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In polymer processing operations, the molten polymer chains are frequently subjected to shear or/and
elongation flow fields, which will produce molecular chain orientation of the melt. This leads to the
orientation-induced crystallization has been an important subject in the field of polymer physics. Sys-
tematic studies indicated that the chain orientation influences the crystallization kinetics, the final
morphology as well as the polymorphic behavior of the polymers. In this article, the effects of pre-
orientation on the crystallization of isotactic polypropylene (iPP) concerning the above mentioned as-
pects have been reviewed. In particular, the formation mechanism of orientation-induced b-iPP
crystallization has been discussed according to the recent experimental results. It is suggested that the
local order of the macromolecular chain segments in the melt is most important for b-nucleation of iPP.
The formation of b-iPP nuclei may be restricted in a certain chain orientation window of the iPP melts.
Chain orientation outside of this window results in the formation of a-iPP.
� 2013 Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

Polymeric materials have been widely used in the fields from
packaging to aerospace. The reason is that the polymeric materials
offer a great potential to meet the requirements for different ap-
plications. This rests on the fact that the physical and chemical
properties of polymeric materials can be effectively modulated by
controlling their structures at different scales. Therefore, it is of
great importance to get a fully understanding on the solidification
dependant microstructures, which determines the product prop-
erties [1e3]. In most polymer processing operations such as in-
jection molding, film blowing, and fiber spinning, the molten
polymer chains are subjected to shear or/and elongation flow fields.
The shear flow produces chain orientation and affects the crystal-
lization kinetics as well as the crystal structure and morphology of
semicrystalline polymers [4e15]. This leads the study of shear-
induced polymer crystallization to be an interesting subject for
several decades. For this purpose, various devices for imposing
shear to the polymer melts have been developed to study the
crystallization of polymers under or after shear [10,16e39].

There are a vast body of literature that describe the effects of
flow on the crystallization of various polymers as summarized
previously in Refs. [39e41]. Among them, isotactic polypropylene
8.
un), skyan@mail.buct.edu.cn

 BY-NC-ND license.
(iPP) has been most frequently chosen as model system since (i) its
wide applications as conventional plastics; (ii) its lower nucleation
density and crystal growth rate at relatively high temperatures,
which enable the in situ rheo-X-ray [42e50] and rheo-optical
[4,6,8,10,29,45,51e55] studies; and (iii) its diversified structure
and morphology, which are sensitive to the changes in processing
parameters and molecular parameters such as molecular weight,
molecular weight distribution and chain branching etc. [20,46,56].
This makes it ideal to illustrate the influence of shear flow on the
solidification behavior of polymeric material in several different
aspects.

It is well accepted that external flow causes orientation or even
extension of macromolecules in the melt [5,57,58]. Therefore, the
flow-induced crystallization of polymers can be referred to
as orientation-induced crystallization. Due to the chain orientation,
the crystallization behavior of the sheared polymer melt
differs notably from its melt crystallization under quiescent con-
dition. First of all, the crystallization rate of a polymer melt with
pre-ordered molecular chains can be substantially accelerated
[8,9,59e64]. For example, the quiescent melt of isotactic poly-
styrene crystallizes very slowly. The crystallization of its sheared
melt takes place immediately. Moreover, it is well demonstrated
that the existence of pre-oriented polymer chains in the melt can
influence the crystallization manner and the resultant morphology
[9,10,54,65,66]. Generally, oriented structure will form instead of
spherulites grown from bulk melt. For polymorphic polymers,
shear-flow can also influence the crystal structure. As an example,
sheared or strained iPP melt encourages the formation of b-iPP
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Fig. 2. Turbidity of iPP crystallized following a “pulse” of shear at Tc ¼ 141 �C and
sw ¼ 0.06 MPa for various shearing times. The half crystallization time (s1/2) reaches a
plateau after a shearing time of about 5 s. Reproduced with permission from Ref. [8],
copyright� 1999, American Chemical Society.
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crystals rather than its thermodynamically most stable a-iPP
crystals, which are always obtained under quiescent condition
[10,31,67e69]. The mechanism of iPP b-crystallization in flow field
is, however, a long-standing puzzle [70e73]. Taking all these into
account, in this article, the effects of chain orientation on the
crystallization of iPP concerning the crystallization kinetics, crys-
talline morphology and crystal structure are reviewed. Particular
attention is paid to the formation mechanism of orientation-
induced b-iPP crystallization.

The rest of this feature article is organized as follows. In Section
2, a quite brief introduction about the crystallization kinetics of iPP
in the flow field is given to show the great progress in this field.
Henceforth, the common structural and morphological features of
iPP together with their formation conditions are presented in
Sections 3 for a better comparison with the orientation-induced
structures. The influence of shear flow on the crystalline mor-
phologies of iPP is discussed in Section 4, while Section 5 focuses
mainly on the influence of chain orientation on the polymorphic
behavior of iPP and the mechanism of iPP b-crystallization. After
that the article ends up with a brief summary and future challenges
in this subject.

2. Crystallization kinetics of pre-oriented iPP melt

It is well established that polymer chains can be oriented or
even stretched by shear flow and consequently crystallize with
different kinetics compared to those encountered under quiescent
conditions. Therefore, the crystallization kinetics of polymers un-
der shear or elongation flow has been intensively studied [16e
18,21e24,28]. We here give a brief introduction to illustrate the
great progress in the understanding of the influence of chain
orientation on the crystallization kinetics of iPP. For an extensive
review please see Ref. [74]. The early studies in this field were
focused on the measurements of overall global crystallization ki-
netics [18,20,25,63,75,76]. The experimental results show that the
crystallization process is affected remarkably by the shear flow. An
enhancement in the overall crystallization kinetics is seen when-
ever crystallization takes place during shear or even after shear.
Fig. 1 presents an example showing the corresponding Avrami
analysis and the increase in the Avrami constant of iPP under
isothermal conditions at 136 �C as a function of the shear rate [76].
The change in the Avrami constant k as a function of the imposed
shear has been described by Kshear ¼ 2:4 _g3:6. It indicates that a
change of a factor of 2 in the imposed shear rate ( _g) could result in a
ten-fold increase in the crystallization rate. Undoubtedly, shear rate
or shear stress is the most important parameters in shear-induced
crystallization of polymers. The shear strain, which is equivalent to
the shearing time for a constant shear rate, shows also evident
effect on the crystallization kinetics. It was well established that for
Fig. 1. Avrami analysis: (a) Effect of shear rate at constant shear duration (ts ¼ 30 s) and indu
a function of shear rate for iPP under isothermal conditions at 136 �C. Reproduced with pe
a constant shear rate, a higher shear strain results in a larger in-
crease in the crystallization kinetics, even though the effect of shear
strain (or shear time) is limited at low shear rates.

For characterizing the crystallization kinetics of polymers, a
quite frequently used parameter is the half crystallization time s1=2,
defined as the time taken to achieve a 50% degree of crystallinity.
The influence of flow on the crystallization kinetics of iPP is man-
ifested by a tremendous decrease in the half crystallization time as
compared to that for quiescent condition. Due to very fast crystal-
lization of polymers under flow, intensity measurement of trans-
mitted light through a rheo-optical device provided an excellent
tool to follow the rapid crystallization kinetics of polymers [51]. In
this connection, a turbidity half time (s1=2), is introduced [8,77]. It is
defined as the time where the normalized transmitted light in-
tensity has decayed to its half initial value. Fig. 2 shows a repre-
sentative result demonstrating the crystallization process of iPP
under varying shear conditions. It can be can clearly seen that the
s1=2 for quiescent crystallization was on the order of hours, while it
decreases by approximately 2 orders of magnitude upon shearing
the melt for 4 s. With the increase of shearing time, the crystalli-
zation time first decreases rapidly and then reaches a plateau at a
shearing time of about 5 s.

It was suggested that shear flow influences both the nucleation
and crystal growth steps. However, the flow-enhanced crystalli-
zation rate is predominately attributed to a significant acceleration
of the nucleation rate and an increase of nucleus density [30,78].
The common physical intuition is that flow induces local orienta-
tion of polymer chains and thus enhances the nucleation ability. In
this regard, temperature is very important since it affects the
relaxation of the polymer chains or chain segments. For example, a
decrease of 20 �C in the crystallization temperature generates a
two-order of magnitude acceleration in the crystallization kinetics
of iPP. Janeschitz-Kriegl and coworkers have isolated the effects of
ction time (t0 ¼ 0 s). (b) Relationship between the kinetic rate constants, kshear/kstatic, as
rmission from Ref. [76], copyright� 2006, Elsevier Science Ltd.
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flow from thermal effects and separated simultaneously the
nucleation and crystal growth evens by counting the formed nuclei
[29,36,37,79e83]. Their results have demonstrated that the influ-
ence of flow on the nucleus density is overwhelming; especially at
high temperatures when the number density of nucleus in quies-
cent melt is extremely small. Moreover, it was found that the
number of nuclei increases continuously with increasing duration
of the shearing.

