely divide by elements s E SM. Moreover, relative 
to multiplication, addition, subtraction by elements in RM or division 
by elements in SM, the resulting quotients r/s can be handled just as in 
ordinary grade school arithmetic. 

3. The sequence of least significant digits 
In the sequel, k will be a fixed positive integer and g a fixed base. 

Consider a nonnegative integer z which is given in the form 

(3.1) z=P(x(l), . . . . x(M)), 

where P denotes a polynomial with integer coefficients. Further, z(m) 
denotes a nonnegative integer such that the sequence of its last k digits 
(to, the base g) is a periodic sequence of period T,, (m = 1, . . . , M), (where 
Tm Q k/2). In other words, 

(3.2) x@)=(... @(m)iij(m&(m) . . . CI(~))~ (mod gk), 

with@(m) = (u$“‘, . . . . w&t) as a given block of Tm digits w)“’ , (m = 1, . . ., M). 
Among other things, we are interested in the problem of determining the 
periodic behavior of the sequence of last k digits of the resulting integer z. 

Consider a nonnegative integer x having the following behavior: 

(3.3) x = (... tZiirtZtZt& (mod gk). 

Here, 
tz=(w1, w2, . . . . WT) and a=(Ui, us, . . . . ?.&) 

denote blocks of T > 1 digits wf and h> 0 digits q, respectively. If h= 0 
then fi stands for the empty block. Thus, the sequence of the k least 
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significant digits of x ends as follows: 

. . . wT--1t&‘t.@t&j . . . t.&‘t&t.@ . . . t&t&l@ . . . , ?.&,,. 

To the blocks 6 and 65 we will associate the integers 

(3.4) ( ~z~~,~,,.:::,~~)~~~~~~~~~~~~~~~~~T, 

(u=O if h=O). Note that O<u<gh and O<w<gT. Further w and 8 
determine each other if T is known, similarly for u and G when A is known. 
It follows from (3.3) and (3.4) that 

x = u+w(l+gT+gsr+...+g(~-i)r)gh (mod gk), 

provided the positive integer j satisfies jT + h > k. Hence, 

(gT- 1)x = (gr- l)u+w(g1T- 1)gh 3 (gr- l)u-wgh (mod g*). 

Consequently, using the notations of Section 2 with M=g*, we have the 
central relation 

(3.5) x E E [mod gk], where E=u-wgh/(gT-1). 

Conversely, (3.5) with zc and w of the form (3.4) (where q, WJ E {O, 1, . . . . 
g- 1)) implies for x the regular behavior (3.3). 

Consider the special case h= 0. Then 

x z (... tZGti~ti&, (mod gk), 

that is, the last k digits of x form a periodic sequence of period T (provided 
k> 2T). And in this case (3.5) simplifies to 

(3.6) x 3 -w/(gT- 1) [mod g*]. 

In particular, for m = 1, . . . , M, (3.2) is equivalent to 

(3.7) x(m) s E(m) [mod gk], where E(m) = - w,,J(gTm - l), 

with 
w,=(Wy, wp), . . . . w&z)g, thus, Wm E (0, 1, . . . . grm”>. 

It follows from (3.1), (3.7) and the remarks in Section 2 that the given 
nonnegative integer z satisfies 

(3.3) z E C [mod gk], 

where 5 is the rational number defined by 

(3.9) (=P(P, .p, . . . . pf)). 

It is an easy matter to compute the number 5. It remains to determine 
the resulting behavior of the sequence of the k least significant digits of z. 

Observe that c can be written as 

(3.10) [=P/s with s> 1, (g, s)=l, 
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(r and ,Y integers; we do not require that (r, 8) = 1). Every prime factor 
of 8 must be a prime factor of grm - 1, for some m E (1,2, . . . , M}. Moreover, 
the rational number c is independent of k. 

The theory of g-adic numbers (see [5] pp. 14-17) implies that any 
rational number [ of the type (3.10) can be brought into the form 

(3.11) ~=u-wgn/(gr- 1). 

Here, T> 1, h>O, u and w are integers (independent of k), while 

(3.12) u E (0, 1, . . . . gh-1); we (0, 1, . . . . gr-11). 

