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A Theoretical Model for the Mechanical Unfolding of Repeat Proteins

Dmitrii E. Makarov*
Department of Chemistry and Biochemistry and Institute for Theoretical Chemistry, University of Texas at Austin, Austin, Texas

ABSTRACT We consider the mechanical stretching of a polypeptide chain formed by multiple interacting repeats. The folding
thermodynamics and the interactions among the repeats are described by the Ising model. Unfolded repeats act as soft entropic
springs, whereas folded repeats respond to a force as stiffer springs. We show that the resulting force-extension curve may
exhibit a pronounced force maximum corresponding to the unfolding of the first repeat. This event is followed by the unfolding
of the remaining repeats, which takes place at a lower force. As the protein extension is increased, the force-extension curve
of a sufficiently long repeat protein displays a plateau, where the force remains nearly constant and the protein unfolds sequen-
tially so that the number of unfolded repeats is proportional to the extension. Such a sequential mechanical unfolding mechanism
is displayed even by the repeat proteins whose thermal denaturation is highly cooperative, provided that they are long enough.
By contrast, the unfolding of short repeat progressions can be cooperative.
INTRODUCTION

Proteins containing repeated folded units of the same or

similar structure are common in nature (1–4). Their folding

kinetics and thermodynamics have attracted considerable

attention (1–5). As certain repeat proteins are believed to

have a mechanical function (6), their mechanical response

has also received recent attention. In particular, two experi-

mental groups have used AFM to pull on individual ankyrin

repeat proteins (7,8). The purpose of this article is to present

a simple theoretical model describing the mechanical

response of such proteins. The model is shown in Fig. 1.

Each subunit can be in either a folded or an unfolded confor-

mation. Unfolded subunits respond to the force as soft,

entropic springs. Folded subunits act like springs that have

a higher stiffness. We are particularly interested in the effect

of the interactions among the subunits on the mechanical

response of the entire chain. To describe those, we adopt

an Ising-type model (2,4), which has already been applied

to describe the folding of repeat proteins.

Our model is related to those of Buhot and Halperin (9)

and Tamashiro and Pincus (10), who considered the stretch-

ing of a polymer undergoing a helix-coil transition. This

transition was described using the Zimm-Bragg model

(11,12), in which each monomer is in either a helical or

a coil conformation. The model presented here uses a similar

two-state representation for each repeat rather than for each

individual monomer. Mathematically, the Zimm-Bragg

model is equivalent to the Ising model, and thus, many

results reported by others (9,10) can be adapted for our

purpose. However, the situation considered there differs

from this study in a number of ways. First, whereas in those

studies (9,10) helical segments were considered to be rigid

rods, it is important in the context of our study to consider
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the elasticity of individual folded repeats. Second, those

works (9,10) focused on the infinite chain limit, N/N. In

contrast, typical repeat proteins only contain a finite number

of repeats, often N ~ 5–30. As will be seen later, finite-size

effects are responsible for a pronounced peak in the force-

extension curves of certain repeat proteins. This peak would

disappear in the limit of an infinitely long chain. Third, indi-

vidual helical residues are unstable, so a sufficiently long

helix has to be nucleated for the transition to the helical state

to occur (11,12). In contrast, a more general situation, where

individual repeats can be stable on their own, will be consid-

ered here.

We show here that if the ends of a repeat protein chain are

pulled apart, its unfolding can proceed according to two

scenarios. In both scenarios, the chain behaves as a stiff

spring at low extensions. In the first scenario, a pronounced

peak in the dependence of the force, f, on the extension, z, is

observed when the first repeat becomes unfolded. After this

event, the chain yields at a much lower force and the remain-

ing repeats unfold one after another. The second scenario is

similar to that found in the studies of the helix-coil transition

(9,10): the force-extension curve is monotonic and levels out

at a certain plateau value.

We further show that although interactions among repeats

can lead to highly cooperative thermal/chemical denaturation

(3), mechanical denaturation of the same protein may remain

noncooperative and involve sequential unfolding of repeats

one at a time. However because short progressions of folded

repeats are often thermodynamically unstable, simultaneous

unfolding of several repeats may be observed at the end of

a pulling experiment.

The rest of this article is organized as follows. In the

Model section, we describe the model. This is followed by

the Results section and then the Discussion section, where

we highlight key findings and discuss their implications for

single-molecule AFM pulling experiments. We conclude
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with a summary of the results and their potential generaliza-

tions.

