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We discuss how Starobinsky-like inflation may emerge from dilaton dynamics in brane cosmology scenar-
ios based on string theory, in which our universe is represented as a three-brane. The effective potential
may acquire a constant term from a density of effectively point-like non-pertubative defects on the brane.
Higher-genus corrections generate corrections to the effective potential that are exponentially damped at
large field values, as in the Starobinsky model, but at a faster rate, leading to a smaller prediction for the
tensor-to-scalar perturbation ratio r. This may be compensated partially by logarithmic deformations on
the world-sheet due to recoil of the defects due to scattering by string matter on the brane, which tend
to enhance the tensor-to-scalar ratio. Quantum fluctuations of the ensemble of D-brane defects during
the inflationary period may also enhance the tensor-to-scalar ratio.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
The remarkable consistency of the inflationary model of Sta-
robinsky [1] with the first installment of data from the Planck
satellite [2] has triggered great interest in the current literature,
revisiting the model from various points of view, such as no-
scale supergravity [3,4], related models including superconformal
supergravity [5], dynamically-broken supergravity [6] and induced
gravity [7]. The Starobinsky model obtains a de Sitter (inflationary)
cosmological solution to the gravitational equations by postulat-
ing an action in four space–time dimensions that includes a term
quadratic in the scalar curvature [1]

S = 1

2κ2

∫
d4x

√−g
(

R + βR2), β = 8π

3M2
, (1)

where κ2 = 8πG , and G = 1/m2
P is Newton’s (gravitational) con-

stant in four space–time dimensions, mP is the Planck mass, and
M is a constant of mass dimension one, characteristic of the
model. The scale of inflation in this model is linked to the mag-
nitude of β or, equivalently, to that of M, and the data require
β � 1 (M � mP ). From a microscopic point of view, such a large
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value of β might appear somewhat surprising, and a challenge to
anchor in a more complete quantum theory of gravity.1

Although the Starobinsky model might appear not to contain
any fundamental scalar field that could be the inflaton, it is in fact
conformally equivalent to ordinary Einstein gravity coupled to a
scalar field with an effective potential that drives inflation [10].
To see this, one first linearizes the R2 terms in (1) by means of
an auxiliary Lagrange-multiplier field α̃(x), then rescales the met-
ric by a conformal transformation and redefines the conformal
scalar field so that the theory is written in terms of canonically-
normalized Einstein and scalar-field terms:

gμν → g E
μν = (

1 + 2βα̃(x)
)

gμν, (2)

α̃(x) → ϕ(x) ≡
√

3

2
ln

(
1 + 2βα̃(x)

)
, (3)

so that

1 We note, however, that quantum-gravity corrections to (1) have been consid-
ered recently in [8], from the point of view of an exact renormalization-group (RG)
analysis [9], with the conclusion that the largeness of the R2 coupling, required for
agreement with inflationary observables [2], is naturally ensured by the presence of
an asymptotically-free ultraviolet fixed point.
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Fig. 1. The effective potential (5) of the collective scalar field ϕ in the Starobinsky
model for inflation (1).

1

2κ2

∫
d4x

√−g
(

R + βR2)

↪→ 1

2κ2

∫
d4x

√−g
((

1 + 2βα̃(x)
)

R − βα̃(x)2)

↪→ 1

2κ2

∫
d4x

√
−g E

(
R E + g Eμν∂μϕ∂νϕ − V (ϕ)

)
, (4)

with the effective potential V (ϕ) given by:

V (ϕ) = (1 − e−
√

2
3 ϕ

)2

4β
= 3M2(1 − e−

√
2
3 ϕ

)2

32π
, (5)

which is plotted in Fig. 1. Here we see explicitly that β � 1 or,
equivalently, M � mP corresponds to a potential with magnitude
V � m4

P , a necessary condition for successful inflation. This for-
mulation of the Starobinsky model in terms of a scalar field lends
itself more naturally to inclusion in a broader theoretical context,
which has been the thrust of much of the recent research [3–7].

At large values of the dimensionless scalar field ϕ , i.e., values
of the dimensionful field φ = κ−1ϕ that are large compared to
the Planck scale, the potential (5) is sufficiently flat to produce
phenomenologically acceptable inflation, with the scalar field ϕ
playing the role of the inflaton. Thus, the region of the positive-
definite Starobinsky potential (5) that is relevant for inflation is
that where the constant and the e−√

2/3ϕ terms are dominant.
With this in mind, one is led to consider phenomenological

generalizations of (5) of the form [4]:

Ṽ ≡ 1

2κ2
V = A

2κ2

(
1 − δe−Bϕ + . . .

