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Abstract

On an algebraic surface with Picard number 1 we compute in terms of the generator of the ample ray a
lower bound for Seshadri constant valid at every point of the surface. We show that this bound cannot be
improved in general.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Seshadri constants were introduced by Demailly [4]. They measure the local positivity of an
ample line bundle at a point. Though they are defined locally, they depend on the global geometry
of the underlying variety and vice versa.

Definition 1. Let X be a smooth projective variety and L an ample line bundle on X. Then

ε(L,x) := inf
x∈C

L.C

multx C

where the infimum is taken over all curves C ⊂ X passing through x is the Seshadri constant at
the point x ∈ X (it is enough to consider irreducible curves).
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By the ampleness criterion of Seshadri ε(L,x) is a positive real number. If L is very ample,
then it is easy to see that ε(L,x) � 1 for all points x ∈ X.

Shortly after Seshadri constants became an object of an independent study, Ein and Lazars-
feld [5] proved a remarkably theorem that the above bound holds for a general point and a merely
ample line bundle on an algebraic surface. In fact it is conjectured that the same is true in any
dimension.

Theorem 2 (Ein–Lazarsfeld). Let S be a smooth projective surface and L an ample line bundle
on S. Then

ε(L,x) � 1

for all points x ∈ S away of at most countably many.

On the other hand, Miranda [7] provided examples showing that for any ε > 0 there exists
a surface S, a point x0 ∈ S and an ample line bundle L on S such that ε(L,x0) < ε. In these
examples the surfaces change as ε gets smaller and smaller. Moreover their Picard numbers
grow reciprocally to ε.

2. The problem and the result

Ein and Lazarsfeld raised a natural question if there exists a single surface S and sequences
Ln of ample line bundles and xn of points on S such that

ε(Ln, xn) → 0.

This is not known up to now and it is conjectured that this is not possible, i.e. that on a given sur-
face there should be a universal lower bound on Seshadri constants of all ample line bundles. For
surfaces with Picard number 1 this follows easily form the following improvement of Theorem 2
obtained by Oguiso in [9].

Theorem 3 (Oguiso). Let S be a smooth projective surface and let L be an ample line bundle
on S. Then for an arbitrary δ > 0 the set of points x such that

ε(L,x) � 1 − δ

is finite.

If the Picard number of S is 1, then there is only the ample generator L one has to take care
of. In particular it follows from the above corollary that there exists a lower bound for ε(L,x),
namely the minimum over all points. However Oguiso theorem is noneffective.

Corollary 4. Let S be a surface with Picard number 1 with an ample generator L. Then there
exists a number ε0 such that

ε(L,x) � ε0

for all points x ∈ S.
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In order to make an effective statement one could revoke instead the big theorem of Matsusaka
whose effective version on surfaces was proved by Fernandez del Busto [6].

Theorem 5 (Fernandez del Busto). Let L be an ample line bundle on a smooth projective surface
S with a = L2 and b = (KS +L)L. Then the line bundle mL is globally generated (in particular
ε(mL,x) � 1) provided

m >
(b + 1)2

2a
− 1.

Applying this result on a surface with Picard number 1 yields the following effective state-
ment.

Corollary 6. Let S be a smooth projective surface with Picard number 1 with an ample generator
L and let r be an integer such that KS = rL. Then

ε(L,x) � 2L2

1 + (r + 4)2(L2)2 + 2(r + 3)L2

for every point x ∈ S.

While effective, this bound is not sharp. The following theorem tackles this problem. This is
the main result of this note.

Theorem 7. Let S be a smooth projective surface with ρ(S) = 1 and let L be an ample line
bundle on S. Then for any point x ∈ S

(S) ε(L,x) � 1 if S is not of general type, and
(G) ε(L,x) � 1

1+ 4
√

K2
S

if S is of general type.

Moreover both bounds are sharp.

Remark 8. It seems worth to note that for surfaces with Picard number 1 the result of Theorem 2
was improved to

ε(L,x) �
⌊√

L2
⌋

by Steffens [13].

Proof of Theorem 7, case (S). For the proof we go first through the Enriques–Kodaira classifi-
cation of surfaces. Taking into account the assumption ρ(S) = 1, there are only few cases.

If κ(S) = −∞, then S = P
2 and it is well known that ε(O(1), x) = 1 for any point x ∈ P

2.
This verifies in particular that the bound stated in this part of the theorem is sharp.

If κ(S) = 0, then S is either abelian or K3. In the first case S is a homogeneous variety, so
ε(L,x) does not depend on x and by Ein–Lazarsfeld theorem we have ε(L,x) � 1. Actually,
Nakamaye [8] showed that if ε(L,x) = 1 on an abelian variety, then the variety is a product of
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an elliptic curve and a lower dimensional abelian variety. Note also that for abelian surfaces with
Picard number 1 the exact values of Seshadri constants are known [1].

If S is a K3 surface without (−2)-curves and L is an ample line bundle on S, then L is globally
generated [11]. This means that the morphism defined by the linear system |L| is finite, hence
ε(L,x) � 1 for all points x ∈ S. �
3. Seshadri constants of the canonical bundle

What remains are surfaces of general type. To complete the proof of Theorem 7 we need some
preparations.