It should be pointed out that counting the number of nuclei
could only be done at relatively low shear rate and high tempera-
ture. At high shear rate, thread like structure forms, which leads to
the counting of nucleus number impossible. Therefore, the char-
acterization of the nucleation process of polymer melts under flow
is most frequently based on induction time, i.e., the time required
for the onset of crystallization, which is suggested to be inversely
proportional to the nucleation rate [16,18,20e23,26,28,84]. The
determination of induction time is relatively easy through rheology
measurement since an abrupt increase in shear viscosity takes
place whenever crystallization starts [18,20,21,84]. It was found
that the higher the shear rate, the shorter the induction time. Fig. 3
presents a typical dependence of the induction time of sheared iPP
melt on shear rate. It shows several features. A most important
feature is that they show a zero initial slope, which means the
existence of a low shear region where the melt behaves like the
quiescent melt. Second, the critical shear rate increases with
increasing shear temperature. Another important feature is that the
induction time decreasesmore quickly with increasing shear rate at
high temperature. This demonstrates that the effect of flow on the
nucleation of iPP is more efficient at high crystallization tempera-
ture. The high efficiency of shear on the induced crystallization at
high crystallization temperature has been explained in the
following way. With increasing temperature the quiescent crys-
tallization rate tends to zero when the temperature closes to its
thermodynamic melting point, but the flow-induced orientation
effect survives at this temperature. Moreover, Janeschitz-Kriegl and
coworkers [79e83] suggested that there is a huge reservoir of
poorly organized aggregates (local alignments) of molecular chains.
These aggregates can become effective nuclei only at rather low
temperatures in a quiescent melt. The flow action can, however,
promote the growth of them. In this way, a large amount of poor
quality dormant nuclei will be transformed into nuclei with better
quality, which are active at a higher temperature under shear.
Fig. 3. The induction time of iPP as a function of shear rate. Solid lines indicate the
quiescent induction time, while the dashed lines are the linear fits of the high shear
rate data. Reproduced with permission from Ref. [139], copyright� 2004, Elsevier
Science Ltd.
Therefore, the effect of flowon the crystallization kinetics is relative
more pronounced as the degree of supercooling decreases.

The dependence of crystallization rate of sheared iPP melt on
the molecular weight and molecular weight distribution supports
the above explanations. As reported by several research groups,
such as, Janeschitz-Kriegl [37], Winter [51,85], Kornfield [53], and
Hsiao [86e88], just to name a few, an increase in MW results in a
larger increase of the flow-induced crystallization rate under the
same shear rate. It is widely accepted that for a broad molecular
weight distribution sample, only polymer chains above a “critical
molecular weight” (M*) can become sufficiently oriented at a given
shear rate [41,46]. In this case, the long molecular chains in a broad
molecular weight distributed polymer will be more sheared or
stretched with respect to the shorter molecular chains
[37,46,51,53]. As a consequence, a small amount of high molecular
weight tail leads to an absolutely faster crystallization of a sheared
iPP melt.

The above discussion has qualitatively explained the observed
phenomena of the flow effect on the iPP crystallization. Actually,
phenomenological models based on the fundamental work of
quiescent isothermal crystallization kinetics have also been pro-
posed to describe the flow-induced polymer crystallization
[5,75,89e96]. McHugh has made the first attempt for extending
the theory for quiescent condition to flow-induced crystallization
[90]. In their case, the same expression for quiescent nucleation
rate was chosen with the addition of a driving force term [97].
Grizzuti and coworkers [75,95,96] have considered the coupling
between temperature and flow under isothermal conditions and
modified the flow-induced crystallization model for describing the
early stage of isothermal crystallization of sheared polymer melts.
Further improvement of their model has been made by the
calculation of free energy change of a polymer chain during flow
in terms of the DoieEdwards micro-rheological theory [98]. Based
on the assumptions that (i) the flow mainly affects the nucleation
process [29], and (ii) the effect of flow on the nucleation rate is
merely additive and leads to an increase in the thermodynamic
driving force for nucleation, they have modified the free energy
difference between liquid and crystalline phase. It should be
emphasized that the proposed theoretical model is successful not
only for a qualitatively explanation of the observed experimental
phenomena, but also for a quantitative prediction of the induction
time of iPP under steady shear flow at isothermal conditions since
the related parameters can be obtained from independent exper-
iments [75,96].

3. Basic structure and morphology of iPP

The last paragraph has briefly summarized the great progress in
the study of crystallization kinetics of pre-oriented iPP melt.
Henceforth, the influence of shear flow on the crystalline
morphology and crystal modification of iPP will be discussed. To
this end, the common structural and morphological features of iPP
together with their formation conditions are presented first for a
better comparison with the orientation-induced structures. IPP is a
semicrystalline polymer with pronounced structures and mor-
phologies depending on the processing and molecular parameters
[20,46,56]. It is clear that the iPP chains possess always a 3/1 helical
chain conformation in the crystal. However, the existence of left- or
right-handed helical chains made the crystalline architecture and
morphology of iPP multifaceted. Depending on the tacticity, mo-
lecular weight, thermal treatments and mechanical handling, the
iPP can pack in three different crystalline structures, designated as
a, b and g forms [99e107]. Moreover, a so-called smectic meso-
phase, which is sometimes referred to as a conformational disor-
dered phase, has also been reported [108,109].



Table 1
Types of iPP spherulites.

Spherulite
type

Banding Birefringence (Dn) Crystallization
temperature

aI No 0.003 � 0.001 <134 �C
aII No �0.002 � 0.0005 >138 �C
am No 134e138 �C
bIII No �0.013 <128 �C
bIV Yes �0.023 (bright)

& �0.002 (dark)
128e132 �C
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The a-iPP, which can be simply produced by melt crystallization
of commercial grade iPP under static condition, exists in a mono-
clinic lattice with alternate layers of left- or right-handed helices
along its b-axis direction [2,100]. Different types of a-iPP spheru-
lites depending on growth condition have further been classified by
Padden and Keith on the basis of their optical birefringence
[101,110]. As listed in Table 1, spherulites grown below 134 �C have a
slightly positive birefringence (the type referred to as aI), whereas
spherulites grown above 138 �C have a negative birefringence (the
type referred to as aII). When the crystallization temperature is set
between 134 and 138 �C, spherulites often display a mixed bire-
fringence and are therefore referred to as ‘mixed’ type (am). The
temperature-dependent optical behavior of a-iPP spherulites is
quite complex. There exist discrepancies in the temperature ranges
for a-iPP spherulites grown by different researchers. This may be
associated to the usedmaterials. Moreover, the optical characters of
a-iPP spherulites could change by thermal treatment. It was found
that high temperature annealing can lead to a transformation from
positive or mixed a-iPP spherulites into negative ones. The struc-
tural origin of the peculiar birefringence feature was explained
using the unique wide angle lamellar branching of a-iPP [73,102e
104]. The wide angle lamellar branching creates a cross-hatched
bimodal lamellar orientation with the radial lamellae initiating
the overgrowth of the nearly tangential oriented lamellae. It is an
intrinsic property of a-iPP and happens under many crystallization
conditions, e.g., growth from thin molten layer (see Fig. 4a) [111]
and in solution cast thin films (see Fig. 4b) [112]. Even though the
phenomenon was first observed in the early 1960s, an under-
standing of it on a molecular level was achieved nearly 20 years
later [73,102,104,105]. Taking the molecular subgroups, i.e., the side
methyl groups, and the handedness of the helices into account, Lotz
et al. [73] has explained that the branching takes place whenever
two successive ac layers are made of chains with the same hand
(see Fig. 5), whereas the crystallographic unit cell requires opposite
handed helices.

According to the “cross-hatching” model, the peculiar positive
and mixed birefringence was associated to the existence of
tangential oriented lamellae in the spherulites. For a better
Fig. 4. Cross-hatched lamellar structures of iPP formed under different conditions. (a) An A
A phase contrast TEM micrograph taken from a solution cast iPP thin film at 110 �C. Part a
understanding, Fig. 6 shows a polarized optical micrograph, using a
primary red filter (l-plate), of a-iPP spherulites. The inner and
outer parts of each spherulite are optically positive and negative,
respectively [113]. Scanning electron microscopy observations
illustrate the fine lamellar structures of both inner and outer parts
of the a-iPP spherulites. As presented in Fig. 7, it is obvious that the
growth character of the central part of the spherulite is different
from the outer part. In the outer part, most of the lamellae grow
along the radial direction of the spherulites, reflecting the con-
ventional spherulite growth character of most polymer spherulites.
On the other hand, the inner part of the spherulite exhibits an
interwoven structurewith the lamellae oriented preferentially both
in the radial and tangential directions. The adjacent lamellae lay
approximately orthogonal (ca. 80�) to each other, forming a cross-
hatched structure. This provides the direct evidence that the
negative a-iPP spherulites are characterized by predominantly
radial lamellae while the positive spherulites are characterized by a
cross-hatched lamellar morphology. Based on the above descrip-
tion, one can easily imagine that the ‘mixed’ spherulites are the
consequence of inhomogeneity in a given spherulite with the
coexistence of radial and tangential predominant domains.