)
, (6)

where 1 � A > 0, and δ and B may be treated as free parameters
that are allowed to vary from the original values δ = 2, B = √

2/3
in our normalization for the Einstein-frame Starobinsky action, cf.
(4), and the dots represent possible higher-order terms that are
O(e−2Bϕ). Using the following standard expressions for inflation-
ary observables in the slow-roll approximation

ε = 1

2
M2

Pl

(
V ′

V

)2

, η = M2
Pl

(
V ′′

V

)
,

ns = 1 − 6ε + 2η, r = 16ε,

N� = −M−2
Pl

ϕe∫
ϕ

V

V ′ dϕ, (7)
i

where MPl = MP/
√

8π is the reduced Planck mass and ϕi(e) in-
dicate the values of the inflaton at the beginning (end) of the
inflationary era, at leading order in the small quantity e−Bϕ [4]:

ns = 1 − 2B2δe−Bϕ, r = 8B2δ2e−2Bϕ, N� = 1

B2δ
eBϕ,

yielding ns = 1 − 2

N�

, r = 8

B2N2
�

, (8)

where N� is the number of e-foldings during the inflationary
phase. Requiring N� = 54 ± 6 yields the characteristic predictions
ns = 0.964 ± 0.004, and the Starobinsky-model choice B = √

2/3
yields r = 0.0041+0.0011

−0.0008, which is highly consistent with the Planck
data [2]. The question then arises how one could deviate from the
characteristic Starobinsky predictions.

In this note we answer this question within the context of in-
flationary scenarios derived from brane cosmology and non-critical
string. As we shall show, this approach predicts a different value
of the coefficient B = √

2, a possibility suggested previously in the
framework of no-scale supergravity [4], but due here to the struc-
ture of the string genus expansion. Our approach also suggests the
possibility that the coefficient δ in (6) may depend linearly on ϕ
due to the appearance of a logarithmic operator. The prediction
for B suggests a smaller value of r than in the Starobinsky model,
which could be partially compensated by an enhancement due to
the possible linear dependence of δ on ϕ .

We discussed in [11] a scenario for inflation within non-
critical string theory that involved colliding brane universes at
early epochs. The brane collision caused the string excitations on
the observable Universe brane to be described by super-critical Li-
ouville string, with positive central charge deficit in the standard
terminology [12]. In that case, a de Sitter inflationary phase was
obtained due to an anti-alignment in field space of an antisym-
metric tensor field equivalent in four dimensions to a massless
axion-like field scaling linear with the Robertson–Walker (RW)
Einstein-frame time [12] with a dilaton field scaling logarithmi-
cally with the RW time. The presence of the brane was essential
for ensuring the appropriate four-dimensional structures that lead
to inflation in this scenario. This brany Liouville model of inflation
is also consistent with the Planck data [11], but has more free pa-
rameters than the Starobinsky model, since it involves two fields:
one scalar (dilaton) and one pseudoscalar (axion-like field). This
multifield inflationary scenario can be studied in the same way as
the complex Wess–Zumino inflationary model [13].

This particular super-critical string model did not yield an effec-
tive potential of the type (6), but we argue here that potentials of
the form (6) with the non-Starobinsky value B = √

2 (in our nor-
malization (4) occur generically in dilaton/sub-critical string cos-
mologies, i.e., scenarios with negative central charge deficits in the
terminology of [12], in the presence of branes. The branes pro-
vide a cosmological constant A that is non-perturbative in the
string genus expansion, and independent of the Starobinsky in-
flaton field ϕ , which is identified (up to a minus sign) with the
canonically-normalized) Liouville/dilaton of the closed-string mul-
tiplet in the Einstein frame, i.e., ϕ = −Φ , where Φ is the dilaton
and the string coupling is gs = eΦ = e−ϕ .

In this sub-critical string approach, the generalized Starobinsky
potential (6) arises from non-perturbative string theory contribu-
tions involving brane worlds of the form

Ṽ = A ×O
(
e−F D/gs

)
, (9)

where the coefficient A is independent of the string coupling gs ,
whereas the constant F D > 0 is due to contributions from D-branes
localized at some point in the (higher-dimensional) space–time of
string theory. In addition to c = 1 subcritical strings [14], contribu-
tions of the form (9) are known to appear in models with central
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charge c = 26 that feature a cigar-type two-dimensional black-hole
metric [15] with D-branes localized at the tip of the cigar, cor-
responding to SL(2)k

U (1)
× SU(2)

U (1)
backgrounds. The coefficients A and

F D in such models have been explicitly computed using matrix
models, which are used to represent a non-perturbative version of
c = 1 strings. The important issue for our purpose is how to iden-
tify contributions to the effective action on the brane that take the
form of a cosmological constant A term that is independent of the
dilaton in the Einstein frame, which we now discuss.