First of all if the degree of the canonical divisor is not too small, then Reider’s theorem [10]
applies. More exactly we have the following lemma.

Lemma 9. Let S be a surface of general type with ρ(S) = 1 (i.e. KS is ample) and K2
S � 5. Then

the bicanonical system |2KS | is base point free.

Proof. This is just Reider’s theorem for KS . Note, that all exceptional cases in the theorem are
immediately excluded under our assumptions. �

As a corollary we get that

ε(KS, x) � 1

2
(1)

in this situation.
Now we turn to the case K2

S � 4. Then either KS is a primitive generator of the ample half-
line or there exists an ample line bundle L on S with KS = 2L. In the latter situation it must be
L2 = 1 and consequently K2

S = 4. However such numerical invariants contradict the Riemann–
Roch theorem for L. So we can assume that KS is a primitive line bundle. We obtain the following
classification, which seems to be of independent interest.

Lemma 10. Let S be a surface of general type with ρ(S) = 1 and such that KS is primitive.
Suppose that there exists a point x ∈ S such that

ε(KS, x) < 1,

then K2
S = 1, q(S) = 0 and pg(S) � 2 or K2

S = 2 and ε(KS, x) = 2
3 .

Proof. By assumption we have that KS is ample. The algebraicity result of Campana and Peter-
nell [3] implies that there exists an irreducible curve C ⊂ S computing the constant at x, i.e.

ε(KS, x) = KS.C

m
< 1

with m = multx C. There exists a positive integer p such that C ∈ |pKS |. Thus the above in-
equality yields pK2 < m which is equivalent to pK2 + 1 � m.
S S
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On the other hand, by the genus formula we have

pa(C) = 1 + p(p + 1)

2
K2

S .

A point of multiplicity m causes the geometric genus of a curve to drop by at least
(
m
2

)
, so that

1 + p(p + 1)

2
K2

S −
(

m

2

)
� 0.

This gives p2(K2
S)2 � 2 + p2K2

S , which is possible only if K2
S = 1 or K2

S = 2 and p = 1.
Bombieri [2, Theorem 11] showed that K2

S = 1 implies q(S) = 0. The restriction pg(S) � 2
follows from the Noether inequality.

If K2
S = 2, then C is a canonical curve and in the inequalities above we have equality, so that

in particular m = 3. Then the Seshadri quotient is

KS.C

m
= 2

3
>

1

2
. �

Finally we take a closer look to surfaces of general type with K2
S = 1. They split again in two

classes.

3.1. Surfaces with K2
S = 1 and pq � 1

If pg = 0 or 1, then by the Riemann–Roch we have at least a pencil of bicanonical divisors. It
is easy to check that the base locus of |2KS | in both cases consists only of points. Moreover for
any point x ∈ S there is an irreducible curve Dx ∈ |2KS | passing through x. Let C be any other
irreducible curve on S passing through x. Then we have

2KS.C = Dx.C � multx C.

This shows that the Seshadri quotient of C satisfies

KS.C

multx C
� 1

2
.

The curve D itself has arithmetic genus 4, so it can have at most a triple point at x. Hence

KS.Dx

multx Dx

� 2

3
>

1

2

and we are done in these cases.
Note that our argument is rather rough, in particular we did not care if surfaces with given

invariants and Picard number 1 exist. We will address this question later showing the optimality
of the bound stated in the case (G) of Theorem 7.
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3.2. Surfaces with K2
S = 1 and pg = 2

The last case is that of a smooth surface S of general type with K2
S = 1, pg(S) = 2 and

ρ(S) = 1.
This time we can argue basically as in the preceding case but with the canonical pencil this

time. This pencil consists of irreducible and reduced curves of genus 2 all of which pass through
a single base point x0 and meet there transversally. Let x ∈ S be fixed and let Dx be a curve in
the pencil through x. If C is an irreducible curve not in the pencil passing through x, then we
have

KS.C = Dx.C � multx C,

so that in this case the Seshadri quotient is actually at least 1. Now, it is not possible that all curves
in the pencil are smooth. This can be seen either computing the topological Euler characteristic
of the surface or with the argument that with all fibers smooth, the pencil would be an isotrivial
family contradicting the assumption that S is of general type. On the other hand, since the mem-
bers of |KS | are curves of genus 2 they can carry singularities with multiplicity at most 2. We
see that there must exist a canonical curve D ∈ |KS | and a point x ∈ D with multx D = 2. Then

ε(KS, x) = KS.D

multx D
= 1

2
.

Summing up (1), Lemma 10 and the above discussion we have the following

Upshot. If S is a surface of general type with ρ(S) = 1, then

ε(KS, x) � 1

2

for arbitrary point x ∈ S.

At the end of the proof of case (G) of Theorem 7 we give an example showing that the bound
in the Upshot is sharp.

4. Primitive line bundles on surfaces of general type

In order to conclude the proof of Theorem 7 we have to study now the situation of S being a
surface of general type with Picard number 1, L an ample generator and r a positive integer such
that KS = rL.