The b-iPP is thermodynamically metastable. Even though it was
first observed in 1959 [109], its crystal structure has been a puzzle
for a long time and was just solved in 1994 [71,72]. The reason for
the delay rests on the uncertainty of the unit cell dimensions and
symmetry. Difficulty in solving the b-iPP crystal structure stems
from the fact that its fiber pattern cannot be obtained since ba
conversion takes place during stretching. This leads to the sug-
gestion of various hexagonal unit-cells with the a-axis parameter
ranging from 1.1 to 2.2 nm [106,114e116]. A sophisticated under-
standing of b-iPP structure has been realized by detailed electron
diffraction analysis of its single crystals. It is now clear that, in the b
phase, the iPP molecular chains of three-fold isochiral helices build
up trigonal unit cell with different azimuthal orientations. The
helices thus have different environments and at least one of these
environments is less favorable, i.e., the formation of frustrated
packing of helices [21,72]. The spherulites of b-iPP exhibit very
strong negative birefringence in comparison with its a-counter-
parts and have been divided into two categories as also listed in
Table 1, i.e., the radial bIII and ring banded bIV. It was confirmed that
the banded b-spherulites contain lamellae twisted around their
longitudinal axes. In the dark bands, lamellae lying flat-on are
dominating, while the bright bands represent the regions where
the lamellae stand on their edges [22,23,117,118]. Moreover, hedritic
structures of b-iPP could form at high crystallization temperature,
which exhibit regular polygonal forms [24e26,119e121]. The
appearance of the hedrites depends remarkably on the direction of
view and the maturity of the structure. Several forms have been
recognized. They are mainly: (i) hexagonites in hexagonal shape
with weak birefringence, (ii) axialites with strong negative
FM phase image taken during isothermal crystallization of iPP from melt at 146 �C. (b)
is reproduced with permission from Ref. [111], copyright� 2005 Elsevier Science Ltd.



Fig. 5. A schematic representation of the wide angle lamellar branching of a-iPP and the interactions between facing methyl groups of parallel ac planes made of either isochiral or
antichiral helices. (a) Illustration of parallel deposition of the i-PP helices on the ac-plane of the a-phase giving rise to a continuous a-phase growth. The methyl groups of the
substrate growth face (a1c1-plane) are shown as red balls. The yellow methyl groups of the depositing antichiral stems in the a2c2-plane face and are interdigitated with the red
methyl groups which are the stem orientation in the new layer is parallel to in the original a-phase crystal (a1 is parallel to a2, and c1 is parallel to c2). (b) Molecular deposition of the
i-PP helices on the ac-plane of the a-phase leading to the lamellar branching in i-PP. The yellow methyl groups are now of helices isochiral to the substrate ones. A pattern of
interactions similar to (a) is generated when the stem orientation in the a3c3-plane is either 80� or 100� away from that in the original a-phase crystal (a3 is parallel to c1, and c3 is
parallel to a1). Adapted from Ref. [73].

Q. Liu et al. / Polymer 54 (2013) 4404e44214408
birefringence, (iii) ovalites in oval form developed from the axialites
in later stage of crystallization, and (iv) quasi-spherulites developed
either from hexagonites or axialites. These hedrites are regarded as
the precursors of b-spherulites since transformation of them into
spherulites generally takes place in the later stage of growth
[24,120].

The g phase of iPP has receivedmuch less attention. This leads to
the early work being not well continued for a long time
[31,32,122,123]. The breakthrough in the understanding of g-iPP
crystal structure has been realized in the 1990s after Meille and
Bruckner reported a non-parallel chain packing in an orthorhombic
unit cell [124]. The non-parallelism of iPP chains in the g-phase has
actually a close resemblancewith the lamellar branching of a-iPP in
away that the chain axis rotation of lamellar branching in a-iPP has
become a crystallographic element of symmetry in the g-iPP unit-
cell. Actually, the g-iPP crystals usually co-crystallize with their a
Fig. 6. A polarized optical micrograph, using a primary red filter (l-plate), of a-iPP
spherulites. The sample was prepared by crystallizing the iPP from melt at 138 �C for
30 min, then heated again to ca. 174 �C, at which the birefringence disappears
completely, and finally cooled with a cooling rate of 30 �C/min to 138 �C for 40 min
isothermal recrystallization. The inner parts of the spherulites correspond to the parts
first crystallized at 138 �C, melt at 174 �C and then recrystallized at 138 �C again, while
the outer parts are those grown directly from the melt at 138 �C after cooling
from 174 �C to 138 �C. Reproduced with permission from Ref. [113], copyright� 2006,
Wiley-VCH.
counterparts under special conditions, such as, low Mw specimen,
crystallization of conventional iPP under high pressure or incor-
poration of a few percent of comonomer at atmospheric pressure
[125e131]. The achievement in producing well-defined iPP co-
polymers with high stereoregularity and large content of co-
monomers has revived the studies on chemical and physical
requirements for the formation of g-iPP [130e132]. Morphological
analyses show that the g-iPP spherulites can be optically positive
or negative depending upon the crystallization temperature
[17,19,56,109].

The smectic phase or conformational disordered phase of iPP
reflects a well-defined phase with an extent of order intermediate
between the crystalline and amorphous phases [2,100,107,108]. It
has also been less frequently named as paracrystal [35,133],
microcrystal [36], condis crystal [37,134], or mesomorphic phase
[38,135]. In this phase, the chains have undergone a conformational
ordering from random coil to 3/1 helix, but the packing of helices
are not as that in the crystalline phase. It is often characterized by
parallel helices with some degree of positional correlation along
the chain axis between adjacent helices but disorder in the lateral
Fig. 7. An SEMmicrograph shows a boundary area including the fine structures of both
inner and outer parts of the a-iPP spherulites presented Fig. 2. The right side corre-
sponds to the inner part, while the left side corresponds to the outer part. Reproduced
with permission from Ref. [113], copyright� 2006, Wiley-VCH.
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packing. In general, this phase can be produced by cold-drawing
and quenching the melt at a drastic cooling rate, which is consid-
ered as a “frozen” intermediate ordering state during crystallization
pathway [37,134].

4. Orientation-induced morphology of iPP

When polymers crystallize from melt subjected to flow, the
semicrystalline morphology changes due to the existence of chain
orientation [136]. This is reflected by the change from typical
spherulite shape encountered under quiescent condition to the
highly oriented structure. Fig. 8 presents a transmission electron
micrograph and its corresponding electron diffraction pattern of
the uniaxially oriented iPP thin films crystallized under elongation
flow. It was prepared according to the melt-draw technique intro-
duced by Petermann and Gohil [137]. In the bright field image, one
can see the highly oriented crystalline lamellae parallel aligned
perpendicular to the flow direction. The sharp and well defined
electron diffraction spots demonstrate the excellent chain orien-
tation of the iPP. All of the observed electron diffraction spots can
be accounted for by a monoclinic unit cell with lattice constants
a ¼ 0.666, b ¼ 2.078, c ¼ 0.650 nm and b ¼ 99.62� [100], indicating
the formation of oriented a-iPP crystals.

Another most frequently encountered morphology formed un-
der flow condition is the “shishekebab” structure [3,41e
44,46,49,75,138e161]. It is generally accepted that molecular
chains of a polymer could be stretched under flow field. The
stretched molecular chains form extended chain “shish” crystals,
which initiate the overgrowth of folded chain “kebab” crystals. The
first theory dealing with chain dynamics of polymers in dilute so-
lution under flow has been developed by de Gennes [162]. The core
of his theory was the abrupt coilestretch transition; i.e. polymer
chains undergo a sharp transition from random coil to a fully
extended-chain conformation. Keller et al. [138] have provided the
experimental evidence for the coilestretch transition of polymer
crystallization in dilute solutions under flow and proposed a mo-
lecular model of the “shishekebab” structure. Taking this into ac-
count, the “shishekebab”morphology can be used as a signature of
the occurrence coilestretch transition. Similar to those observed in
dilute solutions, the coilestretch transition was also found in
entangled iPPmelts, which leads to the formation of “shishekebab”
structure of iPP under shear flow.

