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Decomposition of a Synchronous Machine into an 
Asynchronous Submachine driving a 

Synchronous One 
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To complete the study of the serial and parallel decompositions of 
a synchronous sequential machine into an asynchronous submachine 
and a synchronous one, discussed in Information and Control, 1967, 
Vol. 11, pp. 568-591, we consider the serial decomposition where the 
asynchronous submachine drives the synchronous one. 

I. INTRODUCTION 

In a previous paper (Gerace and Gestri, 1967) we studied the serial 
and parallel decompositions of a synchronous sequential machine into a 
synchronous submachine and an asynchronous one. In the serial de- 
composition the synchronous submachine drove the asynchronous one. 
In this paper, to complete the study of the serial decomposition, we 
consider the case in which the asynchronous submachine drives the 
synchronous one. 

Three types of sequential machines ~ill be discussed, namely, machines 
of the Moore type, machines of the Mealy type, and anticipated machines 
defined in Gerace and Gestri (1967). Only machines without "don't  
care" conditions will be considered, and the possibility of state splitting 
(Hartmanis and Stearns, 1962) will not be taken into account. Argu- 
ments developed in Hartmanis (1961, 1962) and in Gerace and Gestri 
(1967) are assumed to be known. 

II. PHYSICAL REALIZATION 

Let I and Sh be an input state and an internal state, respectively, of 
a sequential machine M. Denote by N ( I ,  Sh) the next-state of M 
determined by I and Sh. A fundamental state machine is a state machine 
such that, for any I and Sh, if N ( I ,  Sh) = Sk,  then N ( I ,  Sk) = Sk.  

538 



DECOMPOSITION OF SYNCHRONOUS MACHINES 539 

Let  us assume that  a synchronous machine M is decomposed into two 
state machines serially connected, M~ and Ms ,  and into a combinational 
network Co (Hartmanis,  1962). Let  us assume further that  the first 
machine My is a fundamental state machine. We shall denote by 
My ~ Ms this decomposition. 

The physical realization of M corresponding to this decomposition is 
shown in Fig. 1, where botch My and Ms are realized by synchronous 
devices. Assuming that  a finite time d is necessary to the combinational 
parts of MF and Ms for the computation of the corresponding next states, 
the delay element A1 which stores the internal state must be such that  
51 + d = A, where A is the time interval of the input sequence of M. 

To determine the conditions for My to be realizable by an asyn- 
chronous device, let us see what happens when the storage element A1 is 
removed from the device realizing MF (Fig. 2). Since My is a fundamental 
machine, its output  sequence, identical to the present state sequence, 
remains unchanged. However denoted by t, any t ime when the input 
state changes, the present state (outputs) of Mp changes at  t ime t~ + d, 
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FIG. 1. Serial decomposition of a synchronous machine M into two synchronous 
submachines, MR and Mz • 
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Fro. 2. Serial decomposition of M into an asynchronous submachine driving a 
synchronous one. 
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whereas it changes at time tn + A = t~+l when A1 is present in the 
device realizing Ms.  Therefore, to realize Ms by an asynchronous device 
without changing the external behavior of M, we must ensure that the 
state behavior of Ms and the output of Co are independent of any change 
of the present state (outputs) of Ms at time t~ + d. 

For any state a of M, let A and K be the corresponding states of MF 
and Ms, respectively; for any input I of M, let B be the next-state of 
Ms for present state A and input I, Ns( I ,A ,K)  and Ns(I ,B ,K)  be the 
next states of Ms for present state K and input states I ,A and I,B, 
respectively, and Co(I,A,K) and Co(I,B,K) be the output states of the 
combinational network Co for inputs I ,A ,K and I,B,K, respectively. 
The external behavior of M remMns unchanged after the removal of 
A1 from the device reMizing Ms,  if for any I and a of M we have: 

(i) Ns( I ,A ,K)  = Ns(I ,B ,K)  
(ii) Co(I,A,K) = Co(I,B,K) 

In fact, for any change at time t~ + d of the state of Ms,  if condition 
(i) holds, the state behavior of Ms remains unchanged, and if conditions 
(i) and (ii) are satisfied, the output of Co does not change. 