We first consider the case of a higher-dimensional closed string
propagating in a background containing graviton and dilaton fields
Gμν,Φ . As is well known, to lowest order in the perturbative
world-sheet genus h ≡ 2 − χ , corresponding to the first term in
an expansion in powers g−2+χ

s = (eΦ)−2+χ of the closed-string
coupling, namely the world-sheet sphere with χ = 0, the effective
target-space action in the σ -model or string-frame is given by:

Sstring = 1

2κ2

∫
dD x

√
−g̃e−2Φ

(
−2(D − 26)

3α′

+ R(g̃) + 4(∂μΦ)2 +O
(
α′)), (10)

where κ is the higher-dimensional gravitational coupling con-
stant, expressed in terms of the string scale Ms = (α′)−1/2 via
κ2 = 8π(

√
α′ )D−2V−1 = 8π M−(D−2)

s V−1 where V = Πn
i (Ri/

√
α′ )

is the (dimensionless) compactification volume factor, and Ri, i =
1, . . .n = 26 − D are the compactification radii where D is the
number of the large (uncompactified) dimensions of the string.
Transforming to the Einstein frame, given by

gμν = e− 2Φ
D−2 g̃μν, (11)

the effective action (10) becomes

Sstring = 1

2κ2

∫
dD x

√
−g̃

(
−e

4Φ
D−2

2(D − 26)

3α′

+ R(g) − 4

D − 2
(∂μΦ)2 +O

(
α′)), (12)

on the world-sheet sphere. In the case of superstrings, one must
replace 2(D − 26)/3α′ in Eqs. (10), (12) by (D − 10)/α′ .

We now consider non-perturbative effects, specifically punc-
tures in the D-dimensional space–time due to D-brane defects.
The simplest scenario is to consider effective D0-branes that, de-
pending on the string theory considered, may be either truly point-
like (as in Type-IIA theory) or effectively point-like, e.g., D3-branes
compactified on 3-tori, which, from the point of view of a low-
energy three-space observe, would be effectively point-like de-
fects [16,17]. In the presence of D3-brane universes moving in the
bulk space, the cosmology of such populations of D0-brane defects
and their interactions with ordinary string matter on the brane (re-
coil) have been considered in [17]. For our purposes here we con-
sider the simplest scenario in which the closed-string backgrounds
are non-trivial on the D3 brane but are trivial in the bulk, so we
set D = 4 in the effective action (12). The rest of the space–time
dimensions are assumed either to have been compactified appro-
priately, or to represent bulk dimensions in which the space–time
is flat. This bulk space–time is assumed to be punctured by (ef-
fectively) point-like D0-brane defects as mentioned previously, and
we consider the inflationary era of such a string Universe.

The D0-branes have mass Ms/gs where gs = gseΦ(t, 	x) is the
(fluctuating) string scale. If they have a density per unit three-
volume n on the brane universe, they can contribute to the vacuum
energy of the brane the following non-perturbative term in the
σ -model frame:

ΛD-branes = −
∫

d4x
√

−g̃e−Φ Msn. (13)

In the Einstein frame (11), this becomes

ΛE
D-branes = −

∫
d4x

√−gMsñ, (14)

where we have taken into account the scaling of the density ñ =
e−3Φn with the proper three-volume.

The inflationary phase is one in which there is a constant den-
sity of D0-branes (and thus brane creation) in D = 4, which may
arise from an influx of D-particles entering the D3 brane from
the bulk, that compensates the density dilution due to the expo-
nential expansion of the brane universe space–time. In this case
the D0-contribution to the brane vacuum energy is constant and
dilaton-independent in the Einstein frame on the brane.

In the following, we perform the redefinition

Φ → −Φ, (15)

which corresponds to the well-known strong–weak coupling string
duality gs → g−1

s . Combining the terms (12) and (14), making this
duality transformation, and normalizing the dilaton kinetic term as
in (4), i.e., redefining ϕ = √

2Φ , we arrive at the following effective
target-space action on the brane world:

Seff = 1

2κ2

∫
d4x

√−g

(
R − (∂μϕ)2

− 16π
ñ

gs MsV
+ 44

3α′ e−√
2ϕ + . . .