To understand the origin of “shishekebab” structure of iPP, Han
et al. [155e158] have investigated the shear-induced crystallization
of iPP at low shear rate (shear rate < 1 s�1) and low temperature.
They have observed the shear-induced cylindrite structures. As
shown in Fig. 9, the core of the cylindrites formed rapidly after
shear cessation. The length of the core did not change after shear
cessation. However, it initiates the growth of the crystals laterally.
Fig. 8. (a) A bright field transmission electron micrograph and (b) its corresponding electro
flow through melt-draw at 130 �C. The arrow indicates the drawing direction.
At late stage quantity of the newly formed crystals impinged into
each other. From the AFM images of the etched iPP samples, the
shish-like structure was found to be much wider. Compared with
the radius of gyration of the used sample, it is suggested that the
process of shear-induced shish crystals may involve a large number
of entangled molecules under a low shear rate and low tempera-
ture. According to these results, a schematic illustration of the
shishekebab structure under shear at low shear rate is presented in
Fig. 10.

Shear induced shishekebab morphology has also been achieved
and monitored by AFM, as presented in Fig. 11. The shear force was
introduced by controlling the value of setpoint and moving the
cantilever a certain distance under the lift mode. Based on the re-
sults, several points have been identified. First of all, the
morphology of shishekebab depends on the shear stress. Under
low shear stress, the distance of two adjacent kebabs is large
(z16 nm) and the thickness of the kebabs is much thinner than
that of shish structure. With increasing shear stress, the kebabs
pack much more densely. Second, the relaxation time at shear
temperature determines the length of shish crystals. With the in-
crease of relaxation time, the overall length of the shish structure
shortens through fracturing into several parts. When the relaxation
time is longer than 480 s, only very short shish structure can be
observed. At the same time, the ability of the shish for inducing the
kebab lamellae weakens. Third, the in situ melting experiment
suggests that the unoriented lamellae melt first at the nominal
melting temperature (about 167 �C), followed by the melting of
kebab lamellae at a relatively higher temperature (174 �C), and
finally the shish structures melt at an even higher temperature
(180 �C). This indicates that the shear induces the formation of
shishekebab crystals of iPP in its a-phase.

Hsiao et al. [43e46,144e150,163] have studied the formation of
shishekebab structure of entangled iPP melt by in situ rheo-X-ray
and revealed the early stage of the shear-induced crystallization.
Through combined SAXS and WAXD experiments, they found that
scaffold (network) of precursor structures forms at the early stage,
which may correspond to the density fluctuation prior to crystal-
lization. This was also found by the in situ rheo-optical investiga-
tion of the flow- or shear-induced crystallization of iPP under
oscillatory shear [51,164e166]. The scaffold containing shish crys-
tals with extended chain conformation can exist in amorphous [45],
mesomorphic [148] or crystalline [164] states while the kebabs
with fold chain conformation exist only in the crystalline state. The
chains in the shish crystals were entangled with the neighboring
chains. The individual chains do not disentangle completely in the
deformed melt and undergo abrupt unwinding to fully extended
chain conformation. It was further found that the core of the
cylindrites comes from stretched bundles of the entangled network
strands rather than from the extended chains in stretched melt.
n diffraction pattern of the highly oriented iPP thin films crystallized under elongation



Fig. 9. Optical micrographs of the shish-kebab-like structure grown from sheared iPP melt. The thermal history of the iPP was melted at 200 �C for 5 min, then quenched to 140 �C
and sheared for 2 s at shear rate of 0.5 s�1. After shear cessation, the sample was isothermally crystallized at 140 �C for different times. The arrow indicates the flow direction.
Reproduced with permission from Ref. [156], copyright� 2007, Elsevier Science Ltd.
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Moreover, the average length of shish-like structure decreases
instead of increasing with time after shear.

5. Orientation-induced polymorphic behavior of iPP

As mentioned in the third section, iPP is one of the polymers
exhibiting pronounced polymorphism depending upon the ther-
mal and mechanical treatments. The a modification can be easily
produced by melt crystallization of commercial grade iPP under
static condition [100]. The b form is difficult to be obtained under
normal processing conditions and therefore has been considered as
Fig. 10. Illustration of shishekebab structure formed under shear at low shear rate.
laboratory curiosities. Nevertheless, it attracts due attention owing
to its different performance characteristics, including low crystal
density, low melting temperature, and markedly improved impact
strength and toughness [167e188]. It was found that crystallization
from sheared or strained iPP melt encourages the crystallization of
iPP in its b-phase [9e11,42e44,65e70,170,189]. Studies in this field
concern mostly the effect of shear rate on the b-crystallization of
iPP. The mechanism of its b-crystallization remains a long-standing
problem.

Steady shear experiments with rotational plates show that the
b-iPP crystals can be created at very low shear rate. Fig. 12 presents
the optical micrographs of an iPP sample prepared by shearing the
iPP supercooled melt at 134 �C for 5 s at a shear rate of only 1 s�1

[156]. Selective melting at 156 �C demonstrates the existence of the
b-iPP crystals. It was found that the amount of b-iPP crystals de-
pends evidently on the shear rate. Hsiao et al. [44,190] found that
Fig. 11. An AFM image shows the shear induced shishekebab morphology (indicated
by an blue arrow) achieved under AFM. The sample has been sheared by the AFM tip
and relaxed for 120 s after shear. The white arrow indicates the shear direction.



Fig. 12. (a) An optical micrograph of iPP crystallized under shear. The sample was prepared by melting at 200 �C for 5 min, then quenched to 134 �C and sheared 5 s at the shear
rate ¼ 1 s�1, followed by isothermal crystallization at 134 �C for 500 s. (b) The selective melting of the b-form iPP at 156 �C (indicated by the arrows), indicating the formation b-iPP
under used shear condition. Reproduced with permission from Ref. [155], copyright� 2005, Elsevier Science Ltd.

Fig. 13. Schematic diagram of a cylindrite structure with ab bifurcation. Reproduced
with permission from Ref. [202], copyright� 2006, American Chemical Society.
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the amount of b-phase reached a plateau value at a shear rate of
57 s�1, while a 70% final contribution of b-iPP crystals to the total
crystalline phase was reported at the shear rate of 102 s�1. An et al.
[191] have studied the development of both a and b iPP crystals in
the iPP melt after shear as a function of shear rate. They found that
the total crystallinity of iPP is not affected by the shear rate, while
the portion of the b crystals depends remarkably on the shear rate.
With increasing shear rate, the contribution of b-iPP crystals to the
total crystalline phase increases rapidly and reaches a maximum at
a shear rate of ca. 20 s�1. Henceforth it decreases slightly with
further increase of the shear rate. This is somewhat different from
the result reported by Hsiao et al. The inconformity may be caused
by different materials used. On the other hand, WAXD experiments
demonstrated that the intensity of the (300)b reflection did not
show noticeable azimuthal dependence. This means that the b-
crystals were primarily unoriented. From this point, the increase in
the crystallization kinetics of unoriented crystals concluded from
the SAXS study may be attributed to the b-crystallization of the iPP.
Moreover, the oriented a-crystals form immediately after shear and
then the b-crystals grow subsequently suggests that the surface of
the oriented a-crystal entities may provide nucleation sites for the
b-crystals. These results just provide us some speculations about
the formation mechanism of b-iPP crystals. Detailed information
about shear-induced b crystallization of iPP has been obtained by
fiber pulling procedure, in which the shear-induced crystallization
of iPP was performed by pulling the fiber embedded in iPP melt
along the fiber axis [33,66,192].

