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Galois comodules over a coring can be characterised by properties
of the relative injective comodules. They motivated the definition
of Galois functors over some comonad (or monad) on any category
and in the first section of the present paper we investigate the role
of the relative injectives (projectives) in this context.
Then we generalise the notion of corings (derived from an entwin-
ing of an algebra and a coalgebra) to the entwining of a monad
and a comonad. Hereby a key role is played by the notion of
a grouplike natural transformation g : I → G generalising the grou-
plike elements in corings. We apply the evolving theory to Hopf
monads on arbitrary categories, and to opmonoidal monads with
antipode on autonomous monoidal categories (named Hopf monads
by Bruguières and Virelizier) which can be understood as an en-
twining of two related functors.
As well known, for any set G the product G × − defines an endo-
functor on the category of sets and this is a Hopf monad if and
only if G allows for a group structure. In the final section the
elements of this case are generalised to arbitrary categories with
finite products leading to Galois objects in the sense of Chase and
Sweedler.
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Introduction

An entwining of an algebra A and a coalgebra C over a commutative ring R is given by an R-linear
map λ : A⊗R C → C ⊗R A satisfying certain conditions (Brzeziński and Majid in [8]). The corresponding
entwined modules are defined as R-modules M which allow for an A-module structure �M : A ⊗R

M → M and a C-comodule structure �M : M → C ⊗R M with a compatibility condition expressed by
the commutativity of the diagram (e.g. [9, 32.4])

A ⊗R M
�M

I A⊗�M

M
�M

C ⊗ M

A ⊗ C ⊗ M
λ⊗IM

C ⊗ A ⊗ M.

IC ⊗�M

An entwining structure (A, C, λ) makes C := C ⊗R A to an A-coring and the entwined modules are
just the left comodules for the coring C .

In [27], a left C -comodule P with S = EndC (P ) is called a Galois comodule provided the natural
transformation HomA(P ,−) ⊗S P → C ⊗A − is an isomorphism. Such modules can be characterised
by properties of the (C, A)-injective comodules [27, 4.1].

If A itself is a C -comodule, that is, it allows for a grouplike element, then C is called a Galois coring
provided A is a Galois comodule.

As a special case, if an R-module B has entwined algebra and coalgebra structures, then B ⊗R B is
a B-coring. In this situation, B is a B ⊗R B-Galois comodule, that is, B ⊗R B is a Galois coring, if and
only if B is a Hopf algebra over R .

Since the tensor product is fundamental for these notions, generalisations to monoidal categories
were investigated, e.g. in McCrudden [17], Bruguières, and Virelizier [7], Loday [16], Mesablishvili [18],
and others.

In this paper we are concerned with the extension of these formalisms to endofunctors on ar-
bitrary categories. The key to this is the following observation. The R-algebra A induces a monad
A ⊗R −, and the R-coalgebra C yields a comonad C ⊗R − on the (monoidal) category of R-modules.
Thus the entwining (A, C, λ) becomes a special case of the entwining of a monad with a comonad on
any category which is known as mixed distributive law from early papers of Barr [1], Beck [2], van Os-
dol [26], Burroni [10], and others (see [28] for more references). The theory of the related entwined
modules is well understood in this context.

Yet, the additional constructions and notions for (A, C, λ) mentioned above are only partly trans-
ferred to monads and comonads on arbitrary categories, e.g. in Gómez-Torrecillas [14], Böhm and
Menini [5], Böhm, Brzeziński and Wisbauer [4], and [21]. The purpose of this article is to continue
these investigations.

A basic notion for this approach is the following (e.g. [14,21]). Given a comonad G = (G, δ, ε)

on a category A, a functor F : B → A is called a G-comodule if there is a natural transformation
α : F → G F making F a G-comodule in an obvious sense. Such a functor is said to be G-Galois
provided F has a right adjoint R : A → B, and the induced comonad morphism F R → G is an isomor-
phism (Definition 1.3). In Section 1 we continue the investigation of these functors, in particular of
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their behaviour towards relative injective modules. Dually, given a monad T = (T ,m, e) on A, a func-
tor R : B → A is said to be a T-module if there is a natural transformation α : T R → R making R
a T-module in an obvious way. Such a functor is called T-Galois if the induced monad morphism
T → R F , where F : A → B is a left adjoint to R , is an isomorphism (Definition 1.16). These functors
show a special behaviour toward relative projectives and this is outlined in the last part of Sec-
tion 1.

Section 2 is concerned with G-comodule and T-module functors considered in the context of mixed
distributive laws λ : T G → GT . In particular, the relevance of the Galois property for making the
comparison functor K : A → (AG)T̂ an equivalence is of interest.

As mentioned before, in an entwining structure (A, C, λ), the grouplike elements allow for a
C ⊗R A-comodule structure on A. In Section 3 we introduce, for a comonad (G, δ, ε) on A, grouplike
morphisms g : I → G requiring suitable properties. For a monad F on A with a mixed distributive law
λ : F G → G F , the grouplike element g induces two G-comodule structures on the functor F , namely

g F : F → G F and g̃ : F
λ◦F g−−−→ G F . The equaliser F g iF−−→ F of these two structure maps can be seen as

monad morphism. Properties of the resulting functors are investigated and eventually conditions are
given to obtain an equivalence between AF g and the category (AF )G̃ (see 3.14). This generalises the
characterisation of Galois corings in module categories (e.g. [9, 28.18]).

In Section 4, the preceding results are applied to the case of an endofunctor H , which is a monad
(H,m, e) as well as a comonad (H, δ, ε) subject to some compatibility conditions. Such functors are
called bimonads in [21]. Under mild conditions on the base category A, it follows that H is a Hopf
monad (has an antipode) if and only if (H,m, e) is an (H, δ, ε)-Galois comodule or – equivalently –
(H, δ, ε) is an (H,m, e)-Galois module.

In Section 5 we consider opmonoidal monads T = (T ,m, e) on a strict monoidal category (V,⊗, I)

(see [17]), called bimonads in [7]. Hereby T (I) has the structure of a coalgebra in V, and, as pointed
out in [21, 2.2], their theory can be understood as an entwining between the monad T and the
comonad − ⊗ T (I) on V. Thus our theory applies and results from [7] are reconsidered from this
point of view. This leads to an improvement of [7, Theorem 4.6] which may be seen as an extended
version of the Fundamental Theorem of Hopf algebras for right autonomous strict monoidal cate-
gories.

In the final section we generalise known properties of the endofunctors G × − on the category of
sets, G any set, to categories with finite products. This relates our notions with Galois objects in the
sense of Chase and Sweedler [11] (in the category opposite to commutative algebras) and we obtain a
more general form of their Theorem 12.5 by replacing the condition on the Hopf algebra to be finitely
generated and projective over the base ring by flatness without finiteness condition.

1. Galois comodule and module functors

Let A and B denote any categories. By Ia , IA or just by I we denote the identity morphism of an
object a ∈ A, respectively the identity functor of a category A.

Recall (e.g. from [13]) that a monad T on A is a triple (T ,m, e) where T : A → A is a functor
with natural transformations m : T T → T , e : I → T satisfying associativity and unitality conditions.
A T -module is an object a ∈ A with a morphism ha : T (a) → a subject to associativity and unitality
conditions. The (Eilenberg–Moore) category of T-modules is denoted by AT and there is a free functor
φT : A → AT , a �→ (T (a),ma) which is left adjoint to the forgetful functor U T : AT → A.

Dually, a comonad G on A is a triple (G, δ, ε) where G : A → A is a functor with natural trans-
formations δ : G → GG , ε : G → I , and G-comodules are objects a ∈ A with morphisms ρa : a → G(a).
Both notions are subject to coassociativity and counitality conditions. The (Eilenberg–Moore) category
of G-comodules is denoted by A

G and there is a cofree functor φG : A → A
G , a �→ (G(a), δa) which is

right adjoint to the forgetful functor U G : A
G → A.

For convenience we recall some notions from [21, Section 3].

1.1. G-comodule functors. Given a comonad G = (G, δ, ε) on A, a functor F : B → A is a left
G-comodule if there exists a natural transformation β : F → G F with commutative diagrams
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F
β

G F

εF

F ,

F
β

β

G F

δF

G F
Gβ

GG F .

(1.1)

Obviously (G, δ) and (GG, δG) both are left G-comodules.
A G-comodule structure on F : B → A is equivalent to the existence of a functor F : B → A

G (dual
to [12, Proposition II.1.1]) leading to a commutative diagram

B
F

F

A
G

U G

A.

Indeed, if F is such a functor, then F (b) = (F (b), βb) for some morphism βb : F (b) → G F (b) and
the collection {βb, b ∈ B} constitutes a natural transformation β : F → G F making F a G-comodule.
Conversely, if (F , β : F → G F ) is a G-module, then F : B → A

G is defined by F (b) = (F (b), βb).
If a G-comodule (F , β) admits a right adjoint R : A → B, with counit σ : F R → I , then the com-

posite

tF : F R
βR

G F R
Gσ

G

is a comonad morphism from the comonad generated by the adjunction F � R to the comonad G.

1.2. Proposition. (See [18, Theorem 4.4].) The functor F is an equivalence of categories if and only if the
functor F is comonadic and tF is an isomorphism of comonads.

1.3. Definition. (See [21, Definition 3.5].) A left G-comodule F : B → A with a right adjoint R : A → B

is said to be G-Galois if the corresponding morphism tF : F R → G of comonads on A is an isomor-
phism.

Thus, F is an equivalence if and only if F is G-Galois and comonadic.

1.4. Right adjoint for F . If the category B has equalisers of coreflexive pairs, the functor F has a right
adjoint.

Proof. This can be described as follows (see [12]): With the composite

γ : R
ηR

R F R
RtF

RG,

a right adjoint to F is the equaliser (R, e) of the diagram

RU G
RU GηG

γ U G
RGU G = RU GφG U G ,

with ηG : I → φG U G the unit of U G � φG .
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An easy inspection shows that for any (a, θa) ∈ A
G , the (a, θa)-component of the above diagram is

R(a)
R(θa)

γa

RG(a).

Now, for any a ∈ A, (R(F ))(a) can be seen as the equaliser

(
R(F )

)
(a)

eF (a)

R F (a)
R(βa)

γF (a)

RG F (a).

Thus, writing P for the monad on A generated by the adjunction F � R , the diagram

P
e

R F
Rβ

γ F
RG F

is an equaliser diagram. �
In view of the characterisation of Galois functors we have a closer look at some related classes of

relative injective objects.
Let F : B → A be any functor. Recall (from [25]) that an object b ∈ B is said to be F -injective if for

any diagram in B,

b1

g

f
b2

h

b

with F ( f ) a split monomorphism in A, there exists a morphism h : b2 → b such that hf = g . We
write Inj(F ,B) for the full subcategory of B with objects all F -injectives.

The following result from [25] will be needed.

1.5. Proposition. Let η,ε : F � R : A → B be an adjunction. For any object b ∈ B, the following assertions are
equivalent:

(a) b is F -injective;
(b) b is a coretract for some R(a), with a ∈ A;
(c) the b-component ηb : b → R F (b) of η is a split monomorphism.

1.6. Remark. For any a ∈ A, R(εa) · ηR(a) = I by one of the triangular identities for the adjunction
F � R . Thus, R(a) ∈ Inj(F ,B) for all a ∈ A. Moreover, since the composite of coretracts is again a
coretract, it follows from (b) that Inj(F ,B) is closed under coretracts.