In view of the criterion (3.5), it follows that (3.8) is equivalent to 

(3.13) 2 3 (... 8Gti?t3i& (mod gk), 

with 8 as the block of digits associated to w and T, G as the block of 
digits associated to u and h. That is, 

?..J=((w1, w2, . . . . m); C=(w, uz, . . . . ,a), 

with the q and WJ as digits such that (3.4) holds. This reduces the problem 
to a calculation of the decomposition (3.11), (3.12). 

IUUSTRATION. As an example, consider the illustration used in Sec- 
tion 1. That is, take g = 10 and x as the product z =zy of the periodic 
positive integers z=(2121 . . . 21)rc and y=(847847 . . . 847)ic having 2m>k 
and 3n> k decimal digits, respectively. Thus, z is of the form (3.1) with 
M=2; P(z, y)=xy; Tl=2, tlW=(2, l), thus, t(l)= -21/99; further, 
T2 = 3, 8(c) = (8, 4, 7), thus, E(2) = - 847/999. 

Consequently, z=zg satisfies (3.8) with c=($i)(g). Moreover, 

where w is the Q-digit integer w = (682015348)ic. Therefore, (3.11) holds 
with T = 9, h= 1 and u= 7. This in turn is equivalent to 

z G (. . . tZ 8 8 5 7)ic (mod lo&), 

with 6 as the Q-digit block S=(682015348). 
Let us turn to the problem of determining the decomposition (3.1 l), 

(3.12). The treatment below includes a proof that this decomposition is 
always possible and has many interesting byproducts. 

We start with a rational number c of the canonical form (3.10), (possibly 
calculated from (3.7) and (3.9)). Further z will denote a nonnegative 
integer satisfying (3.8). 

If s = 1 then everything is trivial. For, then 5 itself is an integer and 
(3.8) simply says that z G 5 (mod gk). If t>O then (3.11) holds with 
u=C; w=O; T>l arbitrary and h>O so large that c<gh. If 5~0 then 
(3.11) holds with ha0 such that lclggh; u=gh+C; w=gT-1 and T>l 
arbitrary. 
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For convenience, we will assume s> 2 from now on. By T we shall 
denote the smallest integer T > 1 with gr = 1 (mod 8). One has 1 <T < 
<$(a) <s- 1, with + as the Euler +-function. 

It suffices to construct a representation of the form 

(3.14) ~=r/s=U-gyR/.s), 

where h is a nonnegative integer, while u and R satisfy 

(3.16) UE{O,l)..., gh-1); RE{O,l,...) s}; 

(u=O when h=O). 
For, suppose one has a decomposition as in (3.14), (3.15). Let A be the 

positive integer such that gr- 1 =k. Then 

R/s=w/(gT-- 1) with w=ils. 

Since 0 <R/s < 1, one has that w E (0, 1, . .., gr- 1). Consequently, (3.14), 
(3.15) imply that 5 has the required representation (3.11), (3.12). And 
the latter implies in turn the important property (3.13) for z. 

REMARK. Let G=((w1, . . . . wr) denote the block associated to w and T, 
(see (3.4)). Then one has the expansion 

(3.16) J+=w/(gT--l)=(.GG ...)g=g-h(~-Q; 

(here, the period T is minimal when (R, 8) = 1, see [2] p. 111). Comparing 
(3.13) and (3.16), ‘t 1 is obvious that the sequence of the last k digits of z 
is closely related to the usual expansion to the base g of the rational 
number 5 associated to z. For a special case this was also observed by 
Knuth [4] p. 180, 497. 

It remains to show that 5 has a representation (3.14), (3.16). Particu- 
larly simple is the case that 

(3.17) -1~5~0, that is, --sgrgO. 

For, then (3.14), (3.16) hold with h=O, u=O and R= --P. Moreover (3.13) 
and (3.16) imply 

(3.18) 2 = (... G G 8 ?$, (mod gk), 

where 8 is the .same block (of length T) as in the expansion 

(3.19) -c= -Y/S=(.tzc5t3t-i? . ..)I. 