It was attested that the fiber-pulling process was efficient in
producing samples rich in b-modification, regardless of the nucle-
ation abilities of the used fibers toward the iPPmatrix. For example,
the unsized glass fiber shows no nucleation capability towards iPP
in static melt but induces column structures of iPP by pulling the
fiber during crystallization of iPP matrix [30,65]. Even for the fibers
which can nucleate the iPP, the supermolecular structures of iPP
induced by shear created through fiber pulling are different from
those in the transcrystalline zone formed in static melt. When
crystallizing from static melt, the monoclinic a-iPP was the
observed morphology in the vicinity of the fibers as well as in the
areas of bulk crystallization. In the shear-induced crystallization of
iPP through fiber pulling, mainly b-iPP crystals were produced in
the vicinity of the fibers. To distinguish the column structure
generated by fiber pulling from the transcrystalline structure trig-
gered by surface induced heterogeneous nucleation, Varga et al.
[66] have defined the shear-induced column structure as “cylin-
drite”. Through selective melting of the b-iPP crystals at tempera-
tures above the melting point of b-iPP but below that of a-iPP (e.g.
160 �C), they found that the shear-induced supermolecular struc-
ture consisted of two crystalline forms, namely, a thin a-iPP layer
directly connected to the pulled fiber with a zigzag outline and the
later grown b-iPP layer away from the fiber. Based on this fact, it
was concluded that shearing the iPP melt by fiber pulling yielded
primary a-row nuclei along the fiber. As sketched in Fig. 13, on the
surface of these a-row nuclei, a a-to-b growth transition or ab-
bifurcation took place during crystal growth, which led to the for-
mation of randomly dispersed point like b nuclei. These b nuclei
induce a layer with b-phase in rich along the pulled fiber as long as
a higher growth rate of the b-phase (Gb) than a-phase (Ga) was
achieved [10,70,193,194]. Otherwise, the quickly growing a-iPP
crystals would embed the generated b-nuclei. A faster growth rate
of b-iPP crystals than its a-counterparts can only be achieved in the
temperature range of 100e140 �C. Therefore, the ab-growth tran-
sition is also limited in this temperature window. The fact that the
oriented a-crystals always form first and then the b-crystals grow
afterward seems to support the present explanation since the ex-
istence of a row nuclei in shear-induced crystallization has been
proved by optical microscopy and AFM observations [10,66,70,121].
Also the b crystallization of iPP in a temperature gradient can be
well explained in terms of ab-growth transformation along the
oriented a growth front [171,172]. There are, however, two aspects
which remain difficult to be understood, namely, (i) the occurrence



Fig. 14. A sketch shows the sample preparation procedure of single iPP fiber/matrix
composites. Reproduced with permission from Ref. [195], copyright� 2003, American
Chemical Society.
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of the ab-growth transition on the surface of the in situ formed a-
row nuclei instead of the growth of a-iPP crystals and (ii) the
original morphological difference on the a-row nuclei surface be-
tween the places where the ab-growth transition taking place and
the continuous growth of a-iPP crystals, i.e. the bottom edges of the
a-iPP triangles shown in Fig. 13. In other words, the origin behind
the ab-growth transition, if it exists, is still not quite clear.

To disclose the origin of shear-induced b-crystallization of iPP,
our group has adopted another way to follow the orientation-
induced crystallization of iPP [195e203]. In our procedure, we
check the orientation-induced crystallization of iPP by recrystall-
izing its highly oriented fibers after incomplete melting of them.
Here the orientation of the iPPmolecular chains is controlled by the
melting temperature and relaxation time of the fibers. Considering
that the morphological features of the single fiber are difficult to be
monitored, self-induced crystallization of iPP melt by its homoge-
neous fiber with varying melting extent was studied. The fiber/
matrix single iPP composites were produced by a procedure
sketched in Fig. 14. The iPP matrix thin film was first heated to
Fig. 15. Optical micrographs of iPP single-polymer composites with a and b iPP crystals indi
temperatures were (a) 126 �C, (b) 130 �C, (c) 133 �C and (d) 141 �C. Reproduced with perm
200 �C for 10 min to erase possible effects of thermal history on the
subsequent crystallization of the sample and then moved to a
preheated hot plate, where the iPPmatrix was kept in themolten or
supercooled molten state at the moment of fiber introduction. As
the iPP molten or supercooled molten thin layer reached equilib-
rium at the desired temperature, homogeneous iPP fibers tightly
fixed on a metal frame (see upper part of Fig. 14) were introduced
into the iPP matrix. After introduction of the fibers, the prepared
fiber/matrix single iPP composites were subsequently moved
quickly to another hot plate set at desired temperature for
isothermal crystallization. In the henceforth paragraphs, we review
our recent results and discuss their implications for the
orientation-induced b-iPP crystallization mechanism.

We first check the importance of crystallization rate for the b
crystallization of iPP. During our experimental procedure, we do
find that by melting the iPP fiber at temperatures slightly over its
nominal melting point for short time, mainly b-iPP cylindrical
structures are observed after crystallization in the temperature
window of 100e138 �C (see Fig.15a, b and c), while a-iPP cylindrical
structures are generated at crystallization temperatures above
140 �C (see Fig. 15d) [197]. This is, however, not necessary to indi-
cate that a higher Gb is sufficient for the b crystallization of iPP. The
interfacial morphology created by crystallization at 139 �C under
otherwise unchanged parameters is particularly helpful for eluci-
dating the effect of crystal growth rate on the b-iPP crystallization.
As presented in Fig. 16, now both a-iPP and fan shaped b-iPP
crystals are observed in the transcrystalline layers of iPP.
Comparing the growth fronts of the a- and b-iPP crystals, one can
find that the b-iPP crystals possess an evident higher growth rate
than its a-counterpart. The formation of b-iPP transcrystalline
structure is, however, suppressed. This clearly implies that a higher
Gb may be necessary but not sufficient for promoting b-iPP crys-
tallization. The nucleation of b-iPP crystals is the prerequisite for b-
iPP crystallization.

According to the above experimental results, we focus our
attention on the nucleation of b-iPP crystals by adjusting the fiber
introduction temperature. For this purpose, the crystallization
temperatures in all experiments were set in the temperature range
cated. The fiber introduction temperature was 173 �C and the isothermal crystallization
ission from Ref. [197], copyright� 2004, Elsevier Science Ltd.



Fig. 16. Optical micrographs of an iPP single-polymer composite with a and b iPP crystals indicated. The fiber introduction temperature was 173 �C and the isothermal crystal-
lization temperature was 139 �C. Reproduced with permission from Ref. [197], copyright� 2004, Elsevier Science Ltd.
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for a higher Gb. Optical microscopy observations show that if the
iPP fibers were introduced into the supercooled iPP matrix at
temperatures far below themelting point of iPP fiber (Tmz 170 �C),
e.g., below 160 �C, the iPP fiber is kept in the solid state without any
melting. In this case, it illustrates simply the crystallization of iPP
matrix induced by its homogeneous fiber. As shown in Fig. 17, the
morphological difference between iPP in the vicinity of its homo-
geneous fibers and in the areas away from the fibers unambigu-
ously indicates that the iPP matrix was indeed kept in supercooled
molten state at the moment of fiber introduction. Two different
morphologies of the sample were produced. One is the column
structure of iPP matrix surrounding its single polymer fibers, while
the other one is the spherulitic structure of iPP matrix away from
the fibers. Melting test demonstrates that both spherulitic and
column structures are composed of monoclinic a-iPP. This has a
close resemblancewith what obtained by Loos et al. [204] The same
negative optical character of the interface layers surrounding the
iPP fibers as well as the matrix spherulites indicates a similar
lamellar arrangement in both regions. Moreover, the density of the
iPP nuclei generated on its own fiber surface is too high to resolve
each individual one on an optical level, even in the enlarged optical
micrograph, Fig. 17b.

Scanning electron microscopy (SEM) helps to disclose the fine
interfacial structure. As shown in Fig. 18, the smooth surface and
well-defined boundary of the iPP fiber, which is located near the
left side edge of the picture, indicates that the iPP fiber is not
molten. From the fiber surface, one sees parallel-aligned a-iPP
crystalline lamellae grown transversely, indicating the high
nucleation ability of the iPP fiber toward its single polymer matrix.
The discontinuity of the crystalline lamellae allows the crystalli-
zation to occur in other inaccessible regions. The characteristic
lamellar branching of a-iPP appears between the parallel aligned
lamellae [205,206]. Unlike crystallization from the bulk, the
daughter lamellae are thinner than the mother ones and further
branching on the daughter lamellae has been suppressed. It implies
Fig. 17. Optical micrographs of an iPP single-polymer composite, which show only a-iPP
138 �C. Reproduced with permission from Ref. [195], copyright� 2003, American Chemical
that the rejected materials produce the daughter lamellae during
the cooling process of the sample. The optical character of the iPP
spherulites depends on the relative proportion of the two pop-
ulations of radial lamellae and tangential lamellae and it relies also
on the orientation of the radial lamellae relative to the path of light
[113,206]. The fine structure disclosed by SEM supports the
conclusion made by optical microscopy observation.