1.7. Functor between injectives. Let F : B → A be a G-module with a right adjoint R : A → B and
unit η : I → R F . Write G′ for the comonad on A generated by the adjunction F � R and consider the
comparison functor KG ′ : B → A

G ′
. If b ∈ B is F -injective, then KG ′ (b) = (F (b), F (ηb)) is U G ′ -injective,
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since by the fact that ηb is a split monomorphism in B, (ηG ′ )
φG′

(b)
= F (ηb) is a split monomorphism

in A
G ′

. Thus the functor KG ′ : B → AG ′ yields a functor

Inj(KG ′) : Inj(F ,B) −→ Inj
(
U G ′

,A
G ′)

.

When B has equalisers, this functor is an equivalence of categories (see [25]).

We shall henceforth assume that B has equalisers.

1.8. Proposition. With the data given in 1.7, the functor R : A
G → B restricts to a functor

R ′ : Inj
(
U G ,A

G) −→ Inj(F ,B).

Proof. Let (a, θa) be an arbitrary object of Inj(U G ,A
G). Then, by Proposition 1.5, there exists an object

a0 ∈ A such that (a, θa) is a coretraction of φG(a0) = (G(a0), δa0 ) in A
G , i.e., there exist morphisms

f : (a, θa) −→ (
G(a0), δa0

)
and g : (G(a0), δa0

) −→ (a, θa)

in A
G with g f = I . Since f and g are morphisms in A

G , the diagram

G(a0)

g

(δG )a0
GG(a0)

G(g)

a

f

θa
G(a)

G( f )

commutes. By naturality of γ (see 1.4), the diagram

RG(a0)

R(g)

γG(a0)

RGG(a0)

RG(g)

R(a)

R( f )

γa
RG(a)

RG( f )

also commutes. Consider now the following commutative diagram

R(a0)
γa0

RG(a0)

R(g)

γG(a0)

R((δG )a0 )

RGG(a0)

RG(g)

R(a, θa)
e(a,θa)

R(a)

R( f )

γa

R(θa)

RG(a).

RG( f ) (1.2)

It is not hard to see that the top row of this diagram is a (split) equaliser (see [14]), and since the
bottom row is an equaliser by the very definition of e, it follows from the commutativity of the
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diagram that R(a, θa) is a coretract of R(a0), and thus is an object of Inj(F ,B) (see Remark 1.6). It
means that the functor R : A

G → B can be restricted to a functor R ′ : Inj(U G ,A
G) → Inj(F ,B). �

1.9. Proposition. With the data given in 1.7, suppose that for any b ∈ B, (tF )F (b) is an isomorphism. Then the
functor F : B → A

G can be restricted to a functor

F ′ : Inj(F ,B) −→ Inj
(
U G ,A

G)
.

Proof. Let δ′ denote the comultiplication in the comonad G′ (see 1.7). Recall from [18] that F =
AtF

· KG ′ , where AtF
is the functor A

G ′ → A
G induced by the comonad morphism tF : G ′ → G . Then

for any b ∈ B,

F
(

R F (b)
) = AtF

(
KG ′

(
U F (b)

)) = AtF

(
F R F (b), FηR F (b)

)

= AtF

(
G ′ F (b), δ′

F (b)

) = (
G ′ F (b), (tF )G ′ F (b) · δ′

F (b)

)
.

Consider now the diagram

G ′ F (b)
(tF )F (b)

δ′
F (b)

G F (b)

δF (b)G ′G ′ F (b)

(1)

(tF )F (b).(tF )F (b)
(tF )G′ F (b)

GG ′ F (b)
G((tF )F (b))

GG F (b),

in which the triangle commutes by the definition of the composite (tF )F (b).(tF )F (b) , while the dia-
gram (1) commutes since tF is a morphism of comonads. The commutativity of the outer diagram
shows that (tF )F (b) is a morphism from the G-coalgebra F (R F (b)) = (G ′ F (b), (tF )G ′ F (b) · δ′

F (b)
) to the

G-coalgebra (G F (b), δF (b)). Moreover, (tF )F (b) is an isomorphism by our assumption. Thus, for any
b ∈ B, F (R F (b)) is isomorphic to the G-coalgebra (G F (b), δF (b)), which is of course an object of the
category Inj(U G ,A

G). Now, since any b ∈ Inj(F ,B) is a coretract of R F (b) (see Remark 1.6), and since
any functor takes coretracts to coretracts, it follows that, for any b ∈ Inj(F ,B), F (b) is a coretract of
the G-coalgebra (G F (b), δF (b)) ∈ Inj(U G ,A

G), and thus is an object of the category Inj(U G ,A
G), again

by Remark 1.6. This completes the proof. �
The following technical observation is needed for the next proposition.

1.10. Lemma. Let ι, κ : W � W ′ : Y → X be an adjunction of any categories. If i : x′ → x and j : x → x′ are
morphisms in X such that ji = I and if ιx is an isomorphism, then ιx′ is also an isomorphism.

Proof. Since ji = I , the diagram

x′ i
x

I

i j
x
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is a split equaliser. Then the diagram

W ′W
(
x′) W ′W (i)

W ′W (x)
I

W ′W (i j)
W ′W (x)

is also a split equaliser. Now considering the following commutative diagram

x′

ιx′

i
x

κx

I

i j
x

κx

W ′W (x′)
W ′W (i)

W ′W (x)
I

W ′W (i j)
W ′W (x)

and recalling that the vertical two morphisms are both isomorphisms by assumption, we get that the
morphism ιx′ is also an isomorphism. �
1.11. Proposition. In the situation of Proposition 1.9, Inj(F ,B) is (isomorphic to) a coreflective subcategory of
the category Inj(U G ,A

G).

Proof. By Proposition 1.8, the functor R restricts to a functor

R ′ : Inj
(
U G ,A

G) −→ Inj(F ,B),

while according to Proposition 1.9, the functor F restricts to a functor

F ′ : Inj(F ,B) −→ Inj
(
U G ,A

G)
.

Since

• F is a left adjoint to R ,
• Inj(F ,B) is a full subcategory of B, and
• Inj(U G ,A

G) is a full subcategory of A
G ,

the functor F ′ is left adjoint to the functor R ′ , and the unit η′ : I → R ′ F ′ of the adjunction F ′ � R ′
is the restriction of η : F � R to the subcategory Inj(F ,B), while the counit ε′ : F ′R ′ → I of this
adjunction is the restriction of ε : F R → I to the subcategory Inj(U G ,A

G).
Next, since the top of the diagram (1.2) is a (split) equaliser, R(G(a0), δa0 ) 
 R(a0). In particular,

taking (G F (b), δF (b)), we see that

R F (b) 
 R
(
G F (b), δF (b)

) = R F
(
U F (b)

)
.

Thus, the R F (b)-component η′
R F (b)

of the unit η′ : I → R ′ F ′ of the adjunction F ′ � R ′ is an isomor-
phism. It now follows from Lemma 1.10 – since any b ∈ Inj(F ,B) is a coretraction of R F (b) – that η′

b
is an isomorphism for all b ∈ Inj(F ,B), proving that the unit η′ of the adjunction F ′ � R ′ is an isomor-
phism. Thus Inj(F ,B) is (isomorphic to) a coreflective subcategory of the category Inj(U G ,A

G). �
1.12. Corollary. In the situation of Proposition 1.9, suppose that each component of the unit η : I → R F is a
split monomorphism. Then the category B is (isomorphic to) a coreflective subcategory of Inj(U G ,A

G).
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Proof. When each component of the unit η : I → R F is a split monomorphism, it follows from
Proposition 1.5 that every b ∈ B is F -injective; i.e. B = Inj(F ,B). The assertion now follows from
Proposition 1.11. �
1.13. Characterisation of G-Galois comodules. Assume B to admit equalisers, let G be a comonad on A, and
F : B → A a functor with right adjoint R : A → B. If there exists a functor F : B → A

G with U G F = F , then
the following are equivalent:

(a) F is G-Galois, i.e. tF : G′ → G is an isomorphism;
(b) the following composite is an isomorphism,

F R
ηG F R

φG U G F R = φG F R
φGε

φG;

(c) the functor F : B → A
G restricts to an equivalence of categories

Inj(F ,B) −→ Inj
(
U G ,A

G);

(d) for any (a, θa) ∈ Inj(U G ,A
G), the (a, θa)-component ε(a,θa) of the counit ε of the adjunction F � R, is an

isomorphism;
(e) for any a ∈ A, εφG (a) = ε(G(a),δa) is an isomorphism.

Proof. That (a) and (b) are equivalent is proved in [12]. By the proof of [14, Theorem of 2.6], for any
a ∈ A, εφG (a) = ε(G(a),δa) = (tF )a , thus (a) and (e) are equivalent.

By Remark 1.6, (d) implies (e).
Since B admits equalisers by our assumptions, it follows from Proposition 1.7 that the functor

Inj(KG ′ ) is an equivalence of categories. Now, if tF : G′ → G is an isomorphism of comonads, then the
functor AtF

is an isomorphism of categories, and thus F is isomorphic to the comparison functor KG ′ .

It now follows from Proposition 1.7 that F restricts to the functor Inj(F ,B) → Inj(U G ,A
G) which is

an equivalence of categories. Thus (a) ⇒ (c).
If the functor F : B → A

G restricts to a functor

F ′ : Inj(F ,B) −→ Inj
(
U G ,A

G)
,

then one can prove, as in the proof of Proposition 1.11, that F ′ is left adjoint to R ′ and that the counit
ε′ : F ′R ′ → I of this adjunction is the restriction of the counit ε : F R → I of the adjunction F � R to
the subcategory Inj(U G ,A

G). Now, if F ′ is an equivalence of categories, then ε′ is an isomorphism.
Thus, for any (a, θa) ∈ Inj(U G ,A

G), ε′
(a,θa) is an isomorphism proving that (c) ⇒ (d). �

1.14. T-module functors. Given a monad T = (T ,m, e) on A, a functor R : B → A is said to be a (left)
T-module if there exists a natural transformation α : T R → R with commuting diagrams

R
eR

T R

α

R,

T T R
mR

Tα

T R

α

T R
α

R.

(1.3)

It is easy to see that (T ,m) and (T T ,mT ) both are left T-modules.
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A T-module structure on R is equivalent to the existence of a functor R : B → AT inducing a
commutative diagram (see [12, Proposition II.1.1])

B
R

R

AT

U T

A.

Indeed (compare [12]), if R is such a functor, then R(b) = (R(b),αb) for some morphism
αb : T R(b) → R(b) and the collection {αb, b ∈ B} constitutes a natural transformation α : T R → R
making R a T-module. Conversely, if (R,α : T R → R) is a T-module, then R : B → AT is defined by
R(b) = (R(b),αb).

For any T-module (R : B → A,α) admitting a left adjoint functor F : A → B, the composite

tR : T
Tη

T R F
αF

R F ,

where η : I → R F is the unit of the adjunction F � R , is a monad morphism from T to the monad
on A generated by the adjunction F � R . Dual to [18, Lemma 4.3], we have a commutative diagram

B
K R

R

AR F

AtR

AT ,

with the comparison functor K R : B → AR F , b �→ (R(b), R(εb)), where ε is the counit of the adjunction
F � R . As the dual of [18, Theorem 4.4], we have

1.15. Proposition. The functor R is an equivalence of categories if and only if the functor R is monadic (i.e. K R

is an equivalence) and tR is an isomorphism of monads.

Similar to 1.3 one defines ([21, Definition 3.5], [4, 2.19])

1.16. Definition. A left T-module R : B → A with a left adjoint F : A → B is said to be T-Galois if the
corresponding morphism tR : T → R F of monads on A is an isomorphism.