MODEL

We consider a chain of N identical repeats shown in Fig. 1. Each repeat can

be in a folded state, f, or unfolded state, u. The (free) energy of the repeats is

given by an Ising-like expression:

E½fsig�=kBT ¼ �
XN

i¼ 1

Hsi � J
XN�1

i¼ 1

sisiþ 1: (1)

Here, si ¼ 0 if the ith repeat is unfolded and si ¼ 1 if it is folded. The param-

eter H is the free energy of folding for an isolated repeat, and the parameter

J > 0 represents the coupling between two adjacent repeats, which stabilizes

the folded conformation of each. We will assume that parameters H and J are

such that in the absence of stretching, the repeats are predominantly folded.

In other words, the expectation value hsii is close to 1.

Equation 1 does not contain the free energy associated with the stretching

of the chain. To include this, consider the ensemble of the chain conforma-

tions with the given value of the overall extension,

z ¼ z1 þ z2 þ . þ zN; (2)

which is measured in the z direction (here, this direction will coincide with

the direction of the stretching force). Then, the free energy of the chain is

(9,10,13,14)

G ¼ �kBT ln pðzÞ; (3)

where the probability distribution of z is given by

pðzÞ ¼
X
fsig

exp

�
� E½fsig�

kBT

�
pfsigðzÞ=

X
fsig

exp

�
� E½fsig�

kBT

�

(4)

Here pfsigðzÞ is the probability distribution of z with the variables sigf fixed.

This distribution can be expressed in terms of the probability distributions

psi
ðziÞ for the extensions zi of individual repeats as

pfsigðzÞ ¼
Z

dz1dz2.dzNps1
ðz1Þps2

ðz2Þ.psN
ðzNÞ

� dðz� z1 � z2 �.zNÞ:
(5)

Note that Eqs. 4 and 5 take advantage of the assumption that the interdomain

interaction energy (Eq. 1) is a function of the internal variables, sigf , only

and does not depend on zigf , thus allowing the factorization of the integrand

in Eq. 5.

We further assume that each unfolded repeat is a Gaussian chain, so that

for si ¼ 0, we have

p0ðzÞ ¼
1ffiffiffiffiffiffiffiffiffiffi

2pb2
u

p exp

�
� z2

2b2
u

�
; (6)

where bu is the root mean-squared extension. Thus, it is mechanically equiv-

alent to a Hookean spring with a spring constant ku ¼ kBT=b2
u. Likewise, we

will assume that each folded repeat acts as a stiffer Hookean spring with

a stiffness of kfhkBT=b2
f , so that for si ¼ 1, we have

p1ðzÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2pb2

f

p exp

 
� z2

2b2
f

!
: (7)

With these assumptions, the integral of Eq. 5 can be evaluated to give

pfsigðzÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p
�

nfb2
f þ nub2

u

�r exp

 
� z2

2
�

nfb2
f þ nub2

u

�
!
;ð8Þ

Here nf ¼
PN
i¼1

si and nu ¼ N �
PN
i¼1

si are, respectively, the numbers of

folded and unfolded repeats in the chain.
Although the Gaussian chain approximation for unfolded repeats is

reasonable as long as their extension is much shorter than their contour

length, the assumptions made in Eq. 7 deserve further discussion. This equa-

tion effectively ignores that the end-to-end distance for each folded repeat is

finite. More generally, we could model those repeats as deformable solid

objects. If we were to do so, there would be additional entropic elasticity

associated with aligning them in the direction of the force, which would

be the dominant contribution to the overall chain elasticity at very low forces

(10). Because adjacent folded units in repeat proteins often form superstruc-

tures, it may be more realistic in certain cases to model such superstructures,

as opposed to individual repeats, as elastic objects, in which case the factor-

ization assumption of Eq. 5 would be violated. These choices would depend

on details of the specific protein under study and could be straightforwardly

incorporated in our model if desired. Here, we have chosen the simplest

possible model that accounts for the difference in the elasticity of folded

and unfolded repeats. In an earlier study (13), the extension of folded repeats

was neglected altogether. In contrast, two studies (9,10) dealing with poly-

mers that exhibit helix-coil transition treated the helical segments as inexten-

sible rods whose contribution to the overall chain elasticity was only through

the aforementioned entropic effect associated with the alignment of the rods

along the direction of the force.