From the Upshot stated above we get immediately a naive bound

ε(L,x) = 1

r
ε(KS, x) � 1

2r
� 1

2
√

K2
S

but in fact we can do slightly better.
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Proof of Theorem 7, case (G). Assume that x ∈ S is a point with ε(L,x) < 1 (otherwise there
is nothing to prove) and let C ∈ |pL| be a curve with multiplicity m at x computing this Seshadri
constant

ε(L,x) = L.C

m
= pL2

m
.

We have pa(C) = 1 + 1
2p(p + r)L2 and this gives an upper bound on the multiplicity m:

m(m − 1) � 2 + p(p + r)L2

which is equivalent to

m � 1 + √
9 + 4p(p + r)L2

2
.

Thus we have the following bound

ε(L,x) � 2pL2

1 + √
9 + 4p(p + r)L2

.

The function on the right is growing for admissible values of p and L2. Setting L2 = 1 and p = 1
we obtain

ε(L,x) � 2

1 +
√

13 +
√

K2
S

. (2)

Since the case of K2
S � 4 was already discussed in Lemma 10, which in particular implies the

bound stated in part (G) of the theorem, we can assume that K2
S � 5. But then it is easy to check

that the number on the right in (2) is greater or equal to our bound 1

1+ 4
√

K2
S

and this ends the proof

of the inequality.
Now we show that the bound is sharp. To this end let S be a general surface of degree 10 in the

weighted projective space P(1,1,2,5). By adjunction we have that K2
S = 1. Moreover, sections

of KS correspond to polynomials of degree 1 in the weighted polynomial ring on 4 variables.
Thus pg(S) = 2 (see also [12]).

Steenbrink [12] checked that a general surface S of degree d � 2 + a + b in P(1,1, a, b) with
a and b coprime has Picard number 1. His result applies in our case. The existence of a point x

with ε(KS, x) = 1
2 follows now from the discussion in Section 3.2.

This example also shows that the bound given in the Upshot is in fact optimal. �
5. Final remarks and a challenge

Looking back at the examples of Miranda we observe that in their case the lower bound of
1

1+ 4
√

|K2|
holds. This somehow gives a concrete effective number which could serve as a lower
S
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bound on arbitrary surface verifying in effect the conjecture stated in Section 2. It could be too
much to state it as a conjecture but we dare a little challenge.

Question. Does there exist a (minimal) polarized surface (S,L) and a point x ∈ S such that

ε(L,x) <
1

2 + 4
√

|K2
S |

?

The appearance of 2 in the above formulation accounts for the existence of Enriques surfaces
which carry an ample line bundle L with ε(L,x) = 1

2 , see [14].

Acknowledgments

Most of this work has been while the author visited University Duisburg-Essen. It is a pleasure
to thank Hélène Esnault and Eckart Viehweg for their hospitality.

References

[1] Th. Bauer, Seshadri constants and periods of polarized abelian varieties. With an appendix by the author and Tomasz
Szemberg, Math. Ann. 312 (1998) 607–623.

[2] E. Bombieri, Canonical models of surfaces of general type, Publ. Math. Inst. Hautes Études Sci. 42 (1973) 171–219.
[3] F. Campana, Th. Peternell, Algebraicity of the ample cone of projective varieties, J. Reine Angew. Math. 407 (1990)

160–166.
[4] J.-P. Demailly, Singular Hermitian metrics on positive line bundles, in: Complex Algebraic Varieties, Bayreuth,

1990, in: Lecture Notes in Math., vol. 1507, Springer, Berlin, 1992, pp. 87–104.
[5] L. Ein, R. Lazarsfeld, Seshadri constants on smooth surfaces, in: Journées de Géométrie Algébrique d’Orsay, Orsay,

1992, Astérisque 218 (1993) 177–186.
[6] G. Fernandez del Busto, A Matsusaka type theorem on surfaces, J. Algebraic Geom. 5 (1996) 513–520.
[7] R. Lazarsfeld, Positivity in Algebraic Geometry, in: Ergeb. Math. Grenzgeb. (3), vol. 48, Springer, Berlin, 2004.
[8] M. Nakamaye, Seshadri constants on abelian varieties, Amer. J. Math. 118 (1996) 621–635.
[9] K. Oguiso, Seshadri constants in a family of surfaces, Math. Ann. 323 (2002) 625–631.

[10] I. Reider, Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. of Math. 127 (1988) 309–316.
[11] B. Saint-Donat, Projective models of K − 3 surfaces, Amer. J. Math. 96 (1974) 602–639.
[12] J. Steenbrink, On the Picard group of certain smooth surfaces in weighted projective spaces, in: Algebraic Geometry,

La Rábida, 1981, in: Lecture Notes in Math., vol. 961, Springer, Berlin, 1982, pp. 302–313.
[13] A. Steffens, Remarks on Seshadri constants, Math. Z. 227 (1998) 505–510.
[14] T. Szemberg, On positivity of line bundles on Enriques surfaces, Trans. Amer. Math. Soc. 353 (2001) 4963–4972.