With increasing fiber introduction temperature, fan-shaped b-
iPP domains sporadically inlaid in the a-iPP column layers have
been occasionally observed. When the fibers were put into the
matrix at temperatures close to its nominal melting point, e.g.,
168 �C, substantive b-iPP crystals can be created. Fig. 19 shows the
representative optical micrographs with b-iPP crystals distributed
unevenly along the fibers. Around the top part of the left fiber (see
Fig. 19a), the iPP grows mainly in its crystalline b phase, whereas
the fiber on the right side of the picture is predominantly sur-
rounded by the a-iPP crystals. In the middle of the picture, different
supermolecular structures of iPP matrix are generated on different
sides of the same iPP fiber, i.e. the a-iPP and b-iPP on the right and
left sides of the same iPP fiber, respectively. The different crystal-
lization manners may be associated with either the different local
thermal condition of the sample or the different local nature of the
fiber. Anyway, this is quite helpful for exploring the different
growth mechanisms of the a-iPP and b-iPP crystals. With careful
comparison, one can find the different responses of the iPP fibers in
different areas during thermal treatment. The fibers in the areas
where b-iPP crystals are generated seem to be molten, see upper
left corner of Fig. 19a. The fiber located at the middle of the picture
becomes thinner and thinner from its bottom to top ends, sug-
gesting a partial melting of the iPP fibers. This phenomenon is more
clearly seen from the magnified optical micrograph as illustrated in
Fig. 19b. At the right side of the bottom end of the iPP fiber, the
existence of well defined boundary line between the iPP fiber and
the induced crystalline a-iPP (as indicated by an “a”) indicates that
the iPP fiber remains intact during the thermal treatment. On the
crystals. The fiber introduction and the isothermal crystallization temperatures were
Society.



Fig. 18. A SEM micrograph shows the a-iPP edge-on lamellae grown from the surface
of the a-iPP fiber. The introduction temperature of iPP fiber, located at the left side
edge of the picture, was 158 �C. The sample was isothermally crystallized at 135 �C for
1 h after the fiber introduction. Reproduced with permission from Ref. [199], copy-
right� 2004, American Chemical Society.
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contrary, the top part of the iPP fiber surrounded by b-iPP crystals
can hardly be distinguished from the iPP matrix, indicating the
inosculation of the iPP fiber with its homogeneous molten matrix
through melting or at least surface melting. This implies that
melting or at least partial melting of the iPP fiber is in favor of the
formation of b-iPP in the fiber/matrix interfacial layer. Therefore, as
expected, interfacial layers composed of purely b-iPP crystals were
obtained when the fibers were introduced into the matrix melt at
their nominal melting point, see Fig. 20.

SEM observations provide further evidence for the occurrence of
fiber melting and illustrate the growth process of b-iPP crystalline
lamellae [199]. As shown in Fig. 21b, the fiber consists of edge-on
lamellae with most of them well arranged in the direction
perpendicular to the fiber axis. A few of the iPP lamellae aligned
more or less in the axial direction of the fiber, as indicated by a
small white arrow, indicates the occurrence of the unique lamellar
Fig. 19. Optical micrographs of an iPP single-polymer composite with a and b iPP crystals
lization temperature was 138 �C. Reproduced with permission from Ref. [195], copyright�

Fig. 20. Optical micrographs show the morphologies of an iPP fiber/matrix single polyme
perature was 138 �C. Reproduced with permission from Ref. [195], copyright� 2003, Ameri
branching of a-iPP. All these should result from the melting and
recrystallization of iPP fiber during sample preparation. Parts c and
d of Fig. 21 provide detailed structural information about b-iPP
crystal growth at initial stage. It can be seen that the growth of b-
iPP crystals starts from several single lamella embedded in the rich
a-iPP lamellar region, as indicated by the white arrows. At the early
stage, the b-iPP lamellae are loosely packed with some a-iPP in-
clusion, as indicated by the ellipses. These a- and b-lamellae
propagate for fewmicrometers without interference. Subsequently,
the b-iPP lamellae start to branch and splay out leading to the
formation of fan-shaped structures, which stop the growth of a-iPP
crystals, and finally pure b-iPP crystalline lamellae are observed
with non-periodic cracks as indicated by white arrows (Fig. 21e).
Further propagation of the b-iPP crystals results in the occurrence
of the typical lamellae twisting, see Fig. 21f.

The single fiber induced crystallization of iPP indicates that melt
recrystallization of the iPP fiber is in favor of initiating b crystalli-
zation of thematrix. It is, however, uncertainwhether this is caused
by orientation-induced recrystallization or shear-induced crystal-
lization caused by fiber introduction. The result of b recrystalliza-
tion of the neat molten a-iPP fibers helps to exclude the possibility
of shear-induced crystallization. Also the crystallization of iPP
matrix in the heterogeneous PET/iPP fiber/matrix system prepared
in exactly the same way as the single polymer composite confirms
that the b-iPP crystallization in the single polymer composite
originates from the oriented iPP chain segments in the molten fiber
[201]. As presented in Fig. 22, by introducing the PET fiber into the
iPP matrix at 170 �C and then crystallized isothermally at 130 �C for
90 min (Fig. 22a), well-developed column structures of iPP in a-
modification surrounding the PET fiber are observed. On the con-
trary, b-iPP column structures become the solely observed inter-
facial morphology along the whole PET fiber when introducing PET
fiber into the supercooled iPP matrix at temperatures below 150 �C,
see Fig. 22b. This is totally different from the case of single iPP fiber/
matrix system, and therefore reflects a different crystallization
mechanisms of iPP around the PET fiber compared with iPP fiber
induced crystallization. It is confirmed that PET fiber exhibits only a
indicated. The fiber introduction temperature was 168 �C and the isothermal crystal-
2003, American Chemical Society.

r composite. The fiber introduction temperature was 173 �C. The crystallization tem-
can Chemical Society.



Fig. 21. SEM micrographs of an iPP fiber/matrix single polymer composite prepared by introducing the iPP fiber into its supercooled homogeneity matrix at 168 �C and isothermally
crystallized at 135 �C for 1 h. (a) An overall view at low magnification. (b) Surface lamellar structure of the iPP fiber with its axis being indicated by a big white arrow; a small white
arrow labels the crosshatched lamellar structure. (c) Interfacial structure with the b-iPP lamellae indicated by white arrows. (d) Growth of b-iPP at early stage. (e) Continuous
growth of edge-on b-iPP lamellae with the nonperiodic cracks being indicated by white arrows. (f) Twisting of the b-iPP lamellae. Reproduced with permission from Ref. [199],
copyright� 2004, American Chemical Society.
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weak a nucleating capacity toward iPP in the quiescent condition
[66,70,201,207]. In this case, the influence of sample preparation
procedure on the crystallization of iPP overwhelms the heteroge-
neous nucleation of iPP on the surface of PET fiber. The influence of
sample preparation procedure on the crystallization of iPP can be
easily removed by keeping the sample at the fiber introduction
temperature for a certain period of time. To find out the validity of
the above hypothesis, another experiment was performed with the
PET fiber being introduced into the supercooled iPP melt at 145 �C,
then kept at this temperature for different time and finally moved
to another hot plate at 130 �C for isothermal crystallization. As
shown in Fig. 23a, a 5 s placement of the sample at 145 �C before
crystallization shows no evident effect on the interfacial
morphology compared with that formed by direct cooling. A 30 s
placement of the sample at 145 �C, as shown in Fig. 23b, leads to the
formation of well developed b-iPP column layers with some
triangular a-iPP crystals as indicated bywhite arrows in the picture.
When the sample was kept at 145 �C for 10 min, see Fig. 23c, the
cylindrites are composed of purely a-iPP crystals. This reveals that
the initial state of the melt influences the crystallization of b-iPP in
the PET/PP system.

The iPP single polymer system follows another scenario. The
existence of perfect lattice matching between the fiber and matrix
encourages the occurrence of polymer homoepitaxy. The homo-
epitaxy is found to be quite efficient in improving the crystalliza-
tion kinetics of a polymer [208]. Moreover, the better surface
Fig. 22. Optical micrographs of iPP/PET composites, which were prepared by introducing
isothermal crystallization of the samples were performed at 130 �C for 90 min. Reproduced
wettability of the iPP matrix on its own fiber will also enhance the
adsorbability of iPP chains on the surface of the solid fiber and
accelerate the secondary nucleation of the iPP chain on its ho-
mogenous fiber. All those have enabled a very high nucleation
ability of iPP fiber toward its homogeneous matrix. Consequently,
the homoepitaxial crystallization of iPP on the solid surface of its
highly oriented single polymer fiber caused by heterogeneous
nucleation (or secondary nucleation) overwhelms the effect of fiber
introduction. As a result, transcrystallization of iPP in its a-form
driven by the homoepitaxial crystallization is generated at low fiber
introduction temperature since lattice matching possesses a very
strong controlling power on the crystal structure of the epitaxial
polymer [209e214]. On the other hand, if the iPP fiber was to some
extent molten during fiber introduction at high temperature, the
molten iPP fiber would not relaxmuch due to the high viscosity and
short fiber introduction time (about tens of second). The surviving
extended iPP chains or chain segments will serve as self-nuclei and
quickly induce the oriented recrystallization of the matrix during
the subsequent cooling process [43,44,46,56,215e217].