Next, we like to reduce the general case to the special case (3.17). 
For this purpose, let us introduce integers vj and RI such that 

(3.20) r/s=q--gj(Rj/s) and ~9 e (0, 1, . . . . gJ- 11, 

(j= 0, 1, 2, . ..). In particular, 

(3.21) vj.s zz r (mod g!) and vj E (0, 1, . . . . gj- 1). 
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Since (3.21) has precisely one solution vj and Rj is determined by 
Rj= (vjs-r)/gj, we see that, for each j> 0, there is a unique such pair 
vj, Rf. For instance, us= 0 and Ro= --r. 

One is ready if there exists an index j with 0 G RI <s. For, then (3.20) 
implies that (3.14) and (3.15) hold with h=j, U=V~ and R=R,. Moreover, 
from the remarks following (3.15), 0~ Rj<s would imply that 

(3.22) z E (... iWhZ~)~~)v’u)), (mod g*), 

with 69(J) as the block of T digits associated to the integer wo) e (0, 1, . . . . 
gT - l} defined by 

(3.23) R,/s=wu)/(gT- 1) = (.@(Gi%Zo) ...)l. 

Further Bo) denotes the block of j digits corresponding to vj E (0, 1, . . . , 
gj- 1). 

It will be convenient to introduce a fixed integer f such that 

fg = 1 (mod s). 

Let uj denote the integer defined by (fg)j = 1 + 98. Then r/8 = -q+ 
+gj(fjr/a), showing that the first condition (3.20) holds with vj= -v+ 
+ bjgj and Rj = -/jr + bjs, whatever the value bj. By an appropriate choice 
of the integer bj, one can also satisfy the second condition (3.20). In fact, 
one has the explicit formulae 

P-24 vj=(-arr/sj~j=((r/sgj)(1-(fs)‘))9j={(-5)(~j-g-j)~j, 

with k/>=~--kc11 as the non-integral part of y. Similarly, 

bj = - [ - (sv-11 = - [( - M/j -q-j)1 
and 

(3.25) R&9=(-5)/j-[(-Qfj+y], where EJ=&-f. 

It is easily seen that, for t as an integer, 0 <t/e - [t/s + E] < 1 as soon as 
- l/8<&< l/8. Choosing t= -r/j, we see from (3.26) that 0 < Rj<s holds 
as soon as - l/s< (r/s)g-j < l/s which is true for gf > Irl. 

This completes the proof of the existence of a representation (3.14), 
(3.15). In the sequel, ic will be defined by 

(3.26) a=&,, = min (j: j>O, O<Rjgs}. 

We have shown that A is finite (and our estimates show that hu< 1 + 
+[log&l]). Moreover, (3.14), (3.16) holds with u=Vh and R=&, while 
(3.22), (3.23) hold with j=k. 

ALOORITHM. For actual calculations (of h, U= vh and &), the following 
recursive scheme is to be preferred above (3.24), (3.25). 

From the definition (3.21) of vj there exist unique digits 

(3.27) qe{O, 1, . . . . g-l}, (i=1,2, .,.), 
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such that 

(3.28) v,=zl+zzg+...+zjgJ-1 for all j>O, 

(WO= 0). Moreover, from (3.20) applied to two conseclutive values j, 

(3.29) (g&+1 -&)/a = (f’j+l - vj)/s, (j > 0)s 

therefore, (3.28) implies that 

(3.30) &+l=(&+~+d/g, (j>o). 

Recall that &= -r. Given RJ, the digit z++l E (0, 1, . . ., g - 1) is uniquely 
determined by the requirement that Rf + 15+19 be divisible by g. Afterwards, 
one calculates R,r+l from (3.30), then z.J+~ and so on. 

If both Rj and 8 are expressed to the base g, then in calculating ZJ+~ 
one only needs to pay attention to the very last digits gj and IJ of Rf 
and 9, and further to the sign of RI. Let e be the unique digit such that 
eu = - 1 (mod g), that is es 3 - 1 (mod g). Then z~+i E eR1 (mod g). 
If Rj> 0 this is the same as q+l 3 eej (mod g), 

As a concrete example, if g = 10 and c = - 87/13 then we get the following 
calculation, (where c = 3 and e = 3). 