In the following section we shall put in terms of partitions the condi- 
tions for the existence of an Ms --* Ms decomposition satisfying condi- 
tions (i) and (ii). 

III. DECOMPOSITION USING A FUNDAMENTAL SUBSTITUTION 
PROPERTY PARTITION 

Let z be a partition with the substitution property (S.P.) of a sequen- 
tial machine M. 

DEFINITION. We shall say that ~ is fundamental if and only if for 
any state a and any input I of M, denoted by B the block of z containing 
N(I ,  a), we have N(I ,  b) C B for any state b of M contained in B. 

Trivially a Ms -~ Ms decomposition exists for a sequential machine 
M if and only if a fundamental S.P. partition z exists for M. The fol- 
lowing theorem gives in terms of partitions the conditions of existence of 
an My --~ Ms decomposition such that M~ can be realized by an asyn- 
chronous device. 

THEOREM 1. For a sequential machine M a MF --~ Ms decomposition 
such that Ms  can be realized by an asynchronous device exists if a pair of 
partitions 7r,~r* exists which satisfy the following conditions: 

(a)  ~ .~*  = 0 
(b) ~r is a fundamental S.P. partition 
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(e) any two states of M in a common block of ~* which have the next 
state in the same block of ~ for some input I, have for this I the same next 
state. 

(d) any two states of M in a common block of ~* which have the next- 
state in the same block of ~- for some input I, have for this I the same output 
state. 

Proof. Conditions (a) and (b) are the necessary and sufficient condi- 
tions for the existence of a serial decomposition M~ --~ M s .  We have only 
to show that  this decomposition satisfies condition (i) of the previous 
section if and only if condition (c) is satisfied, and satisfies condition 
(ii) if and only if condition (d) is met. 

Assume first that  the decomposition M~ --~ Ms corresponding to the 
partitions ~ and ~* satisfies condition (i). Let  a and b be any two states 
in a common block of ~*, say, K. Denote by 21 and B the blocks of 
containing a and b, respectively, and let us assume that  N(I ,  a) and 
N(I ,  b) belong to the same block of ~, say, C. When M is in the state a 
and input I is applied, M r  is in the state A and makes a transition to the 
state C. For condition (i) we have Ns(I ,A ,K)  = N~(I,C,K). When 
M is in state b and input I is applied, MF is in state B and makes a 
transition to state C. For condition (i) we have Ns ( I ,B,K ) = Ns ( Z, C, K ). 
Therefore, Ns(I ,A,K)  = Ns(I ,B,K) ; since the next state of Ms is i~ the 
block of ~* containing the next state of M, this means that  N(I ,  a) 
and N(I ,  b) are in the same block of ~*. Then N(I ,  a) = N(I ,  b),  
since N(I ,  a) and N(I ,  b) are in a common block of ~r and in a common 
block of ~*, and ~-~* = 0. We have shown that  if Mr ~ Ms satisfies 
condition (i), ~ and ~* satisfy condition (c). 

Conversely, let a be an internal state and I an input state of M, and 
A and K be the blocks of ~ and ~*, respectively, containing a, and B 
be the block of ~ containing N(I ,  a).  If B fl K ~ 0, let b be the s~ate of 
M defined by B N K. Trivially, a and b belong to the same block of ~*. 
Furthermore,  since ~ is fundamental, N([,  b) is contained in the block 
B of ~; then N(I ,  a) and N(I ,  b) belong to the same block of ~, and we 
have N(I ,  a) = N(I ,  b),  because of condition (c). Therefore Ns(I ,A,K)  
= N~(I,B,K).  If B N K = 0, we have a "don ' t  care" conditio~ in the 
state table of M~ for Ns(I ,B,K)  ; to show that  this condition can always 
be filled so that  Ns(I ,B,K)  = Ns(I ,A ,K)  we have only to show that  
no other state of M which requires a different filling can exist. In fact, 
assume that  a state b of M belonging to the block K of ~* and such that  
N(I ,  b) belongs to B exists; let us denote by C the block of ~ containing 
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b. Trivially, Ns(I,C,K) = Ns(I,A,K), because of condition (c). There- 
fore, if condition (c) holds, condition (i) is satisfied, or it can be satisfied 
with careful filling of the "don' t  care" conditions in Ms .  