RESULTS

Analytical approximations

For sufficiently small N, Eq. 4 can be computed through

exact enumeration. Before showing such exact results, we

present here simple analytical approximations, which turn

out to capture much of the physics of the problem.

Suppose that of the N repeats, nf are folded and

nu ¼ N � nf are unfolded. Further suppose that the number

of contiguous blocks of folded repeats is n. In other words,

the sequence sigf contains n uninterrupted subsequences of

the form 111.1 with the total number of 1s adding up to

nf . A single folded repeat counts as a contiguous block,

and the number of such repeats is included in n. For example,

in Fig. 1, nf ¼ 3 and n¼ 2. The free energy of Eq. 1 can then

be rewritten in the form

FIGURE 1 Illustration of the model used. The protein is described as

a sequence of folded (si ¼ þ1) and unfolded (si ¼ 0) repeat units. The

folded and unfolded repeats behave as Hookean springs with stiffnesses

kf and ku, respectively.

Biophysical Journal 96(6) 2160–2167



2162 Makarov
E=kBT ¼ �ðH þ JÞnf þ Jn: (9)

If one starts with a fully folded conformation, unfolding an

outer repeat (i ¼ 1 or i ¼ N) will reduce nf by 1 and thus

increase the energy by J þ H. Likewise, the energy is

increased by J þ H whenever a repeat at either end of

a contiguous folded block (containing more than one repeat)

is unfolded. By contrast, the unfolding of an inner repeat

within a contiguous folded block will change the energy

by 2J þ H, because n will increase from 1 to 2. Using the

terminology of Buhot and Halperin (9), we can think of

J as the interfacial energy associated with creating a pair of

‘‘domain boundaries’’ between sequences of folded and

unfolded repeats, whereas DG ¼ J þ H can be regarded as

the free energy cost of unfolding a repeat without creating

additional domain boundaries (i.e., by propagating an exist-

ing domain boundary). For any given nf , n, and chain exten-

sion, z, the free energy of the chain can be written as

G
�
z; nf ; n

�
=kBTz

z2

2
h
nfb2

f þ
�
N � nf

�
b2

u

i� ðH þ JÞnf

þ Jn� S
�
nf ; n

�
: ð10Þ

Here, the first term is the elastic part corresponding to Eq. 8,

and Sðnf ; nÞ ¼ kB ln Uðnf ; nÞ is an entropy term that can be

calculated by counting the number Uðnf ; nÞ of the sequences

sigf that correspond to the same values nf and n. Equation 10

neglects the logarithmic corrections that result from the nf

dependence of the prefactor in Eq. 8.

Following the arguments of Buhot and Halperin (9), we

now neglect the entropy term in Eq. 10. The free energy

for the protein, for a given value of the extension z, can

then be estimated as

GðzÞ=kBT

z min
n;nf

(
z2

2
h
nfb2

f þ
�
N�nf

�
b2

u

i�ðH þ JÞnf þ Jn

)

(11)

If any folded repeats are present, the minimum with respect

to n is achieved at n ¼ 1 (n ¼ 0 would imply that the protein

is completely unfolded, which would be inconsistent with

a finite value of nf). If 1� nf � N; then we can treat nf

as a continuous variable, which gives the condition

vGðz; nf ; nÞ=vnf ¼ 0, or

nf ¼ N
b2

u

b2
u � b2

f

� zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðJ þ HÞ

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

u � b2
f

p : (12)

Substituting this back into Eq. 11 gives

GðzÞ=kBT ¼ J þ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðJ þ HÞ

b2
u � b2

f

s
: (13)

This means that the repeat protein will yield at a force equal

to

Fyield ¼ G
0 ðzÞ ¼ kBT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðJ þ HÞ

b2
u � b2

f

s
: (14)

The force-extension curve of the protein thus exhibits

a plateau where the force F ¼ Fyield does not depend on

the extension. This situation is similar to fluid-vapor coexis-

tence, which is manifested by a plateau in the pressure-

volume diagram. In our case, the coexistence is between

the unfolded and folded conformations of the repeats (15).

The condition 0 < nf � N results in the following range

of acceptable extensions where this regime is valid:

zmin � z < zmax;

zmin ¼ Nb2
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðJ þ HÞ

b2
u � b2

f

s
; zmax ¼ Nb2

u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðJ þ HÞ

b2
u � b2

f

s
:

(15)

When z > zmax, all the repeats are unfolded and the protein is

an entropic spring with a spring constant equal to kBT=Nb2
u.