From the above discussion, the chain orientation status in
molten iPP fiber is expected to play an important role in producing
b-iPP crystallization. The results obtained from iPP fiber/matrix
single polymer composites with iPP fibers of varying molecular
weight show indeed different induced crystallization behavior
owing to the different relaxation of molecular chains [196]. Fig. 24
shows three representative optical micrographs of iPP single
the PET into the supercooled iPP melt at (a) 170 �C and (b) 150 �C, respectively. The
with permission from Ref. [201], copyright� 2007, American Chemical Society.



Fig. 23. Optical micrographs of iPP/PET composites. The PET fiber introduction temperature was 145 �C. After fiber introduction, the samples were kept at 145 �C for (a) 5 s, (b) 30 s,
and (c) 10 min and then cooled to 130 �C for isothermal crystallization. Reproduced with permission from Ref. [201], copyright� 2007, American Chemical Society.

Fig. 24. Optical micrographs of iPP fiber/matrix single polymer composites. The iPP fibers with molecular weight (a) 1.94 � 105, (b) 1.85 � 105 and (c) 1.15 � 105 were introduced
into the same iPP melts at (a) 178 �C, (b) 168 �C and (c) 165 �C. The samples were isothermally crystallized at 135 �C. Reproduced with permission from Ref. [196], copyright� 2006,
American Chemical Society.
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polymer composites with same matrix material and crystallization
temperature but different iPP fibers in molecular weight. For high
molecular weight fiber system, see Fig. 24a, pure b-iPP crystalline
interfacial layers can be produced in awide temperature range near
its nominal melting point. On the contrary, in the sample with low
molecular weight fiber, see Fig. 24c, only a-iPP crystalline interfa-
cial layers have been observed at all chosen temperatures. Inter-
facial morphologies with coexistence of both a- and b-iPP crystals
were always observed for the systems with the iPP fibers having
moderate molecular weights, see Fig. 24b. These discrepant inter-
facial morphologies should originate from the different relaxation
behavior of the used fibers, which depends strongly on the mo-
lecular weight [216,217]. The following equivalent experiments
have confirmed the validity of the above conclusion. Fig. 25 shows
the optical micrographs of the iPP matrix/fiber (same as that used
in Fig. 24a) samples prepared by introducing the fiber into the
matrix at 175 �C. After holding at 175 �C for different times, the
samples were subsequently cooled to 135 �C for isothermal crys-
tallization. It can be seen that a 5 min maintenance of the sample at
175 �C after fiber introduction (Fig. 25a) induces still the crystalli-
zation of iPP in its b-form. Holding the sample at 175 �C for 10 min,
not only the total nucleation ability but also the ability in gener-
ating b-iPP crystals have decreased obviously, see Fig. 25b. For a
15 min placement of the sample at 175 �C, see Fig. 25c, the nuclei
Fig. 25. Optical micrographs of iPP fiber/matrix single polymer composites. The iPP fibers wi
that temperature for (a) 5, (b) 10, and (c) 15 min and finally cooled to 135 �C for isothermal c
Chemical Society.
formed along the molten fiber becomes sparse. Individual nucleus
along the iPP fiber is now recognizable. Moreover, the appearance
of fully a-iPP crystals indicates undoubtedly that the more relaxed
molten iPP fiber has lost its ability in triggering its b-crystallization.
These experimental results indicate that the relaxation extent of
the originally highly oriented iPP chains in themolten iPP fiber is an
important parameter for controlling the formation of b-iPP trans-
crystalline layers. This leads to the conclusion that the formation of
b-crystals is associated with the oriented or stretched macromo-
lecular chains survived during incomplete melting of the highly
oriented iPP fiber. From this point of view, the melting and
recrystallization process of the iPP fiber should be concerned to
get a better understanding of the orientation-induced b-iPP
crystallization.

The effect of molecular mass of iPP matrix on the crystallization
of b-iPP was also studied by introducing iPP fibers with
Mw ¼ 1.94 � 105 g/mol and draw ratio ¼ 4 into the matrixes with
different molecular weight [200]. As shown in Fig. 26a, it is found
that b-cylindrites formed around the fiber in the matrix with
Mw ¼ 1.94 � 105 g/mol. On the other hand, the interfacial
morphology for the matrix with Mw ¼ 4.46 � 105 g/mol consists of
mainly a-crystals (Fig. 26b). There are a few of fan-shaped b-iPP
regions (indicated by the arrows). It has to be noted that both iPP
matrixes can crystallize in b-form at the existence of b-nucleating
th molecular weight of 1.94 � 105 were introduced into iPP melts at 175 �C, then kept at
rystallization. Reproduced with permission from Ref. [196], copyright� 2006, American



Fig. 26. Optical micrographs of the iPP fiber/matrix composites prepared by introducing the same iPP fiber into molten iPP matrix with molecular weight (a) Mw ¼ 1.94 � 105 and
(b) Mw ¼ 4.46 � 105 at 180 �C and subsequently isothermally crystallized at 138 �C for 2 h. Reproduced with permission from Ref. [200], copyright� 2006, American Chemical
Society.
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agent. This indicates that the iPP chains in the matrix participate in
the nucleation process of b-iPP. A phenomenological hypothesis for
the nucleation of the b-phase is that the necessary condition for the
formation of b-nuclei requires the participation of iPP chains in the
matrix with the oriented iPP chains at the partially relaxed fiber
surface. In this case, some extent of iPP chain relaxation at the fiber
surface is necessary for the penetration of the matrix chains. The
chain orientation of iPP in the molten fiber should also maintain
above a critical level for creating b-nuclei. Lacking such relaxation
and interdiffusion, the solid fiber surface will act as a substrate for
homoepitaxy of the a-phase. Considering that the diffusivity is
inversely proportional to the square of the molecular mass
[218,219], the diffusivity of matrix with Mw ¼ 1.94 � 105 is esti-
mated ca. 5 times greater than that of the matrix with
Mw ¼ 4.46 � 105. Therefore, the required chain interpenetration
and relaxation for b-nucleation could be easily realized in the lower
molecular weight matrix.

It is well known that the melting behavior of macromolecules is
different from that of the lowmolecular weight compounds. Due to
the long chain character, the macromolecular chains should expe-
rience a “recoiling” or “relaxation” process during melting. The
recoiling process may take quite long time depending on melting
temperature and the molecular weight. Extensive studies on the
relaxation and crystallization of sheared polymer melt indicated
that metastable oriented structures in sheared polymer melt might
resist relaxation upon cessation of shearing and could act as “pre-
nuclei” from which fold chain lamellae grow with the chain axis
highly oriented along the shear direction [43,44,46,215]. These
“prenuclei” can remain active only for a certain period of time after
cessation of shear flow at the temperatures above its melting point.
Azzurri and Alfonso reported that the lifetime of the nucleation
precursors is very sensitive to both relaxation temperature and
molecular weight [216,217]. The melting and recrystallization
Fig. 27. Polarized optical micrographs of an iPP fiber/matrix composite crystallized isother
prepared sample and (b) After melting of the b-iPP crystals at 158 �C. Reproduced with pe
processes of highly oriented iPP fiber are actually similar to the
sheared iPP melt. Considering that the fiber introduction was per-
formed in a quite short time and at temperatures close to or slightly
above its nominal melting point, a complete recoiling of the molten
iPP fiber could hardly be attained before recooling of the samples.
Varga et al. [56] found that some local order of themolecular chains
previously included in a crystal lattice could be preserved as
“prenuclei” or sometime referred to “nucleation precursors”
through studying the effect of melting history on the recrystalli-
zation of iPP by optical microscopy. Taking this into account, one
may argue that the partially or incompletely molten iPP fibers exist
actually in the form of amorphous domains with oriented or
stretched macromolecular chain segments as in the sheared melt.
These oriented molecular segments or chains, in turn, serve as
nucleation precursors and initiate the b-iPP crystallization during
cooling process just like the case of shear-induced crystallization.
Selective melting of the b-crystals displays, however, a scenario
different from the shear-induced iPP crystallization by fiber pulling.

Fig. 27 shows the optical micrographs of an iPP single polymer
composite before and after melting of the b-iPP crystals. In the
interface layer, some randomly dispersed leaf-shaped a-iPP in-
clusions are clearly visible. Comparing parts a and b of Fig. 27, one
may notice that a transition of a-iPP spherulites from mixed type
(am) into negative radial type (aII) has been realized by annealing at
158 �C for a short time [68]. From Fig. 27b, the similar diameter and
relatively smooth surface of the recrystallized iPP fiber compared
with the used original one implies that the growth of the b-iPP
transcrystals starts directly from the fiber surface. This is different
from what observed in heterogeneous fiber/matrix composites
produced by fiber pulling, where a-iPP layers with zigzag edges on
both sides of the heterogeneity fiber were observed after melting of
the b-iPP cylindrites. Moreover, it was occasionally observed
that the iPP fibers could be broken off by selective melting at
mally at 116 �C for 30 min. The temperature of fiber introduction was 173 �C. (a) As-
rmission from Ref. [196], copyright� 2006, American Chemical Society.
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temperatures above the melting point of b-iPP but below that of a-
iPP, see the circled part in Fig. 27b. Since the used iPP fibers are
originally in their a-form, the breakage of the iPP fiber unambig-
uously implies that some local parts of the original a-iPP fiber have
transformed into b-form through melting and recrystallization.
From this point, one may conclude that the melting status, or in
other words, the degree of local chain orientation of the molten iPP
fiber plays a very important role in generating transcrystalline b-
iPP crystals. This has been further confirmed by fiber pulling ex-
periments with controlled pulling rate and time.