Given a functor R : B → A, we write Proj(R,B) for the full subcategory of B given by R-projective
objects. The following is dual to 1.13.

1.17. Characterisation of T-Galois modules. Assume the category B to have equalisers. Let T = (T ,m, e) be
a monad on A, and R : B → A a left T-module functor with left adjoint F : A → B (and unit η, counit ε). If
there exists a functor R : B → AT with U T R = R, then the following are equivalent:

(a) R is T-Galois;
(b) the following composition is an isomorphism:

φT
φT η

φT R F = φT U T R F
εT R F

R F ;
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(c) the functor R : B → AT restricts to an equivalence between the categories Proj(R,B) and Proj(U T ,AT );
(d) for any (a,ha) ∈ Proj(U T ,AT ), the (a,ha)-component of the unit η of the adjunction L � R, is an isomor-

phism;
(e) for any a ∈ A, ηφT (a) = η(T (a),ma) is an isomorphism.

Dual to 1.4 we observe:

1.18. Left adjoint for R . If B admits coequalisers of reflexive pairs, then the functor R admits a left adjoint.

Proof. Let (R,α : T R → R) be a left T-module with a left adjoint F : B → A. Consider the compos-
ite

β : F T
FtR

F R F
εF

F ,

where ε : F R → I is the counit of F � R . It is easy to check that (F , β) is a right T-module. According
to [12, Theorem A.1], when a coequaliser (R, i) exists for the diagram of functors

F U T φT U T = F T U T

F U T εT

βU T

F U T , (1.4)

where εT : φT U T → I is the counit of φT � U T , then R is left adjoint to R : B → AT . It is easy to see
that for any (a,ha) ∈ AT , the (a,ha)-component in the diagram (1.4) is the pair

F T (a)
F (ha)

βa

F (a) (1.5)

which is a reflexive pair since βa · F (ea) = F (ha) · F (ea) = I . This proves our claim. �
So far we have dealt with (co)module structures on functors. It is also of interest to consider the

corresponding relations between monads and comonads.

1.19. Definitions. Let T = (T ,m, e) be a monad and G = (G, δ, ε) a comonad on A. We say that G
is T-Galois, if there exists a left T-module structure α : T G → G on the functor G such that the
composite

γ G : T G
T δ

T GG
αG

GG

is an isomorphism.
Dually, T is G-Galois, if there is a left G-comodule structure β : T → GT on the functor T such that

the composite

γT : T T
βT

GT T
Gm

GT

is an isomorphism.
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We need the following (dual of [24, Lemma 21.1.5])

1.20. Proposition. Let η,ε : F � R : C → A and η′, ε′ : F ′ � R ′ : C → B be adjunctions and let

A

F

X
B

F ′

C

be a diagram of categories and functors with F ′ X = F . Write α for the composition

X R
η′ X R

R ′ F ′ X R = R ′ F R
R ′ε

R ′.

Then the natural transformation S X = F ′α : F R = F ′ X R → F ′R ′ is a morphism of comonads.

Note that for the commutative diagram (see 1.1)

B
F

F

A
G

U G

A,

where F has a right adjoint R , the related comonad morphism S F : F R → G is just the comonad
morphism tF : F R → G .

From the proof of [24, Theorem 21.1.10(b)] we obtain:

1.21. Proposition. Let F � R : D → A, F ′ � R ′ : D → B and F ′′ � R ′′ : D → C be adjunctions and let

A

F

X
B

F ′

Y
C

F ′′

D

be a commutative diagram of categories and functors. Write S X for the comonad morphism F R → F ′R ′ , SY for
the comonad morphism F ′R ′ → F ′′R ′′ and SY X for the comonad morphism F R → F ′′R ′′ that exist according
to the previous proposition. Then SY X = SY S X .

2. Entwinings

2.1. Entwinings. We fix a mixed distributive law, also called an entwining, λ : T G → GT from the
monad T = (T ,m, e) to the comonad G = (G, δ, ε), and write T̂ = (T̂ ,m̂, ê ) for a monad on A

G lifting T,
and Ĝ = (Ĝ, δ̂, ε̂ ) for a comonad on AT lifting G (e.g. [28, Section 5]).

It is well known that for any object (a,ha) of AT ,

• Ĝ(a,ha) = (
G(a), G(ha) · λa

)
, • (̂δ)(a,ha) = δa, • ( ε̂ )(a,ha) = εa,
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while for any object (a, θa) of the category A
G ,

• T̂ (a, θa) = (
T (a), λa · T (θa)

); • (m̂)(a,θa) = ma, • ( ê )(a,θa) = ea,

and that there is an isomorphism of categories

(
A

G)
T̂ 
 (AT )Ĝ .

We write A
G
T (λ) (or just A

G
T , when the mixed distributive law λ is understood) for the category whose

objects are triples (a,ha, θa), where (a,ha) ∈ AT and (a, θa) ∈ A
G with commuting diagram

T (a)
ha

T (θa)

a
θa

G(a)

T G(a)
λa

GT (a).

G(ha) (2.1)

Let K : A → (AG)T̂ be a functor inducing a commutative diagram

A
K

φG

(AG)T̂

U T̂

A
G .

(2.2)

Write αK : T̂ φG → φG for the corresponding T̂-module structure on φG (see 1.14). Since T̂ is the lifting
of T corresponding to λ, U G T̂ = T U G and one has the natural transformation

α = U G(αK ) : U G T̂ φG = T U GφG = T G −→ U GφG = G.

It is easy to see that α provides a left T-module structure on G with commutative diagram

T G
α

T δ

G
δ

GG

T GG
λG

GT G.

Gα (2.3)

Conversely, a natural transformation

α : U G T̂ φG = T U GφG = T G −→ U GφG = G

making G a left T-module, can be lifted to a left T̂-module structure on φG if and only if for every
a ∈ A, αa : T G(a) → G(a) is a morphism in A

G from the G-coalgebra (T G(a), λG(a) · T (δa)) to the
G-coalgebra (G(a), δa), which is just to say that the a-component of the diagram (2.3) commutes.
Thus we have proved:
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2.2. Proposition. With the data given in 2.1, the assignment

K : A −→ (
A

G)
T̂ �−→ U G(αK ) : T G −→ G,

yields a bijection between functors K making the diagram (2.2) commute and left T-module structures
α : T G → G on G for which the diagram (2.3) commutes.

Now let K ′ : A → (AT )Ĝ be a functor inducing a commutative diagram

A
K ′

φT

(AT )Ĝ

U Ĝ

AT .

(2.4)

Write βK ′ : φT → ĜφT for the corresponding Ĝ-comodule structure on φT (see 1.1). One has the natu-
ral transformation

β = U T (βK ′) : U T φT = T −→ U T ĜφT = GU T φT = GT

which induces a G-comodule structure on T with commutative diagram

T T
m

T β

T
β

GT

T GT
λT

GT T .

Gm (2.5)

From this we obtain:

2.3. Proposition. In the situation described above, the assignment

K ′ : A −→ (AT )Ĝ �−→ U T (βK ′) : T −→ GT ,

yields a bijection between functors K ′ making the diagram (2.4) commute and left G-comodule structures
β : T → GT on the functor T for which the diagram (2.5) commutes.

To give a functor K ′ : A → (AT )Ĝ making the diagram (2.4) commute is to give a natural transfor-
mation α : U T → U T Ĝ making U T a right Ĝ-comodule (see [14, Proposition 2.1]). For any (a,ha) ∈ AT ,
Ĝ(a,ha) = (G(a), G(ha) · λa), the (a,ha)-component α(a,ha) is a morphism a → G(a) in A with com-
mutative diagrams

a
α(a,ha)

G(a)

εa

a,

a

α(a,ha)

α(a,ha)

G(a)

δG(a)

G(a)
G(α(a,ha))

GG(a),
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and the corresponding comonad morphism tK ′ : φT U T → Ĝ is the composite

φT U T
φT α

φT U T Ĝ
εT Ĝ

Ĝ.

Then, since for any (a,ha) ∈ AT , (εT )(a,ha) = ha , the component (tK ′ )(a,ha) is the composite

T (a)
T (α(a,ha))

T G(a)
λa

GT (a)
G(ha)

G(a).

Now it follows from Proposition 1.2:

2.4. Theorem. In the situation described above, the functor K ′ is an equivalence of categories if and only if for
any (a,ha) ∈ AT , the composite G(ha) · λa · T (α(a,ha)) is an isomorphism and the functor φT is comonadic.

For the dual situation, let K : A → (AG)T̂ be a functor inducing commutativity of the diagram (2.2).
Since the functor φG has a left adjoint U G : A

G → A, it follows from [14] that to give such a functor
is to give a right T̂ -module structure α : U G T̂ → U G on U G .

For any (a, θa) ∈ A
G , T̂ (a, θa) = (T (a), λa · T (θa)), the (a, θa)-component α(a,θa) is a morphism

T (a) → a in A with commutative diagrams

a
ea

T (a)

α(a,θa)

a,

T T (a)

ma

T (α(a,θa))

T (a)

α(a,θa)

T (a)
α(a,ha)

a,

and the corresponding monad morphism tK : φG U G → T̂ is the composite

T̂
ηG T̂

φG U G T̂
φGα

φG U G .

Now, since for any (a, θa) ∈ A
G , (ηG)(a,θa) = θa , the component (tK )(a,θa) is the composite

T (a)
T (θa)

T G(a)
λa

GT (a)
G(α(a,ha))

G(a).

As a consequence we get from Proposition 1.15:

2.5. Theorem. In the situation described above, the functor K is an equivalence of categories if and only if for
any (a, θa) ∈ A

G , the composite G(α(a,ha)) · λa · T (θa) is an isomorphism and the functor φG is monadic.

The following observation is probably known but we are not aware of a suitable reference. Recall
that a functor i : C → A with C a small category is dense, if the functor

ĩ : A
op −→ [C,Set], a �−→ MorA

(
i(−),a

)
,

is full and faithful.
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2.6. Lemma. Let i : C → A be a dense functor. Given two adjunctions

F � U , F ′ � U ′ : A −→ B,

and a natural transformation τ : F → F ′ , then τ is an isomorphism of functors if and only if τ i : F i → F ′i is
so.

Proof. Write τ ′ : U ′ → U for the natural transformation corresponding to τ , that is τ and τ ′ are
mates, denoted by τ � τ ′ (e.g. [21, 7.1], [4, 2.2]). Then τ is an isomorphism if and only if τ ′ is so. So
it is enough to show that τ ′ is an isomorphism. Since τ � τ ′ , the diagram

MorB(F ′i(a),b)
α′

i(a),b

MorB(τi(a),b)

MorA(i(a), U ′(b))

MorA(i(a),τ ′
b)

MorB(F i(a),b)
αi(a),b

MorA(i(a), U (b)),

where α (resp. α′) is the bijection corresponding to the adjunction F � U (resp. F ′ � U ′), commutes
for all a,b ∈ A. Since τi(a) is an isomorphism by our assumption on τ , it follows that the natural
transformation MorA(i(a), τ ′

b) is an isomorphism, implying – since i is dense – that τ ′ : U ′ → U is an
isomorphism. �
2.7. Proposition. With the data given in 2.1, let K ′ : A → (AT )Ĝ be a functor with U Ĝ K ′ = φT and βK ′ : φT →
ĜφT the corresponding Ĝ-comodule structure on φT (see 1.1). Suppose that

(i) A admits equalisers of coreflexive pairs and both T and G have right adjoints, or
(ii) A admits small colimits and both T and G preserve them.