Let us now consider the case of a nearly folded protein,

where nf is close to N. Within this limit, the continuous

approximation for nf breaks down. For small enough z, the

minimum of Eq.11 is achieved when n ¼ 1 and nf ¼ N.

This means that each repeat will likely remain folded, and

thus the protein will respond to stretching as a linear spring

with a stiffness equal to kf=N. Thus, for small enough z,

GðzÞ ¼ kfz
2

2N
ð þ constantÞ; (16)

and the corresponding force-extension curve is Hook’s law:

F ¼ G
0 ðzÞ ¼

�
kf=N

�
z: (17)

As z is increased beyond a certain critical zu value, the value

nf ¼ N � 1 will provide the minimum to Eq. 11. This means

that at zRzu; one of the repeats will unfold. The value of zu is

readily obtained from Eq. 11:

zu ¼ bf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NðJ þ HÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Nb2

f

b2
u � b2

f

s
: (18)

The corresponding rupture force is

Fu ¼ kfzu=N ¼ kBT

bf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðJ þ HÞ=N

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Nb2

f

b2
u � b2

f

s
: (19)

If we further assume that the discrete nature of nf is only

important for nf ¼ N;N � 1, and that a continuous approx-

imation is good for nf < N � 1, then we arrive at a force-

extension law that consists of a linear segment at short

extensions, a plateau at longer extensions, and another

linear segment corresponding to a fully unfolded protein:

F ¼ G
0 ðzÞ ¼

�
kf=N

�
z; z < zu

Fyield; zu%z < zmax

ðku=NÞz; zRzmax

:

8<
: (20)
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Numerical results and their comparison
with analytical approximations

Fig. 2 shows the dependence of the force G
0 ðzÞ on the exten-

sion z calculated numerically from Eqs. 3 and 4 and by using

the simple formulas of Eq. 20. The numerically computed

force exhibits a large van der Waals loop, which is well

approximated by the peak predicted by the first line of

Eq. 20 (see Fig. 2 a). Smaller oscillations observed in Fig. 2

are not captured by Eq. 20, since the latter assumes that the

number of repeats changes continuously. These oscillations

are recovered if one uses Eq. 11 directly, without making

a continuous nf assumption, as shown in Fig. 2 b. Consistent

with the notion that for larger extensions we can treat the

number nu of unfolded repeats as continuous, and so that

the accuracy of Eq. 20 should become better, we observe

the oscillations to decay and converge to a plateau value

a

b

FIGURE 2 Force-extension curve of a repeat protein computed numeri-

cally and estimated using the approximations described in the first part of

the Results section. The parameters of the model used are: H ¼ 4, J ¼ 8,

N ¼ 10, and bu ¼ 10bf . (a) Numerical data (solid line) versus the approxi-

mation using Eq. 20. Two horizontal lines show two different values of the

force, F. For F ¼ F1, the equation G
0 ðzÞ ¼ F has three solutions (three

crossings of the horizontal line), and for F ¼ F2, there are two solutions.

(b) Numerical data (solid line) compared with the force-extension curve

obtained directly from Eq. 11 without invoking a continuous approximation

for the number of folded repeats (dashed line).
that is well approximated by Fyield given by Eq. 14 (Fig. 2

a, dashed line). However, when the extension is further

increased, a drop in the force is observed before it begins to

rise and follow the linear dependence predicted by the last

line in Eq. 20. This drop will be explained in the next section.