87 Ro=87 Q9=7 z1=1 
13 

10 
00 

RI=10 el=O zg=o 

1 
39 

Rz=l e2=1 4=3 

4 
26 

Rs=4 es=4 24 = 2 

3 
117 

R4=3 e4=3 z5=9 

12 R5= 12 es=2 24=6 
78 

- 
9 Re=9 @I=9 27 = 7 

91 - 
10 R,=lO e7=0 z&=0 

Already after one step it is true that 0 < RJ < 13. The first digit is 21 = 1. 
From there on, the digits recur in blocks (032967) of length 6. This is 
naturally related to the fact that R49=10/13=(.769230)10, see (3.38). 

OOXIKENTB. Observe from (3.30) and O<z.~+~<g-l that 

(3.31) O<Rf<a implies O<Rt+l<s. 
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Hence, from (3.26), 

(3.32) O<Rj<s for all j>h, while Rj# [0, s] for all j<L 

Further note, from (3.28) and (3.30), that 

(3.33) ~=r/s=z1-t-z2g+ . . . +zJg+-l-g5(Rj/s). 

From (3.30), if one Rj is divisible by 8 then all are. Since 5 = r/s = -R&v, 
this happens precisely when c is an integer. In that case, one must have 
for all j > h that either RI = 0 or Rj =s. It is clear from (3.33) that, for C 
as a nonnegative integer, one must have Rj = 0 and zj+i = 0 for all j>ic. 
Similarly, if 5 is a negative integer then Rj = s and q+l= g - 1 for all j > ic, 
(where h depends on [). 

On the other hand, if [ is not an integer then RI = 0 and Rj=8 are 
impossible, showing that O< RJ<.s for all j >ic. Further, from (3.20) and 
(3.22), g5R5 = --r (mod a), thus, R5 = -fG (mod 8). Since gr zz 1 (mod a) 
one has fr = 1 (mod s), hence, R~+T = R5 (mod s). Consequently, (even 
if 5 is an integer), one has 

(3.34) &+T = R5 and thus q+T+i =q+i for all j>h. 

On the other hand, zJ,+T # zh (if h > 1). This follows for instance from (3.30) 
applied for j = F, - 1 and j = h + T - 1, where &, = R~+T but &-I# &+r-1, 
(since the second belongs to [0, s] and the 6rst does not). 

The fraction -R / 5 8 in (3.33) is equivalent [mod g*] to an integer (see 
Section 2). Hence, it follows from (3.8) and (3.38) that 

(3.35) z = zr + zsg + . . . + qgJ-i (mod g5) whenever 0 <j < k. 

One may conclude from (3.35) that the digits zi, 22, . . ., za which we 
computed from the algorithm (3.30) (with R5+1 an integer) are precisely 
the k least significant digits in the representation of the integer z to the 
base g. This justiiies the notation z( for the digits in (3.28). 

Another way of proving (3.35) is to note, using (3.32), that (3.22) is 
valid for all j >It. Here, 

(3.36) W)=(q, qB1, . . . . zl) 

is the block of the j digits of the integer v5 (with 0 <vj <gJ; see (3.28)). 
Afterwards, comparing (3.22) and (3.36), it also follows that the block 
8o) in (3.22), (3.23) must be of the form 

(3.37) g”)=(q+T, q+T-1, . . . . q+l). 

And (3.23) becomes 

(3.38) 4/S = (.iiju)tiju)~u) . . .)g = (.q+!@,+T-1 . . . zl+l)g = 

= (.q+w+T-1 - -. z3+lzr+W5+T-i?f+i~+~ .. . )o, 

provided j > h. 
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Thus, starting from R& with j 2 h, the usual long division algorithm 
yields in succession the digits q+~, ZJ+F-1, . . . . q+l, q+~, q+~-l, . . . . In par- 
ticular, 

grt=q+T-18+rg+l; Ocrt+1<8, for i=O, 1, . . . . T-l, 

where ro = Rj ; (naturally, Q = R$+T~ for i < 2’). 
Instead, the algorithm (3.30) starting from RJ (with j>h) yields in 

succession the digits q+l, q+2, . . . , zj+T, q+~+l= q+l, q+2, . . . , thus, the same 
digits but in opposite order. 

(To be cun.thd) 
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