Then (φT , βK ′ ) is Ĝ-Galois if and only if (T , U T (βK ′ )) is G-Galois.

Proof. For any a ∈ A, the φT (a) = (T (a),ma)-component of tK ′ : φT U T → Ĝ is just (γT )a (see 1.19).
Thus it is enough to show that tK ′ is an isomorphism if and only if its restriction to free T-modules
is.

(i) If T has a right adjoint, there exists a comonad H inducing an isomorphism of categories
AT 
 A

H ; this implies that the functor U T is comonadic and hence has a right adjoint. It follows
that the composite GU T also has a right adjoint. Next, since Ĝ is the lifting of G, we have the com-
mutative diagram

AT
Ĝ

U T

AT

U T

A
G

A.

Since

• GU T has a right adjoint,
• the functor U T is comonadic, and
• AT admits equalisers of coreflexive pairs (since A does so),

it follows from the dual of [12, Theorem A.1] that the functor Ĝ has a right adjoint.
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Now, since the full subcategory of AT given by free T-modules is dense in AT , it follows from
Lemma 2.6 that tK ′ : φT U T → Ĝ is an isomorphism if and only if its restriction to free T-modules
is.

(ii) Since T preserves colimits, the category AT admits colimits and the functor U T : AT → A

creates them. Thus

• the functor φT U T preserves colimits;
• any functor L : B → AT preserves colimits if and only if the composite U T L does; so, in particular,

the functor Ĝ preserves colimits, since U T Ĝ = GU T and GU T is the composite of two colimit-
preserving functors.

The full subcategory of AT given by the free T-modules is dense and since the functors φT U T and Ĝ
both preserve colimits, it follows from [24, Theorem 17.2.7] that the natural transformation

tK ′ : φT U T −→ Ĝ

is an isomorphism if and only if its restriction to the free T-modules is so; i.e. if (tK ′ )φT (a) is an
isomorphism for all a ∈ A. This completes the proof. �

Dually, one has

2.8. Proposition. With the data given in 2.1, let K : A → (AG)T̂ be a functor with U T̂ K = φG and
αK : T̂ φG → φG the corresponding T̂-module structure on φG . Suppose that

(i) A admits coequalisers of reflexive pairs and both T and G have left adjoints, or
(ii) A admits all small limits and both T and G preserve them.

Then (φG ,αK ) is T̂-Galois if and only if (G, U G (αK )) is T-Galois.

The results of the preceding two propositions may be compared with Böhm and Menini’s [5, The-
orem 3.3].

3. Grouplike morphisms

In this section we extend the theory of Galois corings C over a ring A to entwinings of a monad F
and a comonad G on general categories. For this we extend the notion of a grouplike element in C
(e.g. [9, 28.1]) to the notion of a grouplike natural transformation I → G .

3.1. Definition. Let G = (G, δ, ε) be a comonad on a category A. A natural transformation g : I → G is
called a grouplike morphism provided it induces commutative diagrams

I
g

=

G

ε

I,

I
g

gg

G

δ

GG.
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Comonads with grouplike morphisms are called computational in [6] (see also [23]). The next result
transfers Proposition 5.1 in [18].

3.2. Grouplike morphisms and comodule structure. Let F = (F ,m, e) be a monad and G = (G, δ, ε) a
comonad on a category A with an entwining λ : F G → G F . If G has a grouplike morphism g : I → G, then F
has two left G-comodule structures (see 1.1) given by

(1) g̃ : F
F g

F G
λ

G F and (2) g F : F −→ G F .

Proof. (1) In the diagram

F
F g

=

F G

Fε

λ
G F

εF

F = F ,

the triangle is commutative by the grouplike properties of g and the square is commutative by the
properties of the entwining λ. In the diagram

F
F g

F g
F gg

F G
λ

F δ

G F

δFF G

λ

F GG

λG

G F
G F g

G F G
Gλ

GG F ,

the right rectangle is commutative by properties of entwinings, the triangle is commutative by prop-
erties of the grouplike morphism g , and the pentagon is commutative by naturality of composition.
This shows that g̃ makes F a left G-comodule.

(2) To say that (F , g F : F → G F ) is a left G-comodule is to say that the diagrams

F
g F

=

G F

εF

F ,

F
g F

g F

G F

δF

G F
Gg F

GG F

are commutative. Using the fact that

Gg F · g F = gg F ,

the commutativity of these diagrams follows from the definition of a grouplike morphism. �
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The pattern of the proof of [18, Proposition 5.3] also yields:

3.3. F as mixed bimodule. With the data given in 3.2, (F ,m, g̃) is a mixed (F , G)-bimodule.

Proof. We need to show commutativity of the diagram

F F
m

F g̃

F
g̃

G F

F G F
λF

G F F .

Gm

However, by the definition of g̃ , we get the diagram

F F
m

F F g

F
F g

F G
λ

G F

F F G
Fλ

mG

F G F
λF

G F F ,

Gm

in which the right pentagon is commutative since λ is an entwining and the triangle is commutative
by naturality of composition. This proves our claim. �

Combining 2.3, 3.2 and 3.3 yields the existence of a functor K g : A → (AF )Ĝ making the diagram

A

K g

φF

(AF )Ĝ

U Ĝ

AF

commute. Note that K g(a) = ((F (a),ma), g̃a).
Now assume that A admits equalisers. Then the category of endofunctors of A also has equalisers

and we have the

3.4. Equaliser functor. With the data given in 3.2, define a functor F g as an equaliser of functors

F g
iF

F
g F

F g

G F

F G.

λ

Then F g is a monad on A and iF : F g → F is a monad morphism.
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Proof. We adapt the proof of [18, 5.2]. The following two diagrams are commutative by naturality of
composition,

I
e

g

F

g F

G
Ge

G F ,

I
e

g

F

F g

G
eG

F G.

Since λ · eG = Ge, it follows that

λ · F g · e = λ · eG · g = Ge · g = g F · e.

Thus there exists a unique morphism e′ : I → F g yielding a commutative diagram

F g
iF

F

I.

e′
e

Observe that

(α) the diagrams

F F
F F g

m

F F G

mG

F
F g

F G,

F F
g F F

m

G F F

Gm

F
g F

G F

commute by naturality of composition,
(β) λ · mG = Gm · λF · Fλ, since λ is an entwining,
(γ ) λ · F g · i F = g F · i F , since i F is an equaliser of g F and λ · F g ,
(δ) i F i F = i F F · F g iF = F iF · i F F g , by naturality of composition.

Hence we have

λ · F g · m · i F i F =(α) λ · mG · F F g · i F i F

=(β) Gm · λF · Fλ · F F g · i F i F

=(δ) Gm · λF · Fλ · F F g · F iF · i F F g

=(γ ) Gm · λF · F g F · F iF · i F F g

=(δ) Gm · λF · F g F · i F F · F g iF

=(γ ) Gm · g F F · i F F · F g iF

=(δ) Gm · g F F · i F i F

=(α) g F · m · i F i F .
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Considering now the diagram

F g F g

m′

i F i F
F F

m

g F F

F g F
F G F

λF
G F F

Gm

F g
iF

F

g F

F g
F G

λ
G F ,

one sees that there exists a unique morphism m′ : F g F g → F g making the left square of the diagram
commute. The result now follows from [3, Lemma 3.2]. �

As we have seen, the morphism β = g̃ : F → G F makes F a left G-comodule. Consider the related
functor K g : A → (AF )Ĝ and write t : φF U F → Ĝ for the corresponding morphism of comonads on AF .
It is easy to see that for any (a,ha) ∈ AF , t(a,ha) is the composite

F (a)
F (ga)

F G(a)
λa

G F (a)
G(ha)

G(a). (3.1)

Since F g · e = eG · g by naturality of composition and λ · eG = Ge, the (a,ha) ∈ AF -component of the
morphism

γ : U F
ηF U F

U F φF U F
U F t

U F Ĝ

is just the morphism ga : a → G(a). It follows that the monad generated by the functor K g and its
right adjoint R g is given by the equaliser of the diagram

F
g F

g̃=λ·F g
G F .

Thus F g is just the monad on A generated by the adjunction K g � R g .
Since any functor with a right adjoint is full and faithful if and only if the unit of the adjunction

is an isomorphism, we have

3.5. Proposition. Let g : I → G be a grouplike morphism. Then the corresponding functor K g : A → (AF )Ĝ is
full and faithful if and only if the functor F g is (isomorphic to) the identity monad on A.

For an entwining λ : T G → GT and a grouplike morphism g : I → G , for any (a,ha) ∈ AF , the
(a,ha)-component t(a,ha) of the comonad morphism t : φF U F → Ĝ , corresponding to the functor

K g : A → (AF )Ĝ , is given in (3.1). Consider the diagram
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F (a)

(1)

F (ea)

F (ga)

F F (a)

(2)
F (gF (a))

F (a)
eF (a)

gF (a)

F G(a)

(3)

F G(ea)

λa

F G F (a)

(4)
λF (a)

G F (a)
eG F (a)

G(eF (a))

G F (a)
G F (ea)

(5)

G F F (a)

G(ma)
(6)

G F (a) G F (a),

in which

• diagram (1) is commutative by naturality of g : I → G;
• diagram (2) is commutative by naturality of composition;
• diagram (3) is commutative by naturality of λ : F G → G F ;
• diagram (4) is commutative since λ is an entwining, and
• diagrams (5) and (6) are commutative since F is a monad.

It follows from the commutativity of this diagram that the diagram

F (a)

eF (a)

F (ea)

F F (a)

F (gF (a))

F G F (a)

λF (a)

G F F (a)

G(ma)

F (a)

gF (a)

λa·F (ga)

G F (a)

(3.2)

is serially commutative.

3.6. Proposition. Let λ : T G → GT be an entwining and g : I → G be a grouplike morphism. If the monad F
is of descent type (that is, the free F -algebra functor φF : A → AF is precomonadic) and if the monad F is
G-Galois w.r.t. the G-coaction g̃ : F → G F (see 3.2), then the monad F g is (isomorphic to) the identity monad.

Proof. To say that F is of descent type is to say that the diagram

a
ea

F (a)

eF (a)

F (ea)

F F (a)
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is a coequaliser diagram for all a ∈ A (see [9]), while to say that the monad F is G-Galois w.r.t.
G-coaction g̃ : F → G F is to say that, for any a ∈ A, the composite G(ma) · λF (a) · F (gF (a)) is an iso-
morphism. The result now follows from the commutativity of the diagram (3.2). �
3.7. Left adjoint of (i F )∗. Since i F : F g → F is a morphism of monads, it induces a functor

(i F )∗ : AF −→ AF g , (a,ha) �−→ (
a,ha · (i F )a

)
.

Moreover, when the category AF has coequalisers of reflexive pairs (which is certainly the case if A

has coequalisers of reflexive pairs and F preserves them), (i F )∗ has a left adjoint (i F )! : AF g → AF

which is defined as follows: For notational reasons, write

η,σ : V � U : AF −→ A
(
resp. η′,σ ′ : V ′ � U ′ : AF g −→ A

)

for the forgetful-free adjunction (φF , U F ) (resp. (φF g , U F g )). Then (i F )! is the coequaliser of the dia-
gram of functors and natural transformations

V U ′V ′U ′ V U ′σ ′

β
V U ′ q

(i F )!, (3.3)

where β is the composite

V U ′V ′U ′ V U ′V ′ηU ′
V U ′V ′U V U ′ = V U ′V ′U ′(i F )∗V U ′

V U ′σ ′(i F )∗V U ′
V U ′(i F )∗V U ′ = V U V U ′ σ V U ′

V U ′.