One has to be careful interpreting the curve F ¼ G
0 ðzÞ

versus z as the ‘‘true’’ force-extension law describing the

protein’s elasticity. When a constant stretching force, F, is

applied to the protein, the latter experiences the effective

potential GFðzÞ ¼ GðzÞ � Fz (16–18). The points where

G
0

FðzÞ ¼ 0, i.e., those described by the equation F ¼ G
0 ðzÞ,

are the minima (if G00 > 0) or the maxima (if G00 < 0) of

this potential. At low enough forces, there is only one solu-

tion satisfying F ¼ G
0 ðzÞ. The situation is different in the van

der Waals loop region. At intermediate force values (see,

e.g., the case F ¼ F1 in Fig. 2 a), this equation has three solu-

tions. The smallest and the largest solutions correspond to

free-energy minima and the one in the middle corresponds

to the barrier separating those minima. Thus if the protein

is held at constant tension F1, it will undergo thermally acti-

vated hopping between the minima over the barrier, and the

thermodynamic expectation value of z will be an appropriate

thermal average over the two basins of attraction. Such

thermal hopping can indeed be observed in pulling experi-

ments (19). If we continue to increase the force past the value

F1 we will find that more than three solutions, corresponding

to multiple minima separated by barriers, are possible at

certain force values. Finally, when F becomes larger than

a certain value (close to Fyield from Eq. 14), there are only

two solutions (G
0 ðzlÞ ¼ F, G

0 ðzhÞ ¼ F, zl < zh), as shown in

Fig. 2 a for the case F ¼ F2. The lower value, zl, corresponds

to a metastable minimum, from which the system can escape

over the barrier located at z ¼ zh. This means that the folded

protein cannot sustain such a high force and will eventually

unfold. Whether or not the force peak will be observed then

depends on the pulling timescale relative to that of barrier

crossing. If, for example, force F is quickly increased, then

the system may not have enough time to escape the metastable

folded states, and thus the initial peak in the curve G
0 ðzÞ versus

z (or its part) will be observed. When van der Waals loops are

traversed in nonequilibrium pulling experiments, the result-

ing unfolding dynamics are generally stochastic (20,21),

exhibiting force peaks and drops corresponding to barrier

crossings. The statistics of such events and their dependence

on the pulling rate are beyond the scope of our model, which

contains no information about kinetics.

DISCUSSION

Mechanical unraveling of long repeat proteins
is not cooperative. The unfolding of short repeat
series can exhibit cooperative behavior

Equations 14, 15, and 18–20 suggest that the mechanical

response of the repeat protein does not depend individually

Biophysical Journal 96(6) 2160–2167
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on the values of J and H but rather on the sum J þ H. To test

this, we plot in Fig. 3 the dependence of the force G
0 ðzÞ on

z for different values of J and H chosen such that the sum

J þ H stays constant. As long as the extension z is not

too large, this dependence is indeed nearly the same. In

particular, at modest extensions, the mechanical response

of a protein formed by noninteracting repeats (H ¼ 12,

J ¼ 0) is virtually the same as that in the case H ¼ �15,

J ¼ 27. A negative value of H means that the folding of

an individual repeat is unfavorable thermodynamically. As

is known in the context of the helix-coil transition theory

(11,12), folding in this case requires nucleation of a suffi-

ciently long contiguous block of folded repeats such that

the favorable interaction between neighboring units

outweighs the initial cost of folding. This situation results

in a highly cooperative, sharp transition between the folded

and unfolded states, which can, indeed, be observed in

thermal or chemical denaturation experiments (3). However,

this cooperative behavior with respect to thermal unfolding

makes no difference when the same protein is denatured me-

chanically. The unraveling of the chain in this case starts

with the unfolding of the first or last repeat (requiring the

lowest free-energy cost) and proceeds sequentially. The

protein responds to stretching by unfolding more repeats

such that the number of unfolded repeats increases linearly

with the extension (cf. Eq. 12). As a result, the tension in

the chain exhibits a plateau at a force close to Fyield. A

similar scenario has been previously reported by us for the

J ¼ 0 case (13), the only difference being that the order

in which the repeats unfold does not matter in that case,

since there is no interfacial free-energy cost associated

with unfolding. The lack of cooperativity in the mechanical

unfolding of repeat proteins has already been pointed out in

the experimental study by Li et al. (8).

At large extensions, however, the three curves plotted in

Fig. 3 begin to diverge. In particular, a significant drop in

the force is observed for the case H ¼ �15, followed by

linear dependence with a slope corresponding to the fully

FIGURE 3 Force-extension curve of a repeat protein with the same J þ H

but different J and H. Solid line, J ¼ H ¼ 6; dashed line, J ¼ 0, H ¼ 12;

points, H ¼ �15, J ¼ 27. The number of repeats is N ¼ 10 and bu ¼ 10bf .

Biophysical Journal 96(6) 2160–2167
unfolded protein (cf. the last line of Eq. 20). This implies

that complete unraveling of the protein occurs sooner than

in the other two cases. To understand this behavior, note

that if H < 0, then isolated folded repeats are unstable ther-

modynamically. Consequently, once the number of folded

repeats, nf ; drops below a certain value, the remaining

repeats will lose their stability and unfold spontaneously.

Further insight into such spontaneous unfolding is gained

by considering the free energy of the chain (Eq. 11).