)
, (16)

where the reader is reminded that κ2 = 8πα′V−1 = 8π M−2
s V−1 ≡

M−2
Pl is the four-dimensional reduced Planck mass, and the dots

denote higher-order terms coming, e.g., from higher-order terms in
the string genus expansion.2 We see explicitly that the effective
potential (16) has a form similar to that of the Starobinsky model
(6) at large ϕ , with the correspondence:

A = 16π
ñ

gs MsV
, Aδ = 44

3
M2

s , B = √
2. (17)

In the case of superstrings with critical target-space–time dimen-
sion 10, the relation Aδ = 44M2

s /3 in (17) is replaced by Aδ =
6M2

s . Inflation occurs for ϕ � 1, and the exit from inflation occurs
small ϕ around zero. Parameters of the model such as the constant
n and the higher-order terms provide the flexibility to cancel the
central charge deficit when ϕ = 0. On the other hand, for negative

ϕ the terms of higher order in O(e−ϕ/
√

2) dominate.
Using the standard expressions (7) for the slow-roll parameters

we find that

ns = 1 − 2

N�

, r = 4

N2
�

. (18)

The prediction for ns is the same as in the Starobinsky model, but
the prediction for r is a factor of 3 smaller, due to the larger value
of B in this brane model, as also found in a no-scale supergravity
model in [4].

2 For example, massless vector fields on the 3-brane Universe with Maxwell field
strengths and a Born–Infeld world-volume action could make contributions to the

vacuum energy ∝ e−3ϕ/
√

2 in the Einstein frame.
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The measured magnitude of primordial scalar density fluctua-
tions provides the following constraint on the effective inflationary
potential [18]:
(

Ṽ

ε

)1/4

= 0.0275MPl. (19)

We can then use the first relation in (17), the expression M2
Pl =

M2
s V/8π and a typical value of N� = 54 to obtain an interesting

constraint on the parameters of the model, namely

ñ

gs M3
s V2

� 8 × 10−14. (20)

In “old” superstring models one would expect gs ∼ 0.8, corre-
sponding to ñ/V2 = O(6 × 10−14)M3

s . Assuming that six dimen-
sions are compactified with a typical scale R so that V ≡ R6, the
constraint (20) is respected for ñ ∼ O(1) × M3

s and R = O(10). In
this way, measurements of inflationary observables may provide
interesting insights into string dynamics.

An interesting generalization of (6) is natural in the formula-
tion of c = 1 Liouville string theory used above. In this theory, the
world-sheet conformal algebra is logarithmic [19], i.e., it includes
a pair of operators that are described by world-sheet deforma-
tions μeαϕ and μ′ϕeαϕ , where α is the appropriate Liouville-
dressing dimension and ϕ the Liouville mode. This possibility also
occurs in higher-dimensional situations, for instance in the above-
mentioned example of the propagation of strings in an ensemble
of D0-branes [20]: the recoil of a brane defect during its interac-
tion with the string is described by a logarithmic pair of operators
of the above form, with the constants μ and μ′ playing the rôles
of the position and momentum of the recoiling D0 brane. Thus, the
incorporation of D-brane recoil in the sub-critical string model de-
scribed above, as a result of the interaction of matter strings with
the background of the ensemble of D0-branes, modifies the poten-
tial (6) to become

V D-brane
recoil = A − B̃e−√

2ϕ − Cϕe−√
2ϕ, (21)

where A, B̃, C are model-dependent constants, and we restrict our-
selves to leading order in e−√

2ϕ for large positive ϕ . This potential
has a general form that is qualitatively similar to that of the origi-
nal Starobinsky model, provided that A, B̃ and C are all positive.

We are led to consider the inflationary predictions of a more
general case, in which the exponent is arbitrary as in (6), i.e.,

V D-brane
recoil = A − e−Bϕ(B̃ − Cϕ) + . . . , (22)

where the . . . indicate higher orders in e−Bϕ , and B = √
2 in our

D-foam case (21). Using again the slow-roll formulae (7), we again
find that

ns = 1 − 2

N�

(23)

as in the Starobinsky model., with no explicit dependence on the
parameters A, B̃ and C . On the other hand, we also find that

r = 8

B2N2
�

(
1 + 2

ln N�

)
+ . . . , (24)

where the logarithmic correction is due to the prefactor linear in
ϕ in (22), and the dots represent terms that are formally of higher
order in 1/ ln N� . The leading correction in (24) is numerically sig-
nificant: for N� = 54 ± 6, corresponding to ns = 0.964 ± 0.004, one
has ln N� = 3.99+0.10

−0.12, so the tensor-to-scalar ratio r would be en-
hanced by ∼ 50% compared to the value with a constant prefactor,
as in the original Starobinsky model. However, the higher-order
terms represented in by the dots in (24) are potentially important
and depend, in general on the relative magnitudes of the coeffi-
cients B̃ and C in (22).