It is not hard to see that for any (a,ha) ∈ AF g , the (a,ha)-component of the diagram (3.3) is the
diagram

F F g(a)

F (ha)

F ((i F )a)
F F (a)

ma
F (a)

qa
(i F )!(a,ha).

Let Ĝ be the comonad on AF that is the lifting of the comonad G corresponding to the entwin-
ing λ. Then for any (a,ha) ∈ AF , Ĝ(a,ha) = (G(a), G(ha) · λa).

3.8. Lemma. With the data given in 3.2, we have the morphism

g̃a : F (a) −→ G F (a) for any (a,ha) ∈ AF .

(i) Each g̃a can be seen as a morphism in AF from the free F -module V (a) = (F (a),ma) to the F -module

Ĝ
(

V (a)
) = Ĝ

(
F (a),ma

) = (
G F (a), G(ma) · λF (a)

)
.

(ii) The family (g̃ F (a))a∈A induces a natural transformation αV : V → Ĝ V making V a left Ĝ-comodule.
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Proof. (i) Consider the diagram

F F (a)
F F (ga)

ma

F F G(a)
F (λa)

mG(a)

F G F (a)

λF (a)

G F F (a)

G(ma)

F (a)

(1)

F (ga)
F G(a)

(2)

λa
G F (a),

in which part (1) commutes by naturality of m, while part (2) commutes since λ is an entwining.
Thus the outer rectangle is commutative, which just means that g̃ : F (a) → G F (a) is a morphism
in AF from the free F -module V (a) = (F (a),ma) to the F -module (G F (a), G(ma) · λF (a)).

(ii) Using that for any (a,ha) ∈ AF ,

• (εĜ)(a,ha) = (εG)a, • (δĜ)(a,ha) = (δG)a, • (F , g̃) is a left G-comodule,

it is not hard to prove that the pair (V ,αV ) is a left Ĝ-comodule. �
3.9. Lemma. With the notation above,

(1) the left rectangle in the diagram

V U ′V ′U ′

αV U ′V ′U ′

V U ′σ ′

β
V U ′

αV U ′

q
(i F )!

α(i F )!

Ĝ V U ′V ′U ′
Ĝ V U ′σ ′

Ĝβ

Ĝ V U ′ Ĝq
Ĝ(i F )!

is serially commutative;
(2) there exists a unique natural transformation α(i F )! : (i F )! → Ĝ(i F )! making the right square of the diagram

commute.

Proof. (2) follows from the fact that q is a coequaliser of V U ′σ ′ and β .
(1) To show that the left square is serially commutative, we have to show that for any (a,ha) ∈ AF ,

the diagram

F F g(a)

(g̃)F g (a)

F (ha)

F ((i F )a)
F F (a)

ma
F (a)

(g̃)a

G F F g(a)

G F (ha)

G F ((i F )a)
G F F (a)

G(ma)
G F (a)
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is so. The left diagram below is commutative by naturality of g : I → G ,

F g(a)
ha

gF g (a)

a

ga

G F g(a)
G(ha)

G(a),

F G F g(a)
F G(ha)

λF g (a)

F G(a)

λa

G F F g(a)
G F (ha)

G F (a)

while the right square is commutative by naturality of λ. From this we obtain the commutative dia-
gram

F F g(a)
F (ha)

F (gF g (a))

F (a)

F (ga)

F G F g(a)

λF g (a)

F G(ha)
F G(a)

λa

G F F g(a)
G F (ha)

G F (a).

Next, consider the diagram

F F g(a)

F (gF g (a))

F ((i F )a)

F ((i F )a)
F F (a)

(3)
F F (ga)

ma
F (a)

F (ga)

F F (a)

(2)

F (gF (a))

F F G(a)

F (λa)

mG(a)

F G(a)

λF (a)

F G F g(a)

(5)

(1)

λF g (a)

F G((i F )a)
F G F (a)

(4)

λF (a)

G F (a)

G F F g(a)
G F ((i F )a)

G F F (a)

G(ma)

in which

• diagram (1) commutes by naturality of composition;
• diagram (2) commutes by (γ ) in proof of 3.4;
• diagram (3) commutes by naturality of m;
• diagram (4) commutes since λ is an entwining, and
• diagram (5) commutes by naturality of λ.

Thus the outer diagram is commutative and this completes the proof of the lemma. �
3.10. Natural transformation SφF g . In 3.8, a left Ĝ-comodule (V ,αV ) is considered and by commu-
tativity of the diagram in 3.9, the pair ((i F )!,α(i F )! ) is also a left Ĝ-comodule. Thus, as noted in 1.1,
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there exists a unique functor i F : AF g → (AF )Ĝ yielding commutativity in the right triangle of the
diagram

A

φF

φF g

AF g

(i F )!

i F

(AF )Ĝ

U Ĝ

AF

(3.4)

where U Ĝ : (AF )Ĝ → AF is the evident forgetful functor.
A direct inspection shows that the diagram

F F g F g

Fm′

F iF F g

F F F g
mF g

F F g

F F g e′

F iF
F F

m
F

F e′

is a split coequaliser diagram. This means in particular that for any a ∈ A,

(i F )!
(
φF g (a)

) = (i F )!
(

F g(a),m′
a

) = (
F (a),ma

) = φF (a).

Thus the left triangle in the diagram is also commutative.
Consider the related comonad morphisms

• SφF g : φF U F → (i F )!(i F )∗ corresponding to the left triangle in (3.4),
• SiF

: (i F )!(i F )∗ → Ĝ corresponding to the right triangle in (3.4),

• and SiF ·φF g
= t : φF U F → Ĝ corresponding to the outer diagram in (3.4).

Then it follows from Proposition 1.21 that t = SiF
· SφF g .

3.11. Lemma. With the notation from 3.10, for any (a,ha) ∈ AF , the (a,ha)-component of the natural trans-
formation SφF g is the morphism

qa : F (a) −→ (i F )!
(
(i F )∗(a,ha)

) = (i F )!
(
a,ha · (i F )a

)
.

Proof. Consider the natural transformation α : φF g U F → (i F )∗ corresponding to the left triangle
in (3.4) which is the composite

φF g U F
ηφF g U F

(i F )∗(i F )!φF g U F = (i F )∗φF U F
(i F )∗εF

(i F )∗,

where η : I → (i F )∗(i F )! is the unit of the adjunction (i F )! � (i F )∗ . A simple calculation shows that,
for any (a,ha) ∈ AF , α(a,ha) is the composite

F g(a)
(i F )a

F (a)
ha

a.
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Thus, the (a,ha)-component of SφF g is the morphism

(i F )!
(
ha · (i F )a

) : (i F )!
(
φF g U F (a,ha)

) −→ (i F )!
(
(i F )∗(a,ha)

)
.

Since φF g U F (a,ha) = φF g (a) = (F g(a),m′
a) and (i F )∗(a,ha) = (a,ha · (i F )a), it follows from the defini-

tion of (i F )! that the diagram

F F g F g(a)

F F g (ha·(i F )a)

F (m′
a)

F ((i F )F g (a))
F F F g(a)

F F (ha·(i F )a)

mF g (a)

F F g(a)

F (ha·(i F )a)

qF g (a)

(i F )!(φF g U F (a,ha))

(SφF g )(a,ha)

F F g(a)
F ((i F )a)

F F (a)
F (ha)

ma

F (a)
qa

(i F )!((i F )∗(a,ha)),

whose rows are coequaliser diagrams, is commutative. Note now that the diagram

F F g F g

Fm′

F iF F g

F F F g
mF g

F F g

F F g e′

F iF
F F

m
F

F e′

is a split coequaliser diagram. It follows that the diagram

F F g(a)
ma·F ((i F )a)

F ((i F )a)

F (a)

(SφF g )(a,ha)

F (a)
qa

(i F )!((i F )∗(a,ha))

is commutative. Now, since qa · F (ha) · F ((i F )a) = qa · ma · F ((i F )a) and since (SφF g )(a,ha) is the unique
morphism making the square commute, we see that (SφF g )(a,ha) = qa . �
3.12. Proposition. With the notation from 3.10, suppose the natural transformation t : φF U F → Ĝ to be com-
ponentwise a monomorphism. Then SφF g : φF U F → (i F )!(i F )∗ is an isomorphism. Thus, SiF

: (i F )!(i F )∗ → Ĝ
is an isomorphism if and only if t is so.

Proof. First note that, by the previous lemma, SφF g is a componentwise regular epimorphism. Now,
since any regular epimorphism that is a monomorphism is an isomorphism and since t = SiF

· SφF g

(see 3.10), the result follows. �
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3.13. Galois entwinings. Write G̃ for the comonad on the category AF generated by the adjunction
(i F )! � (i F )∗ and let tg : G̃ → Ĝ be the related comonad morphism (see [18, Theorem 4.1]). This leads
to a commutative diagram with the canonical comparison functor KG̃ (e.g. [18, Lemma 4.3])

AF g

iF

KG̃

(AF )G̃

(AF )tg

(AF )Ĝ .

By Definition 1.3, the functor (i F )! is Ĝ-Galois provided tg : G̃ → Ĝ is an isomorphism. If this is the
case we call (F,G, λ, g) a Galois entwining and g : I → G a Galois (grouplike) morphism and we have:

3.14. Theorem. Let λ : F G → G F be an entwining from a monad F to a comonad G on a category A. Suppose
that g : I → G is a grouplike morphism such that the corresponding functor (i F )∗ : AF → AF g admits a left
adjoint functor (i F )! : AF g → AF (see 3.7). Then the comparison functor i F : AF g → (AF )Ĝ is an equivalence
of categories if and only if (F,G, λ, g) is a Galois entwining and the functor (i F )! is comonadic.

In the situation of the preceding theorem, if g is such that the corresponding comparison functor
K g : A → (AF )Ĝ is full and faithful, it follows from Proposition 3.5 that the functor i F reduces to the
functor K g .

4. Bimonads

4.1. Properties of bimonads. Recall from [21, Definition 4.1] that a bimonad H on a category A is
an endofunctor H : A → A which has a monad structure H = (H,m, e) and a comonad structure
H = (H, δ, ε) with an entwining λ : H H → H H inducing commutativity of the diagrams

H H
εH

Hε

m

H

ε

H
ε

I,

I
e

e

H

δ

H
eH

He
H H,

I
e

=

H

ε

I,

(4.1)

H H
m

Hδ

H
δ

H H

H H H
λH

H H H .

Hm (4.2)

Joining H from the left to the central diagram in (4.1) and attaching the resulting square on the
left-hand side of (4.2), one derives the relation

λ · He = δ. (4.3)

For the bimonad H we obtain the comparison functor

K H : A −→ A
H
H , a −→ (

H(a),ma, δa
)
,
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where A
H
H = A

H
H (λ), with commutative diagrams

A
K H

φH

(AH )Ĥ 
 A
H
H

U Ĥ

AH ,

A
K H

φH

(AH )Ĥ 
 A
H
H

U Ĥ

A
H .

(4.4)

As noticed in [28, 5.13], the comparison functor K H is full and faithful by the isomorphism

MorH
H

(
H(a), H(b)

) −→ MorA(a,b), f �−→ εb ◦ f ◦ ea.