Although at sufficiently small extensions z, the free-energy

minimum is attained at a finite value of nf and at n ¼ 1,

for higher values of z, the minimum can be provided by

nf ¼ n ¼ 0. When the transition between the two regimes

happens at a value nf such that nf < N, the remaining

N � nf repeats must unfold spontaneously, resulting in

a drop in the force. Indeed, Eq. 11 predicts the small drop

in force observed in Fig. 2 a and mentioned in the section

comparing numerical results with approximations. More-

over, Eq. 11 predicts eight peaks (Fig. 2 a, dashed line), in

contrast to N ¼ 10 repeats in the chain, indicating that the

last three repeats unfold simultaneously. Reducing the

stability of individual repeats will promote early spontaneous

unfolding of multiple repeats, which is indeed seen in Fig. 3,

where the most prominent drop is observed for H ¼ �15.

From these considerations, it is also clear that if the length,

N, of the repeat protein only slightly exceeds the number of

repeats needed to nucleate a stable folded structure, its

mechanical unfolding will take place in a cooperative

fashion, as the unfolding of the first repeat will destabilize

the rest of the molecule.

Conditions for the existence of the force peak

As found in the Results section, the initial rupture event dras-

tically lowers the stiffness of the chain and can lead to a sharp

peak in the force followed by subsequent unfolding of the

remaining repeats that takes place at much lower forces.

This initial peak is pronounced when the rupture force, Fu

(Eq. 19), is much higher than the yield force, Fyield (Eq.

14). When Eqs. 14 and 19 are compared, these two forces

become identical in the N/N limit. Thus, the initial rupture

peak is a finite-size effect that disappears for long chains.

Numerical calculations using Eq. 4 also confirm this finding.

This, of course, is consistent with the notion that van der

Waals loops cannot exist in infinite systems. The require-

ment Fu[Fyield gives the following condition for the exis-

tence of a significant rupture peak:

b2
f � b2

u=ðN þ 1Þ: (21)

This means that stiffer folded repeats (i.e., those with a lower

bf) will produce a higher rupture peak. Longer repeat proteins

will generally have a less pronounced peak. Since the

mean-square end-to-end distance, b2
u, of the unfolded chain

grows linearly with its contour length, L, longer contour

length stored in a repeat will also result in a more pronounced

peak.
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The validity of Eq. 21 can be verified for a typical AFM

protein stretching experiment. Using a typical number,

kf ¼ 50 pN=nm; for the stiffness of an individual repeat

(6,7), we estimate bf �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=kf

p
� 0:2 nm. Lee et al. (7)

found that unfolded repeats behave as wormlike chains with

a contour length L ~ 12 nm and persistence length p ~ 2 nm.

For such a chain, we estimate bu �
ffiffiffiffiffiffi
Lp
p

� 5 nm. Equation

21 thus holds if N � ðbu=bfÞ2 � 300. This condition is satis-

fied in Lee et al. (7), where N%24. The authors indeed

observed a pronounced rupture peak (7), although it was not

found in another study, by Li et al. (8). Consistent with the

model proposed here, the peak observed in Lee et al. (7)

had a shape corresponding to a Hookean spring. The initial

high peak was followed by a series of much lower force peaks

attributed to the unfolding of individual repeats. This behavior

is consistent with the calculated shape of G
0 ðzÞ (see Fig. 2 b),

which shows oscillations reflecting the unfolding of subse-

quent repeats.

We note that the estimate of Eq. 21 gives, at best, the neces-

sary but not a sufficient condition for the peak to be actually

observed. For example, in the idealized scenario discussed

in the section about numerical results, above, the force on

the chain is raised and the chain extension is measured. It

then follows that this peak corresponds to a metastable state

of the chain and will only be observed if the pulling is suffi-

ciently fast. The situation is even more complicated in real

experiments, where the protein is attached to a cantilever

and to a surface. The stiffness of the cantilever and the linker

must also be considered and may change the conditions for the

peak (22). Differences in the parameters bf , bu, and N, as well

as in the pulling method, could explain why a large peak

appears in some experiments but not in others.