The proof that  condition (d) is satisfied if and only if condition (ii) 
holds is easily obtained by the substitution of the output state of M to 
the next state of M in the proof of condition (c) given above. 

Note that  for an anticipated machine, a pair of partitions which satisfy 
condition (c) also satisfy condition (d), as it  is easily seen from the 
definition of this type of machine (Geraee and Gestri, 1967). Therefore 
for these machines it is not necessary to take under consideration con- 
dition (d). Furthermore, in the same paper it was shown that  if we don't  
care to anticipate one time unit the output sequence, any Moore machine 
can be transformed into an anticipated machine ~4th the same state 
table. Then, given a Moore machine having a pair 7r,v* which does not 
satisfy condition (d), but which satisfies the other conditions of Theorem 
1, if we don't  care to anticipate one unit the output sequence, it is possible 
to transform the Moore machine into an anticipated machine for which 
the pair 7r,Tr* satisfies Theorem 1. Therefore, this machine can be realized 
by an asynchronous device driving a synchronous device. 

IV. E X A M P L E S  

Let us consider the h([ealy machine P described in Fig. 3. The S.P. 
partition 

~r = {1,2,3; 4,5; 6,~77~8} =- {A,B,C} 
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is fundamental(as 'we can verify from the state table of machine P. The 
partition 

$ 
7r ={1,5,7; 2,4,6; 3,8} ~ {a,fl,'y} 

$ 
satisfies, with ~r, Theorem 1. In fact, let us verify that  the pair 7r,r satis- 
fies condition (c). For the block a of 7r* and input 11, we see that  states 
"1,"  "5," "7"  have the next states in the same block, C, of 7r; condition 
(c) is satisfied since these states have the same next state. For the block 
a and input I2, states "1" and "5" have the next states in the same 
block, B, of ~r; condition (c) is satisfied since these states have the same 
next state. For  the block a and input I3, states "1" and "7" have the 
next states in the same block, A, of ~r; condition (c) is satisfied since 
these states have the same next state. In  the same way condition (c) 
can be verified for the states in the blocks f~ and ~ of 7r*. 

The test for condition (d) of Theorem 1 follows the same line. For 
example, states "1," "5," and "7," which have for input I1 the next-states 
in the same block, C, of 7r, must have the same output  state for input I1. 
Since ~r and ~r* satisfy Theorem 1, we know that  in the corresponding 
MF --~ Ms decomposition of P,  M~ can be realized by an asynchronous 
device (Fig. 2). The state tables of machines MF and Ms are obtained as 
explained by Itartmanis (1962) and are shown in Fig. 4a and 4b, re- 
spectively. Since ~/N B = 0, we have don' t  care conditions in the state 
table of Ms, circled in Fig. 4b; as it  was seen in the proof of Theorem 1, 
these don't-care conditions must be filled carefully. This is easily ob- 
tained. In fact, from the state table of M r ,  we see that  for input I2 we 
have a transition from state A to state B; therefore, in the state table of 
Ms the unspecified cell in column (I2, B)  must be filled as the cell in the 
same row and in column (I2, A),  as shown in Fig. 4b. For inputs I~ and 
I3 we have no transition to the state B, so the don't-care conditions for 
state "y and inputs (I1, B) and (I3, B) need not be filled. In the same way 
we obtain the filling of the don't-care conditions in the output  functions 
of Co, shown in Fig. 4c. In  the example given above, the pair ~,Tr was 
given. We shall now give an example showing how, given a fundamental 
S.P. partition, the ~r* with the least number of blocks can be obtained. 