We now reconsider bimonads and Hopf monads in view of the notions introduced in the preceding
sections. It is clear from (4.1) that the unit e : I → H is a grouplike morphisms (as defined in 3.1).
Write γ for the composite Hm · δH . Then since γ · He = δ (see [21, (5.2)]), it is easy to see that the
functor K H is just the functor Ke corresponding to the grouplike morphisms e : I → H . Then, since
the functor K H is full and faithful, it follows from Proposition 3.5 that the diagram

I
e

H
eH

δ=λ·He
H H

is an equaliser diagram. Therefore the functor F e from 3.4, that is H H , is just the identity on A. Thus
(iH )∗ turns out to be the forgetful functor U H : AH → A and its left adjoint (iH )! is the free functor
φH : A → AH . Now, since the unit of the adjunction φH � U H is a split monomorphism, the functor
φH : A → AH is always comonadic, provided the category A is Cauchy complete (see Corollary 3.19
in [19]), it follows from 3.14:

4.2. φH as ̂H -Galois functor. For a bimonad H on a Cauchy complete category A, the following are equiva-
lent:

(a) φH is an Ĥ-Galois functor;
(b) the unit e : I → H is a Galois grouplike morphism;
(c) the functor K H : A → A

H
H is an equivalence of categories.

4.3. Proposition. Assume that A admits equalisers and that H has a right adjoint. Then the following are
equivalent:

(a) the functor K H : A → A
H
H is an equivalence of categories;

(b) (H,m) is H-Galois;
(c) H has an antipode.

Proof. Clearly (a) implies (b), while the equivalence of (a) and (c) is proved in [21, 5.6]. So suppose

that (H,m) is H-Galois. Then it follows from Proposition 2.7 that φH is Ĥ-Galois, i.e. the comonad

morphism tφH : φH U H → Ĥ is an isomorphism. Now, since the category A admits equalisers, it is
Cauchy complete, and as it was noted above, the functor φH is always comonadic, it follows from
Proposition 1.2 that K H is an equivalence of categories. This completes the proof. �
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Dually, one has

4.4. Proposition. Assume that A admits coequalisers and that H has a left adjoint. Then the following are
equivalent:

(a) the functor K H : A → A
H
H is an equivalence of categories;

(b) (H, δ) is H-Galois;
(c) H has an antipode.

Summarising the previous observations yields the main result of this section:

4.5. Theorem. Let H be a bimonad on the category A and assume that

(i) A has small limits or colimits and H preserves them, or
(ii) A admits equalisers and H has a right adjoint, or
(iii) A admits coequalisers and H has a left adjoint.

Then the functor K H : A → A
H
H is an equivalence of categories if and only if H has an antipode.

Proof. The assertions follow by Propositions 2.7, 2.8, 4.3 and 4.4. �
5. Opmonoidal monads

Let (V,⊗, I) be a strict monoidal category.

5.1. Opmonoidal monads. Let T = (T ,m, e) be a monad on V, such that the functor T and the natural
transformations m and e are opmonoidal, that is, there are natural transformations

χX,Y : T (X ⊗ Y ) −→ T (X) ⊗ T (Y ) for X, Y ∈ V

and a morphism θI : T (I) → I satisfying certain compatibility axioms. Following McCrudden [17] we
call such monads opmonoidal monads. They were introduced in Moerdijk [22] under the name Hopf
monads and are named bimonads by Bruguières and Virelizier in [7, Section 2.3].

It follows from the definition of an opmonoidal monad T that the triple

(
T (I),χI,I : T (I) −→ T (I) ⊗ T (I), θI : T (I) −→ I

)

is a coalgebra in V (see [7, p. 704]), and thus one has a comonad G on V whose functor part is
G = − ⊗ T (I). Then the compatibility axioms ensure that the natural transformation

λ := (
T (−) ⊗ mI

) · χ−,T (I) : T G −→ GT ,

is a mixed distributive law (entwining) from the monad T to the comonad G.

5.2. Entwined modules. For an opmonoidal monad T on V, the entwined modules are objects M ∈ V

with a T -module structure h : T (M) → M and a comodule structure ρ : M → M ⊗ T (I) inducing
commutativity of the diagram

T (M)
h

T (ρ)

M
ρ

M ⊗ T (I)

T (M ⊗ T (I))
χM,T (I)

T (M) ⊗ T T (I)
T (M)⊗mI

T (M) ⊗ T (I).

h⊗T (I)
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(In [7, Section 4.2] these are named right Hopf T -modules.) They form a category in an obvious way
which we denote by V

G
T .

From the ingredients of the definition one obtains the commutative diagram

T T
m

Tχ−,I

T
χ−,I

T (−) ⊗ T (I)

T (T (−) ⊗ T (I))
χT (−),T (I)

T T (−) ⊗ T T (I)
T T (−)⊗mI

T T (−) ⊗ T (I)

m⊗T (I)

which shows that for any X ∈ V, T (X) is an entwined T-module leading to the commutative diagram

V
K

φT

(VT )Ĝ = V
G
T

U Ĝ

VT ,

with a comparison functor K (X) = (T (X),mX ,χX,I).
For the corresponding comonad morphism tK : φT U T → Ĝ , it is easy to see that for any (X,hX ) ∈

V T , the (X,hX )-component of tK is the composite

T (X)
χX,I

T (X) ⊗ T (I)
hX ⊗T (I)

X ⊗ T (I).

Since tK is a comonad morphism, we have the commutative diagram

φT U T
tK

εT

Ĝ

εĜ

I,

and since, for any (X,hX ) ∈ V, (εT )(X,hX ) = hX and (εĜ)(X,hX ) = X ⊗ θI , we have

5.3. Lemma. For any (X,hX ) ∈ VT ,

(X ⊗ θI) · (tK )(X,hX ) = hX .

5.4. Remark. Note that there are also functors

VT −→ V
G
T , (M,h) �−→ (

M ⊗ T (I), h̃ := (h ⊗ mI) ◦ χM,T (I), M ⊗ χI,I

)
,

V
G −→ V

G
T , (N,ρ) �−→ (

T (N),mN , ρ̂ := (
T (N) ⊗ mI

) ◦ χN,T I ◦ T (ρ)
)
.

The second functor corresponds to [7, Lemma 4.3].



B. Mesablishvili, R. Wisbauer / Journal of Algebra 324 (2010) 464–506 495
5.5. Grouplike morphism. Since T is an opmonoidal monad on V, the following two diagrams

I

eI

T (I)

θI

I

and

I

eI

eI⊗eI

T (I)

χI,I

T (I) ⊗ T (I)

both are commutative, implying that the natural transformation

g := − ⊗ eI : 1 −→ − ⊗ T (I)

is a grouplike morphism. Note that gT : T → T ⊗ T (I) is the natural transformation given by T (X) ⊗
eI : T (X) → T (X) ⊗ T (I), while λ · T g : T → T ⊗ T (I) is given by the composite

T (X)
T (X⊗eI)

T
(

X ⊗ T (I)
) χX,T (I)

T (X) ⊗ T T (I)
T (X)⊗mI

T (X) ⊗ T (I).

Since T is an opmonoidal monad, the diagram

T (X)
T (X⊗eI)

χX,I

T (X ⊗ T (I))

χX,T (I)

T (X) ⊗ T (I)
T (X)⊗T (eI)

T (X) ⊗ T T (I)

is commutative. But since mI · eI = I , we see that λ · T g is just the natural transformation χ−,I . Thus,
for any X ∈ V, T g(X) is the equaliser

T g(X) T (X)
T (X)⊗eI

χX,I

T (X) ⊗ T (I).

Note that the functor K : V → V
G
T is just the functor K g : V → V

G
T = (VT )Ĝ .

5.6. Antipodes. For opmonoidal monads on a right autonomous category V, a right antipode is defined
in [7, Section 3.3] and its existence is equivalent to the fact that the category of T-modules is right
autonomous [7, Theorem 3.8].

From now on we suppose that T is an opmonoidal monad, on a right autonomous category, with
a right antipode (a right Hopf monad in the sense of [7, Section 3.6]).

Consider the natural transformation Γ : G → T T defined in [7, Section 4.5]. We shall need the
following simple properties of this functor (see [7, Lemma 4.9]):

m · Γ = e ⊗ θI, (5.1)

T m · Γ T · χ−,I = T e. (5.2)

Using these, one can calculate (see [7]) that for any (X,hX , ϑX ) ∈ V
G
T ,

hX · T (hX ) · ΓX · ϑX = I X . (5.3)
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5.7. Lemma. For any (X,hX , ϑX ) ∈ V
G
T , the morphism

(tK )(X,hX ) = (
hX ⊗ T (I)

) · χX,I : T (X) −→ X ⊗ T (I)

is a split monomorphism.

Proof. For any (X,hX , ϑX ) ∈ V
G
T , consider the composite

q(X,hX ) = T (hX ) · ΓX : X ⊗ T (I) −→ T (X).

We claim that q(X,hX ) · (tK )(X,hX ) = I . Indeed, consider the diagram

T (X)
χX,I

T (e X )

T (X) ⊗ T (I)

(1)

hX ⊗T (I)

ΓT (X)

X ⊗ T (I)

ΓX

T T T (X)
T T (hX )

T (mX )

T T (X)

T (hX )

T T (X)

(2)

T (hX )
T (X).

In this diagram

• square (1) commutes because Γ is a functor,
• square (2) commutes because (X,hX ) is a T-algebra, and
• the triangle commutes because of (5.2).

It follows that

q(X,hX ) · (tK )(X,hX ) = T (hX ) · T (e X ) = T (hX · e X ) = I X .

Thus

q(X,hX ) · (tK )(X,hX ) = I X . � (5.4)

Since, by Lemma 5.7, tK is a componentwise (split) monomorphism, Proposition 3.12 yields the

5.8. Corollary. tK : φT U T → Ĝ is an isomorphism if and only if eI : I → T (I) is a Galois grouplike morphism.

5.9. Proposition. With the data given in 5.6, for any (X,hX , ϑX ) ∈ V
G
T , the diagram

X
q(X,h X )·ϑX

T (X)
T (ϑX )

T (X⊗eI)

T
(

X ⊗ T (I)
)
, (5.5)

is a split equaliser diagram.
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Proof. Note first that, by [7, Lemma 4.11], the composite q(X,hX ) ·ϑX equalises the pair (T (ϑX ), T (X ⊗
eI)). Next the following diagram is serially commutative (see [14])

T (X)

s1

T (ϑX )

T (X⊗eI)

T (X ⊗ T (I))

s2

X
ϑX

X ⊗ T (I)
ϑX ⊗T (I)

X⊗χI,I

X ⊗ T (I) ⊗ T (I)

(5.6)

where s1 = (tK )(X,hX ) and s2 = (tK )(X⊗T (I),hX⊗T (I)) . Note that the bottom row of this diagram is split
by the morphisms X ⊗ θI and X ⊗ T (I) ⊗ θI . Recall that this means

(X ⊗ θI) · ϑX = I, (5.7)
(

X ⊗ T (I) ⊗ θI

) · (X ⊗ χI,I) = I, and (5.8)
(

X ⊗ T (I) ⊗ θI

) · (ϑX ⊗ T (I)
) = ϑX · (X ⊗ θI). (5.9)

By 5.3, we now have

hX · q(X,hX ) · ϑX = hX · T (hX ) · ΓX · ϑX = I X .

Furthermore, since s2 · T (X ⊗ eI) = (X ⊗ χI,I) · s1,

q(X,hX ) · (X ⊗ T (I) ⊗ θI

) · s2 · T (X ⊗ eI)

= q(X,hX ) · (X ⊗ T (I) ⊗ θI

) · (X ⊗ χI,I) · s1

=(5.8) q(X,hX ) · s1 = q(X,hX ) · (tK )(X,hX ) =(5.4) I X ,

and since s2 · T (ϑX ) = (ϑX ⊗ T (I)) · s1,

q(X,hX ) · (X ⊗ T (I) ⊗ θI

) · s2 · T (ϑX )

= q(X,hX ) · (X ⊗ T (I) ⊗ θI

) · (ϑX ⊗ T (I)
) · s1

=(5.9) q(X,hX ) · ϑX · (X ⊗ θI) · s1

= q(X,hX ) · ϑX · (X ⊗ θI) · (tK )(X,hX )

=L.5.3 q(X,hX ) · ϑX · hX .