It was found that the interfacial morphologies of iPP on Kevlar
fibers, which exhibit no nucleation ability to iPP in quiescent melt,
could vary from pure a-cylindrites to pure b-cylindrites in the
pulled system depending upon fiber pulling rate and duration
[202]. At a very low fiber pulling rate of 17 mm/s, the enhanced
nucleation ability of the fiber to the iPP matrix leads to the for-
mation of a-iPP cylindrites and indicates the existence of shear
exerted on the iPP melt. As in the steady shear-experiments, an
increase of b-iPP content was seen at high fiber-pulling rate with
increasing pulling time. These results indicate that a certain extent
of chain orientation is required to initiate b-crystallization of iPP, or
the existence of a lower threshold of chain orientation for initiating
b-crystallization of iPP. Therefore, at lower fiber pulling rate, since
chain orientation and relaxation take place simultaneously during
fiber pulling, the iPP chains in the molten state can hardly be ori-
ented well enough for triggering b-crystallization of iPP. At higher
fiber pulling rate, chain orientation is faster than relaxation and
high degree of chain orientation for initiating b-iPP crystallization
can be achieved in a short time. From this viewpoint, it is expected
to obtain pure b-iPP crystals at appropriate shear conditions in
steady state shear experiments. This is, however, never realized. On
the contrary, a reduction in the b-iPP crystal content was seen with
Fig. 28. Optical micrographs present the interface morphologies of the iPP/Kevlar matrix/fib
to and kept at 131 �C for fiber pulling and isothermal crystallization. The fibers were pulled
the morphologies of the residual a-crystals after selective melting of the b-iPP crystals at 15
Ref. [202], copyright� 2006, American Chemical Society.
further increase of the shear rate [191]. This result implies the ex-
istence of an upper threshold of chain orientation for b-iPP crys-
tallization, which is confirmed by our selective melting
experiments. Fig. 28a and b show the optical micrographs of sam-
ples prepared by pulling the fibers at 131 �C along the fiber axis at
different pulling rate for different duration, and then isothermally
crystallized for sufficient time. It can be seen that b-iPP cylindrites
are produced in both cases. After selective melting of the b-iPP
crystals at 158 �C, the morphologies of the remaining a-iPP crystals
are quite interesting. As shown in parts c and d of Fig. 28, while
smooth fiber surface is seen at lower fiber pulling rate, residual a-
iPP crystal layers surrounding the fiber have been observed at
higher fiber pulling rate. This indicates that a better chain orien-
tation of the iPP directly in contact with the fiber achieved at higher
fiber pulling rate leads to the formation of thin a-iPP transcrystal-
line layers around the fiber. From the above discussion, it is
concluded that there exists a chain orientation window, in which
nucleation of b-iPP crystals is preferred. As a result, poor chain
orientation outside of this window results in only a-iPP cylindrites,
while highly oriented molecular chains beyond this window
initiate first the oriented a-iPP crystals and then the b-iPP crystals.
This may be the reason for the formation of oriented a-iPP crystals
in melt-drawn thin film (Fig. 8) and the a-iPP shish-kebab structure
shown in Fig. 11.

Combing the results presented in this section, it was found that
a higher crystal growth rate of b-iPP compared with its a-coun-
terpart is a necessary condition for b-iPP crystallization. Otherwise
the fast growing a-iPP crystals will embed the generated b-nuclei.
The local order and environment of the macromolecular chains just
before nucleation are important for b-nucleation of iPP. It seems
that the formation of b-iPP nuclei is restricted in a certain chain
orientation window of the iPP melt. At presented stage, the exact
er systems. The samples were heat-treated at 210 �C for 5 min and then quickly cooled
(a) at a rate of 40 m/s for 10 s and (b) at a rate of 515 m/s for 1 s. Parts c and d highlight
8 �C of the samples shown in a and b, respectively. Reproduced with permission from
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origin of the nucleation process of b-iPP is not quite clear. Consid-
ering that isochiral chains are involved in the b-iPP crystals, one
may suggest that microdomains with isochiral chains are probably
produced through chains rotation in the viscous melt during
relaxation. These isochiral chain aggregates transform into b-iPP
nuclei during cooling process and initiate the growth of b-iPP
crystals. Further experimental and simulation work are needed to
clarify this.

6. Concluding remarks

During polymer processing, the polymer melts are frequently
subjected to shear or/and elongation flow fields, which produce
molecular chain orientation in the melt. The oriented molecular
chains crystallized in a different way as that encountered under
quiescent conditions. Therefore, the orientation-induced crys-
tallization has long been an object of intense interests. This leads
to a vast body of researches about the effects of preorientation on
the crystallization of various polymers. Among them, iPP is most
frequently studied since its diversified structure and morphology
are very sensitive not only to the changes in processing
conditions but also to its molecular parameters. For example,
depending on different molecular structure and thermal and
mechanical treatments, three different crystalline structures, i.e.
the monoclinic a, the hexagonal b and the orthorhombic g, can
be produced. It was well demonstrated that a sheared or strained
melt encouraged the b-crystallization of iPP. Taking this into
account, the study on orientation-induced crystallization is also
expected to be helpful for a better understanding of the b-iPP
crystallization.

Systematical studies on the crystallization kinetics of iPP under
flow field, which produces oriented or even stretched molecular
chains, show that the crystallization process is affected remark-
ably by the preorientation of the molecular chains. This is man-
ifested by an evident enhancement in the overall crystallization
rates. As an example, it is found that a change of a factor of 2 in the
imposed shear rate ( _g) could result in a ten-fold increase in the
crystallization rate of iPP. First of all, flow affects the crystal
growth speed. This rests on the fact that the organization of pre-
ordered polymer chain segments into the crystal lattice rather
easily since they are to some extent closer to their state in the
crystal phase, which exhibit a less kinetic barrier to overcome
compared with the random coiled chains. The contribution of
crystal growth to enhanced overall global kinetics is, however,
rather limited as compared with the significant acceleration of
nucleation. It was widely accepted that the effect of flow on
polymer crystallization is mainly in the change of the nucleation
process and the nucleation density. This is well supported by the
experimental results obtained from the earliest stage of crystal-
lization process under flow. It is also well explained theoretically
under the help of phenomenological models. Actually, the pro-
posed theoretic model can be used not only to explain the
observed experimental phenomena qualitatively but also to pre-
dict the influence of flow on crystallization kinetics precisely.

Studies on the final morphology of iPP indicate that shear flow
encourages the formation of highly oriented structures. At
appropriate conditions, shish-kebab structures have been
observed even at a low shear rate. It is found that the iPP mo-
lecular chains undergo a sharp transition from random coil to an
extended-chain conformation under flow, i.e., coilestretch tran-
sition. The stretched molecular chains form extended chain
“shish” crystals, which initiate the overgrowth of folded chain
“kebab” crystals. Many experimental results suggested that the
shear-induced iPP shish crystals may involve a large number of
entangled molecules. It is somewhat different from the traditional
scenario about the shish-kebab structures. Therefore, newmodels
about the shear-induced shish-kebab structure of iPP have been
proposed based on the new experimental results. A fully under-
standing about this aspect should be one of the most important
challenges in this field.

Studies on the crystal structure of iPP obtained from its pre-
oriented melt indicate that both a and b iPP crystals can be pro-
duced depending on the orientation status and crystallization
conditions. It is found that a faster b-iPP crystal growth rate is
necessary but not sufficient for promoting b-iPP crystallization, or
in other words, the formation of b-iPP crystalline nuclei is the
prerequisite for b-iPP crystallization. Based on the recent experi-
mental results, it is suggested that the formation of the b-iPP nuclei
may be restricted in a certain chain orientation window of the iPP
melts. Poorly oriented iPP chains in the melt crystallize in the a-iPP
form cylindrites, while highly oriented molecular iPP chains
beyond this window initiate first the oriented a-iPP crystals and
then b-iPP crystals. At presented stage, the exact origin of the b-iPP
nucleation process is not quite clear. A better understanding of the
orientation-induced b-iPP crystallization should be another chal-
lenge of this field.
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