From the state table of machine R, shown in Fig. 5, we see that  the 
S.P. partit ion 

~r = {1,2; 3,4; 5--~,6} ------ {A,B,C} 

is fundamental. To obtain the " " * partit ion ~r , let us denote by the symbols 
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a, f~, etc. the blocks of ~*. The states of R in the first block, A, of v are 
coded in an arbitrary manner, for example, 

" 1 "  --~ a ,  " 2 "  ~ ft. 

Then the second block of ~r is considered. Since for input Is the blocks A 
and B are mapped in the same block, B, of 7r, we can give to one state of B 
the same symbol used for one state of the block A only if this pair of 
states has for i npu t /2  the same next state and the same output  state, 
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because of Theorem 1. From the state and output  tables of R we see that  
it is possible to code both the states in B without using extra symbols, in 
the following way 

"3"  --~ ~, "4"  --* a. 

For the states in the block C, we see that  input I1 maps A and C, and 
input Is maps B and C, in the same block of ~. From the state and output  
tables of R we see that  symbol .8 can be used for state "5,"  which has for 
input 11 She same next and output  states as state "2,"  and has for input 
I ,  the same next and output  state as state "3 ,"  whereas for state "6"  
an extra symbol is necessary. Then we give the code 

"5"  -+ fl, "6"  --* % 

and we obtain 
$ 

~r = {1,4; 2,3,5; 61 -- {a,~,'/}. 

Note that  in this example, the ~* with the least number of blocks has 
more than n(Tr) blocks, where n(Tr) denotes the number of states in the 
largest block of ~. 

Figure 6 shows the state tables of MF and M s ,  and the output  table 
of C~ which result from the pair 7r,~r*. The don't-care conditions are 
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of M~; (c) output table of Co. 
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circled in the figure and have been filled, according to the proof of 
Theorem 1, in such a way that  conditions (i) and (ii) are satisfied. 

Finally, let us consider two Moore machines. For the machine T1 in 
Fig. 7, the S.P. partition 

rr = {T,2; 3--,4} - { A , B }  

is fundamental. The 7r* with the least number of blocks is easily obtained, 
and is given by 

* {~;2,~} - {~,~}. 7i"  = 

The corresponding decomposition is shown in Fig. 8; we see that  the out- 
put of Co depends only on the state of Ms .  I t  is not difficult to recognize 
that  this is true for any strongly connected Moore machine having an 
Me --~ Ms decomposition such that  Me can be realized by an asynchro- 
nous device. 
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FIG. 10. (a) Output table of the anticipated machine U; (b) Output table of 

Co. 
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For the Moore machine T2, defined by the state table of machine T1 in 
Fig. 7 and by the output table in Fig. 9, the pair 7r,Tr* given above does 
not satisfy condition (d) of Theorem 1. However, if we don't care to 
anticipate one unit the output sequence, T2 can be transformed into the 
anticipated machine U, which has the same state table as T2 and the out- 
put table shown in Fig. 10a; the pair ~r,Tr* satisfies Theorem 1 for machine 
U, and therefore in the corresponding M~ ~ M s  decomposition of U, 
MF can be realized by an asynchronous device. The state tables of M~ 
and Ms ha-ca been already obtained; the output functions of Co, which 
depend on the next states of MF and Ms ,  are shown in Fig. 10b. The 
corresponding realization of machine U is shown in Fig. 11. 

CONCLUSIONS 

In this paper the serial decomposition of a synchronous sequential 
machine into an asynchronous machine driving a synchronous one has 
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been studied. We have assumed that  the asynchronous machine is de- 
scribed by a fundamental state table. Aside from the practical interest in 
reducing the number of delay elements in sequential machines, we feel 
tha t  this s tudy may contribute to clarify the conditions under which 
sequential networks of different types (synchronous and asynchronous) 
can be connected in a system of sequential networks. 
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