We have proved that

hX · q(X,hX ) · ϑX = I X , (5.10)

q(X,hX ) · (X ⊗ T (I) ⊗ θI

) · s2 · T (X ⊗ eI) = I X , and (5.11)

q(X,hX ) · (X ⊗ T (I) ⊗ θI

) · s2 · T (ϑX ) = q(X,hX ) · ϑX · hX , (5.12)

which just means that (5.5) is a split equaliser: a splitting is given by hX and by q(X,hX ) · (X ⊗ T (I) ⊗
θI) · s2. �
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5.10. Proposition. Given the data from 5.6, the functor K : V → V
G
T has a fully faithful right adjoint if and

only if for any (X,hX , ϑX ) ∈ V
G
T , the pair of morphisms

X
ϑX

X⊗eI

X ⊗ T (I) (5.13)

has an equaliser and this equaliser is preserved by T .

Proof. By 1.4, K has a right adjoint if and only if (5.13) has an equaliser for all (X,hX , ϑX ) ∈ V
G
T .

We write (X, i X : X → X) for this equaliser. Thus R(X,hX , ϑX ) = (X, i X ). Since the diagram (5.6)
is commutative and since T (i X ) equalises T (ϑX ) and T (X ⊗ eI), there exists a unique morphism
kX = k(X,hX ,ϑX ) : T (X) → X making the diagram

T (X)
T (i X )

kX

T (X)

s1

T (ϑX )

T (X⊗eI)

T (X ⊗ T (I))

s2

X
ϑX

X ⊗ T (I)
ϑX ⊗T (I)

X⊗δI

X ⊗ T (I) ⊗ T (I)

(5.14)

commute. Since q(X,hX ) · ϑX · kX = q(X,hX ) · s1 · T (i X ) = T (i X ) and since (X,q(X,hX ) · ϑX ) is an equaliser
of the pair (T (ϑX ), T (X ⊗ eI)) by Proposition 5.9, it follows from the universal property of equalisers
that kX is an isomorphism if and only if the top row of diagram (5.14) is an equaliser diagram,
i.e. if T preserves the equaliser of (5.13). Since according to [14], kX = k(X,hX ,ϑX ) is the (X,hX , ϑX )-
component of the counit ε of the adjunction K � R and since R is full and faithful if and only if ε is
an isomorphism, it follows that R is a fully faithful functor if and only if for any (X,hX , ϑX ) ∈ V

G
T , the

pair of morphisms (ϑX , X ⊗ eI) has an equaliser and this equaliser is preserved by T . �
Recall that any functor is called conservative provided it reflects isomorphisms. The preceding

propositions allow a refinement of [7, Theorem 4.6]:

5.11. Theorem. Let T be an opmonoidal monad on a right autonomous category with a right antipode. Then
the functor K : V → V

G
T is an equivalence of categories if and only if the functor T is conservative and for any

(X,hX , ϑX ) ∈ V
G
T , the pair of morphisms (ϑX , X ⊗ eI) has an equaliser and this equaliser is preserved by T .

Proof. According to the previous proposition it is enough to show that the fully faithful functor R
is an equivalence of categories if and only if T is conservative. But since any fully faithful functor
with a left adjoint is an equivalence of categories if and only if the left adjoint is conservative, it is
sufficient to prove that T is conservative if and only if the functor K is, which is indeed the case since
T = U T φT = U T U Ĝ K and the functors U T and U Ĝ are both conservative. �

Recall (e.g. [19]) that a monad T on an arbitrary category A is of effective descent type if the functor
φT : A → AT is comonadic.

5.12. Theorem. Let T = (T ,m, e) be an opmonoidal monad with right antipode on a right autonomous Cauchy
complete monoidal category V.

(1) K : V → V
G
T is an equivalence if and only if T is of effective descent type. In this case,

(i) the natural transformation tK : φT U T → Ĝ is an isomorphism of comonads;
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(ii) eI : I → T (I) is a Galois grouplike morphism;
(iii) the monad T g is (isomorphic to) the identity monad.

(2) If e : I → T is a split monomorphism, the functor K : V → V
G
T is an equivalence.

Proof. (1) If K is an equivalence of categories, then the functor φT is comonadic by Proposition 1.2.
Conversely, suppose that T is of effective descent type. Since V is Cauchy complete, it follows

from [19, Proposition 3.11] that T is of effective descent type if and only if T is conservative and V

has equalisers of T -split pairs and these equalisers are preserved by T . Now, if (X,hX , ϑX ) ∈ V
G
T , then

the pair of morphisms (T (ϑX ), T (X ⊗ eI)) is split by Proposition 5.9 and thus there exists an equaliser
(X, i X ) of the pair (ϑX , X ⊗eI) and this equaliser is preserved by T . The preceding theorem completes
the proof.

(1)(i) and (ii) follow by Proposition 1.2 and Corollary 5.8.
(1)(iii) is a consequence of Proposition 3.5.
(2) Any monad on a Cauchy complete category whose unit is a split monomorphism is of effective

descent type (see [19]). Thus the assertion follows from (1). �
5.13. Bimonads in braided categories. As before, let (V,⊗, I) be a strict monoidal category and
T = (T ,m, e) an opmonoidal monad on V, and consider the corresponding mixed distributive law
(entwining)

λ := (
T (−) ⊗ mI

) · χ−,T (I) : T G −→ GT ,

from the monad T to the comonad G = − ⊗ T (I). It is pointed out in [7] that, when V is a braided
monoidal category with braiding τX,Y : X ⊗ Y → Y ⊗ X , then for any bialgebra A = (A, e,m, ε, δ) in V,
the monad A ⊗ − is a comonoidal monad, where the natural transformation χX,Y : A ⊗ X ⊗ Y →
A ⊗ X ⊗ A ⊗ Y is the composite

A ⊗ X ⊗ Y
δ⊗X⊗Y

A ⊗ A ⊗ X ⊗ Y
A⊗τA,X ⊗Y

A ⊗ X ⊗ A ⊗ Y .

Then, for any X ∈ V, λX is the composite

A ⊗ X ⊗ A
δ⊗X⊗A

A ⊗ A ⊗ X ⊗ A
A⊗τA,X ⊗X

A ⊗ X ⊗ A ⊗ A
A⊗X⊗m

A ⊗ X ⊗ A.

Consider now the diagram

A ⊗ X ⊗ A

τA,X ⊗A

δ⊗X⊗A
A ⊗ A ⊗ X ⊗ A

(2)
τA⊗A,X ⊗A

A⊗τA,X ⊗X
A ⊗ X ⊗ A ⊗ A

(3)

τ−1
A,X ⊗A⊗A

A⊗X⊗m
A ⊗ X ⊗ A

τ−1
A,X ⊗A

X ⊗ A ⊗ A

(1)

X⊗δ⊗A
X ⊗ A ⊗ A ⊗ A

X⊗A⊗m
X ⊗ A ⊗ A,

in which the diagrams (1) and (2) commute by naturality of τ , while diagram (3) commutes by
naturality of composition. Since each component of τ is an isomorphism, λX is an isomorphism if and
only if the composite (X ⊗ A ⊗m)(X ⊗δ⊗ A) is so. Since (X ⊗ A ⊗m)(X ⊗δ⊗ A) = X ⊗((A ⊗m)(δ⊗ A))

and since (A ⊗ m)(δ ⊗ A) is an isomorphism if and only if A has an antipode, it follows that the
composite (X ⊗ A ⊗ m)(X ⊗ δ ⊗ A) – and hence λX – is an isomorphism for all X ∈ V if and only if A
has an antipode.
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6. Categories with finite products and Galois objects

In the category Set of sets, for any object G , the product G × − defines an endofunctor. This is
always a comonad with the coproduct given by the diagonal map, and it is a monad provided G is
a semigroup. In this case G × − is a (mixed) bimonad and it is a Hopf monad if and only if G is a
group. We refer to [28, 5.19] for more details.

In this final section we study similar operations in more general categories and this leads eventu-
ally to the Galois objects in such categories as studied in Chase and Sweedler [11].

Let A be a category with finite products. In particular, A has a terminal object, which is the
product over the empty set. Then (A,×,1) is a symmetric monoidal category, where a × b is some
chosen product of a and b, and 1 is a chosen terminal object in A, while the symmetry τa,b : a × b →
b × a is the unique morphism for which the diagram

a

a × b

p1

p2

τa,b

b × a

p1

p2

b

commutes. The associativity and unit constraints are defined via the universal property for products.
Such a category is called a cartesian monoidal category.

Similarly, a cocartesian monoidal category is a monoidal category whose monoidal structure is given
by the categorical coproduct and whose unit object is the initial object. Any category with finite
coproducts can be considered as a cocartesian monoidal category.

Given morphisms f : a → x and g : a → y in A, we write 〈 f , g〉 : a → x × y for the unique mor-
phism making the diagram

a
f g

〈 f ,g〉

x x × y
p1 p2

y

commute. In particular, �a = 〈Ia, Ia〉 : a → a × a is the diagonal morphism.
It is well known that every object c of A has a unique (cocommutative) comonoid structure in the

monoidal category (A,×,1). Indeed, the counit ε : c → 1 is the unique morphism !c to the terminal
object 1, and the comultiplication δ : c → c × c is the diagonal morphism �c . This yields an isomor-
phism of categories Comon(A) 
 A. Given an arbitrary object c ∈ A, we write c for the corresponding
comonoid in (A,×,1).

6.1. Proposition. The assignment

(a, θa : a −→ a × c) �−→ (p2 · θa : a −→ c)

yields an isomorphism of categories

c
A 
 A ↓ c,
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where c
A = Ac×− , while A ↓ c is the comma-category of objects over c, that is, objects are morphisms

f : a → c with codomain c and morphisms are commutative diagrams

a

f

h
a′

f ′

c.

If the category A has pullbacks, then for any morphism f : c → d in A, the functor f∗ : A ↓ c →
A ↓ d given by the composition with f has the right adjoint f ∗ : A ↓ d → A ↓ c given by pulling
back along the morphism f . Now, identifying f : c → d with the morphism f : c → d of the corre-
sponding comonoids in A, one can see the functors f ∗ and f∗ as the induction functor c

A → d
A and

the coinduction functor d
A → c

A, respectively. Given an object c ∈ A, we write Pc and Uc for the
functors (!c)∗ and (!c)∗ .

Given a symmetric monoidal category V = (V ,⊗, I), the category Mon(V) of monoids in V is again
a monoidal category. For two V-monoids A = (A,mA, e A) and B = (B,mB , eB), their tensor product is
defined as

A ⊗ B = (
A ⊗ B, (mA ⊗ mB)(1 ⊗ τA,B ⊗ 1), e A ⊗ eB

)
,

where τ is the symmetry in V. The unit object for this tensor product is the trivial V-monoid I =
(I, II, II). Similarly, the category Comon(V) of V-comonoids inherits, in a canonical way, the monoidal
structure from V making it a monoidal category.