The high strength and toughness exhibited by many load-

bearing proteins existing in nature is commonly attributed to

the existence of ‘‘sacrificial bonds’’ (23–25), whose rupture

releases ‘‘hidden length’’ of the polypeptide chain, allowing

the system to dissipate large amounts of energy. Recently,

there has been considerable progress in engineering and

controlling protein constructs that display such behavior

(26–30). For a protein to act as a sacrificial bond when it

unfolds, a large free-energy barrier must exist, delaying its

unfolding and allowing the folded protein to generate a force

that is higher than the force that would destabilize the native

state thermodynamically (13,31). The existence of such

a barrier is equivalent to having a large peak (van der Waals

loop) in the dependence of G
0 ðzÞ on z (see Results). Equation

21 thus provides a recipe for designing a repeat protein with

potentially interesting sacrificial bond properties.

The yield force is proportional to the square root
of the unfolding free energy

Scaling properties of rupture/unfolding forces in AFM pull-

ing experiments have attracted considerable theoretical

attention in the past (32–35), although most of the related
work has focused on the irreversible unfolding regime,

where those forces are controlled by barriers rather than by

thermodynamic stability of proteins. Here, we can address

the opposite regime of very slow pulling, where we found the

yield force to be proportional to
ffiffiffiffiffiffiffiffiffiffiffiffi
J þ H
p

. This is a rather

general result that arises when the thermodynamic stability

of a sacrificial bond system is considered. When a sacrificial

bond is broken, a contour length, L, becomes liberated. If we

assume that the polymer is a Gaussian chain with a Kuhn

segment of length p, then the entropic cost for stretching it

by an amount z is DS � �z2=ð2LpÞ. Thus, if a stretching

force F is applied, the corresponding free-energy change

is DG � minz kB Tz2=ð2LpÞ � Fz ¼ �F2Lp=2kBT. The

lowering of the free energy comes at the cost, DE, of

breaking the bond. Therefore, the bond is destabilized ther-

modynamically when

DEzF2Lp=2kBT; (22)

which gives a square-root dependence of the force on the

bond energy, DE. Setting Lp ¼ b2
u and DE=kBT ¼ J þ H

in Eq. 22, and assuming bf ¼ 0, one recovers the result of

Eq. 14 for the yield force. It is also clear from the above argu-

ments that the square root dependence is contingent on

Gaussian polymer statistics. For example, if excluded

volume effects are included, this would result in a slightly

different scaling (13), FfDE3=5.

CONCLUSIONS

In this article, we have studied a simple model for the

mechanical unfolding of repeat proteins, in which the inter-

actions among individual repeats are described by the Ising

model. We find that although thermal denaturation of such

a protein may be highly cooperative, its mechanical unfold-

ing is sequential as long as the number of folded repeats is

sufficient to ensure that the chain does not unfold spontane-

ously. We further show that the unfolding of the first repeat

may produce a rupture force significantly higher than the

force associated with the unfolding of subsequent repeats.

These findings can be understood by employing simple

analytic approximations for the protein’s free energy as

a function of its extension and the number of folded repeats.

Structural information about repeat proteins can be incor-

porated into this model to make it more realistic. Specifi-

cally, consider the free energy of a stretched, partially

unfolded protein given by Eq. 10. The first term describes

the elastic response of the chain. The next two terms describe

the interactions among repeats. As long as the elastic part is

independent of n, the free-energy minimum with respect to

n is achieved at n ¼ 1. This means that the mechanical

unfolding pathway predominantly involves partially

unfolded structures that consist of a single folded block

flanked by fully unfolded chains. One can use this fact to

replace the first term in Eq. 10 by a more realistic description

of the protein’s elastic response. Such a description could

Biophysical Journal 96(6) 2160–2167
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utilize, e.g., a wormlike chain model for the unfolded tails

(36) combined with input from atomistic simulations to

account for the elasticity of the folded block as a function

of its length, nf (6). Thermal unfolding data can further be

used to estimate parameters H and J.

Finally, note that our model can also be applied to the un-

folding of naturally occurring or engineered ‘‘polyprotein’’

constructs containing multiple repeats of the same (or several

different) protein domains, which are commonly used in

single-molecule AFM pulling studies (21). Unlike ankyrin

repeat proteins, where individual repeats are often unstable,

individual domains within polyproteins can fold indepen-

dently. Although the assumption of noninteracting, individ-

ually stable domains (corresponding to the case H > 0,

J ¼ 0 within the model presented here) is often adequate

for the interpretation of AFM pulling experiments (37–40),

a more general case of interacting domains may be of

interest, e.g., in the context of unfolding and refolding of pol-

yubiquitin chains, where a cooperative folding mechanism

has been suggested (41–43).
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