One could also consider a further generalization of the Starobin-
sky model, in which the potential has the form

V D-brane
recoil = A − Cnϕ

ne−Bϕ + . . . , (25)

although this is not suggested by our particular stringy model, and
the dots represent possible terms of lower order in ϕ . It is easy
to check that in this case the prediction (23) is still unchanged,
whereas the prediction (24) for the tensor-to-scalar ratio is modi-
fied to

r = 8

B2N2
�

(
1 + 2n

ln N�

+ . . .

)
. (26)

It is clear that a specific model for the non-leading terms in
(25) would be needed to make any definite prediction, but (26)
strengthens the basic point of (24), namely that the tensor-to-
scalar ratio r may be enhanced significantly compared to models
in which the subasymptotic corrections are purely exponential. We
note that potential terms of the form (25), but without the con-
stant A term, that also lead to an enhanced scalar-to-tensor ratio r,
have been suggested in [21], in the context of supergravity models
with broken shift symmetries. The presence of the constant term A
in our case leads to different predictions for the slow-roll parame-
ters.

In conclusion: the class of brane cosmology models discussed
here offers interesting alternatives to the Starobinsky model. The
faster exponential approach to the asymptotic constant value of
the potential leads a priori to a reduced prediction for the tensor-
to-scalar perturbation ratio r, as seen in (18). On the other hand,
recoils of the brane defects leading to a logarithmic correction to
the effective potential (22) may compensate partially for this sup-
pression, as seen in (24). This example reinforces the interest in
improving the experimental sensitivity to r, which may provide
interesting insights into string and brane phenomenology. In this
connection, it would be interesting to develop further the compar-
isons, connections and contrasts with other recent formulations of
Starobinsky-like inflationary models [3–6].

Note added

After this paper was submitted for publication and reviewed, the BICEP2 Col-
laboration announced strong evidence for gravitational waves at the time of the
last scattering with r = 0.16+0.06

−0.05 after dust subtraction [22]. If confirmed by subse-
quent experiments, such a large value of r would exclude conventional Starobinsky-
type inflationary potentials. However, in the context of our modified Starobinsky
models (6) and (26), large values of r compatible with the BICEP2 data can be ob-
tained if the exponent B is much smaller than the conventional Starobinsky value
BStar = √

2/3. For instance, in the case of (6) the BICEP2 central value r ∼ 0.16 is
obtained for N� ∼ 50 and B ∼ 0.14.

On the other hand, our string theory considerations point towards values of B
that are larger than in the conventional Starobinsky model, e.g., B = √

4/(D − 2) =√
2 for the case of D = 4 large uncompactified dimensions considered here, leading

to a much smaller value of r. Indeed, even if the dilaton lives in the maximum
number D = 10 of uncompactified space–time dimensions, the resulting value of
B = 1/

√
2 is much larger than required to yield r = 0.16.

However, we note here that quantum fluctuations of the D-particle defects
are independent sources of gravitational (tensor) perturbations. We assumed above
that the dominant rôle of such fluctuations was simply to provide a cosmological
constant term in the potential (6). However, such D-particle fluctuations yield, in
general effective vector field degrees of freedom associated with stochastic fluctua-
tions in the corresponding recoil velocities of the D-particles as they interact with
the (closed) string degrees of freedom representing bulk space–time gravitons. The
coupled dynamics of such fluctuating defects with the space–time metric is compli-
cated [23]. Nevertheless, it was argued in [23] that there are growing modes in such
systems that may result in the formation of large-scale structures on the D3 Brane
universe at late epochs. It is therefore possible that, during the inflationary period,
when it is assumed that there is an influx of D-particles from the bulk into the
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brane world, so as to ensure a constant density of D-particles and thus a cosmolog-
ical constant contribution in (6), quantum fluctuations in the flux of D-particles into
the space–time may enhance the tensor-to-scalar-perturbations ratio sufficiently to
agree with the BICEP2 [22].

This scenario will be explored more fully elsewhere [24], but it would consti-
tute a match of the nice features of the absence of non-Gaussianities and of the
running of the spectral index, induced by the large-field flatness of the Starobinsky-
like dilaton inflationary potential in the model, with additional quantum effects of
D-particles at the end of the dilaton inflation that enhance the large value of r.
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