It is well known that one can describe bimonoids in any symmetric monoidal category V as
monoids in the monoidal category of comonoids in V. Thus, writing Bimon(V) for the category of
bimonoids in V, then Bimon(V) = Mon(Comon(V)). In particular, since Comon(A) 
 A for any carte-
sian monoidal category A, one has Bimon(A) = Mon(Comon(A)) 
 Mon(A). Thus, for any monoid
b = (b,mb, eb) in (A,×,1), the 6-tuple

b̂ = (
(b,mb, eb), (b,�b, !b)

)

is a bimonoid in (A,×,1). In particular, then the functor b × − : A → A is a (τb,b × −)-bimonad (in
the sense of [21]).

Fix now a monoid b = (b,mb, eb) in (A,×,1). Since b̂ is a bimonoid in (A,×,1), the category
bA := Ab×− of b-modules is monoidal. More precisely, if (x,αx), (y,αy) ∈ bA, then their tensor prod-
uct is the pair (x × y,αx×y), where αx×y is the composite

b × x × y
�b×x×y

b × b × x × y
b×τb,x×y

b × x × b × y
αx×αy

x × y.

It is easy to see that this monoidal structure is cartesian and coincides with the cartesian structure
on bA which can be lifted from A along the forgetful functor bA → A.

Suppose now that (c,αc : b × c → c) ∈ bA. Applying the previous proposition to the comonoid
(c,αc) in the cartesian monoidal category bA gives

6.2. Proposition. If (c,αc) ∈ bA, then the assignment

(
(x,αx), θ(x,αx)

) −→ (
(x,αx), p2 · θ(x,αx)

)

yields an isomorphism of categories

(c,αc)(bA) 
 bA ↓ (c,αc).
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We have seen that the data

b̃ = (
b = (b × −,mb × −, eb × −), b = (b × −,�b × −, !b × −), τb,b × −)

define a (τb,b ×−)-bimonad on A and, considering b as an object of bA via the multiplication mb : b ×
b → b, one obtains easily that the categories A

b
b := A

b
b(τb,b × −) (compare 4.1) and (b,mb)(bA) are

isomorphic. Thus, by the previous proposition, the categories A
b
b and bA ↓ (b,mb) are also isomorphic.

6.3. Theorem. Assume that

(i) A has small limits, or
(ii) A has colimits and the functor b × − preserves them, or

(iii) A admits equalisers and b × − has a right adjoint, or
(iv) A admits coequalisers and b × − has a left adjoint.

Then the functor

K : A −→ bA ↓ (b,mb), a �−→ (b × a, p1 : b × a −→ b),

is an equivalence of categories if and only if b is a group.

Proof. It is easy to see that, modulo the isomorphism A
b
b 
 bA ↓ (b,mb), the functor K : A → bA ↓

(b,mb) can be identified with the comparison functor K : A → A
b
b , which by 4.5 is an equivalence

of categories if and only if the bimonad b̃ has an antipode, which is the case if and only if the
A-bimonoid b̂ has one, i.e., b̂ is a Hopf monoid in (A,×,1). Now the result follows from the fact
that in any cartesian monoidal category, a Hopf algebra is nothing but a group (see, for exam-
ple, [28, 5.20]). �

Consider now an object (c,αc) ∈ bA. Since (c,αc) is a comonoid in the cartesian monoidal category
(bA,×,1), the composite

b × c × − �b×c×−
b × b × c × −

b×τb,c×−
b × c × b × − αc×b×−

c × b × −

is an entwining from the monad Tb = b × − to the comonad Gc = c × −. Then one has a lifting T̃b of
the monad Tb along the forgetful functor c

A = A ↓ c → A. It is easy to see that if (x, f : x → c) ∈ A ↓ c,
then

T̃b(x, f ) = (
b × x,αc · (b × f ) : b × x −→ c

)
.

We write b(A ↓ c) for the category (A ↓ c)T̃b
. It is also easy to see that the functor

K : A −→ b(A ↓ c)

that takes an object a ∈ A to the object

(c × a,αc × a : b × c × a −→ c × a),



B. Mesablishvili, R. Wisbauer / Journal of Algebra 324 (2010) 464–506 503
makes the diagram

b(A ↓ c)

U

A
Pc

K

A ↓ c

commute, where U is the evident forgetful functor. Then the corresponding T̃b-module structure
on Pc is given by the morphism αc ×− : b × c ×− → c ×−. Since the forgetful functor Uc : A ↓ c → A

that takes f : x → c to x is left adjoint to the functor Pc and since the ( f : x → c)-component of the
unit of the adjunction Uc � Pc is the morphism 〈 f , Ix〉 : x → c × x, the ( f : x → c)-component t f of
the monad morphism t : T̃b → Pc Uc is the composite

b × x
b×〈 f ,Ix〉

b × c × x
αc×Ix

c × x.

We write γc for the morphism t Ic : b × c → c × c.
One says that a morphism f : a → b in A is an (effective) descent morphism if the corresponding

functor f ∗ : A ↓ b → A ↓ a is precomonadic (resp. monadic).

6.4. Theorem. Let b = (b,mb, eb) be a monoid in A and let (c,αc) ∈ bA. Suppose that

(i) A admits all small limits, or
(ii) A admits coequalisers of reflexive pairs and the functors b × − : A → A and c × − : A → A both have

left adjoints.

Then the functor K : A → b(A ↓ c) is an equivalence of categories if and only if γc : b × c → c × c is an
isomorphism and !c : c → 1 is an effective descent morphism.

Proof. According to Proposition 1.15, the functor K is an equivalence of categories if and only if
the functor Pc is comonadic (i.e. if the morphism !c : c → 1 is an effective descent morphism) and
t : T̃b → Pc Uc is an isomorphism of monads. Since the functors b × − : A → A and c × − : A → A

both preserve those limits that exist in A, it follows from 2.8 that if A satisfies (i) or (ii), t is an
isomorphism if and only if its restriction on free Pc Uc-algebras is so. But any free Pc Uc-algebra has
the form (c × x, p1) for some x ∈ A and it is not hard to see that the (c × x, p1)-component t(c×x,p1)

of t is the morphism γc × x. It follows that t(c×x,p1) is an isomorphism for all x ∈ A if and only if the
morphism γc is an isomorphism. This completes the proof. �

We say an object a ∈ A is faithful if the functor a×− : A → A is conservative. Note that an arbitrary
a ∈ A for which the unique morphism !a : a → 1 is a descent morphism is necessarily faithful.

Following Chase and Sweedler [11] we call an object (c,αc) ∈ bA a Galois b-object if c is a faithful
object in A such that the morphism γc : b × c → c × c is an isomorphism. Using this notion, we can
rephrase the previous theorem as follows.

6.5. Theorem. In the situation of the previous theorem, if (c,αc) ∈ bA is a Galois b-object, then the functor
K : A → b(A ↓ c) is an equivalence of categories if and only if !c : c → 1 is an effective descent morphism.

If any descent morphism in A is effective (as surely it is when A is an exact category in the sense
of Barr, see [15]), then one has
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6.6. Corollary. If every descent morphism in A is effective, then for any Galois b-object (c,αc), the functor
K : A → b(A ↓ c) is an equivalence of categories.

Note that if g : I → Gc is a grouplike morphism for the comonad Gc , then the composite
1

g1−−→ Gc(1) = c × 1
p2−−→ 1 is the identity morphism, implying that the morphism !c : c → 1 is a

split epimorphism. It is then easy to see that the counit of the adjunction Uc � Pc is a split epi-
morphism, and it follows from the dual of [19, Proposition 3.16] that the functor Pc is monadic (i.e.,
!c : c → 1 is an effective descent morphism) provided that the category A is Cauchy complete. In the
light of the previous theorem, we get:

6.7. Theorem. In the situation of Theorem 6.4, if A is Cauchy complete and if there exists a grouplike morphism
for the comonad Gc , then the functor K : A → b(A ↓ c) is an equivalence of categories if and only if (c,αc) ∈
bA is a Galois b-object.

Recall from [11] that an object a ∈ A is ( faithfully) coflat if the functor

a × − : A −→ A

preserves coequalisers (resp. preserves and reflects coequalisers).

6.8. Theorem. Let A be a category with finite products and coequalisers, and b = (b,mb, eb) a monoid in
the cartesian monoidal category A with b coflat and let (c,αc) ∈ bA be a b-Galois object with !c : c → 1 an
effective descent morphism. Assume

(i) A admits all small limits, or
(ii) the functors b × − : A → A and c × − : A → A both have left adjoints.

Then c is ( faithfully) coflat.

Proof. Note first that since A ↓ c 
 c
A and since the category A admits coequalisers, the category

A ↓ c also admits coequalisers and the forgetful functor Uc : A ↓ c → A creates them. Now, if b is
coflat, then the functor b × − : A → A preserves coequalisers, and it follows from the commutativity
of the diagram

A ↓ c

Uc

T̃b
A ↓ c

Uc

A
Tb=b×− A

that the functor T̃b also preserves coequalisers. As in the proof of 6.4, one can show that the mor-
phism t : Tb → Pc Uc is an isomorphism of monads. Thus, in particular, the monad Pc Uc preserves
coequalisers. Since the morphism !c : c → 1 is an effective descent morphism by our assumption on c,
the functor Pc is monadic. Applying now the dual of [19, Proposition 3.11], one gets that the functor
Uc Pc = c × − also preserves coequalisers. Thus c is coflat. �

As a consequence, we have:

6.9. Theorem. Let A be a category with finite products and coequalisers in which all descent morphisms are
effective. Suppose that b = (b,mb, eb) is a monoid in the cartesian monoidal category A with b coflat and that
(c,αc) ∈ bA is a b-Galois object. If
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(i) A admits all small limits, or
(ii) the functors b × − : A → A and c × − : A → A both have left adjoints,

then c is ( faithfully) coflat.

6.10. Opposite category of commutative algebras. Let k be a commutative ring (with unit) and let A

be the opposite of the category of commutative unital k-algebras.
It is well known that A has finite products and coequalisers. If A = (A,mA, e A) and B = (B,mB , eB)

are objects of A (i.e. if A and B are commutative k-algebras), then A ⊗k B with the obvious k-algebra
structure is the product of A and B in A: the projections p1 : A ⊗k B → A and p2 : A ⊗k B → B are
given by I A ⊗k eB : A → A⊗k B and e A ⊗k I B : B → A⊗k B , respectively. Furthermore, if f , g : A → B are
morphisms in A, then the pair (C, i), where C = {b ∈ B | f (b) = g(b)} and i : C → B is the canonical
embedding of k-algebras, defines a coequaliser in A. The terminal object in A is k.

An object A in A (i.e. a commutative k-algebra) is (faithfully) coflat if and only if A is a (faithfully)
flat k-module (see, [11]). Moreover, a monoid in the cartesian monoidal category A is a commutative
k-bialgebra, which is a group in A if and only if it has an antipode, and if B is a commutative k-
bialgebra, then (C,αC ) ∈ BA if and only if C is a commutative B-comodule algebra.

Note that in the present context, (C,αC ) ∈ BA is a Galois B-object if C is a faithful k-module and
the composite

γC : C ⊗k C
αC ⊗k IC

B ⊗k C ⊗k C
B⊗kmC

B ⊗k C,

where mC : C ⊗k C → C is the multiplication in C , is an isomorphism.

Since the category A admits all small limits and since in A every descent morphism is effective
(see [20]), one can apply Theorem 6.9 to deduce the following

6.11. Theorem. Let B be a commutative k-bialgebra with B a flat k-module. Then any Galois B-object in A is
a faithfully flat k-module.

Note finally that when B is a Hopf algebra which is finitely generated and projective as a k-module,
the result was obtained by Chase and Sweedler, see [11, Theorem 12.5].
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