Sign idempotent sign patterns similar to nonnegative sign patterns

Rong Huang

Department of Mathematics, East China Normal University, Shanghai 200062, China

Received 19 December 2006; accepted 9 December 2007
Available online 24 January 2008
Submitted by H. Schneider

Abstract

It is shown that not all sign idempotent sign patterns are similar to nonnegative sign patterns. We present two classes of sign idempotent sign patterns that are similar to nonnegative sign patterns. An open problem posed by C. Eschenbach is answered.

© 2007 Elsevier Inc. All rights reserved.

AMS classification: 15A18; 15A42; 15A57

Keywords: Nonnegative sign patterns; Sign idempotent

1. Preliminaries, the two theorems, and comments

A matrix whose entries consist of +, − and 0 is called a sign pattern. A matrix (or vector) \(A \) is called constantly signed if it is of the form \(A = \alpha J \) where \(\alpha \in \{+, -, 0\} \) and \(J \) is the all ones matrix (vector). For a sign pattern \(A = (a_{ij}) \), \(A^2 \) is defined as a sign pattern if no two nonzero terms in the sum

\[
\sum_k a_{ik}a_{kj}
\]

are oppositely signed for all \(i \) and \(j \); otherwise \(A^2 \) is not a sign pattern. If \(A = A^2 \), then \(A \) is called sign idempotent. Obviously, the class of sign idempotent sign patterns is closed under signature
similarity, permutation similarity and transposition. So we always assume that a sign idempotent sign pattern A is in the Frobenius normal form, i.e.,
$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1k} \\ A_{22} & \cdots & A_{2k} \\ \ddots & \ddots & \ddots \\ A_{kk} & & & \end{pmatrix},$$
(1)
where each A_{ii} is square and irreducible, or A_{ii} is the 1×1 zero matrix, denoted (0).

A positive sign pattern (or matrix) is a sign pattern (or matrix) all of whose entries are positive. A signature matrix S is a diagonal matrix with all diagonal entries belonging to $\{+, -\}$. If $B = S^T A S$, then A is signature similar to B. In [1], Eschenbach first characterized irreducible sign idempotent sign patterns, and showed that an irreducible sign pattern A is idempotent if and only if A is signature similar to a positive sign pattern. Thus, we will assume that each nonzero block A_{ii} in the form (1) is positive. The following interesting results from [1] control the blocks A_{ij} above the block diagonal:

Lemma 1.1. Suppose A is an $n \times n$ reducible sign pattern in Frobenius normal form (1). If A_{ii} and A_{jj} are positive blocks, then A is sign idempotent only if A_{ij} is constantly signed.

Lemma 1.2. Suppose A is an $n \times n$ reducible sign pattern in Frobenius normal form (1). If A_{ii} is positive and $A_{jj} = (0)$, then A is sign idempotent only if A_{ij} is constantly signed.

Lemma 1.2 (ii). Suppose A is an $n \times n$ reducible sign pattern in Frobenius normal form (1). If $A_{ii} = (0)$ and A_{jj} is positive, then A is sign idempotent only if A_{ij} is constantly signed.

If A is a sign idempotent sign pattern in Frobenius normal form (1) that has t consecutive 1×1 zero blocks on the diagonal, then those blocks can be collected into a $t \times t$ zero block. Thus, in view of Lemmas 1.1, 1.2 and 1.2(ii), Eschenbach defined the modified Frobenius normal form of a sign idempotent sign pattern A as follows:
$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1r} \\ A_{22} & \cdots & A_{2r} \\ \ddots & \ddots & \ddots \\ A_{rr} & & & \end{pmatrix},$$
(2)
where each A_{ii} is $t_i \times t_i$ and either positive or entrywise zero; A_{ij} is constantly signed if A_{ii} and A_{jj} are positive by Lemma 1.1; the columns of A_{ij} are constantly signed if A_{ii} is positive and A_{jj} is a zero block by Lemma 1.2; the rows of A_{ij} are constantly signed if A_{ii} is a zero block and A_{jj} is positive by Lemma 1.2(ii); and A_{ij} is unrestricted if both A_{ii} and A_{jj} are zero blocks (in which case, $i < j - 1$).

To characterize reducible sign idempotent sign patterns, Eschenbach presented the following algorithm (algorithm 2.6 in [1]):

Algorithm 1 (The upper superdiagonal completion process). Suppose $A = (A_{ij})$ is an $m \times m$ reducible, partially specified block sign pattern in modified Frobenius normal form (2). Let $P = A^2 = (P_{ij})$. Determine each off-diagonal block A_{ij} as follows:
(i) Start with the 1st superdiagonal. Determine each off-diagonal block $A_{i,i+1}$ using Lemma 1.1 if A_{ii} and $A_{i+1,i+1}$ are positive, using Lemma 1.2 if A_{ii} is positive and $A_{i+1,i+1}$ is a zero
block, using Lemma 1.2(ii) if A_{ii} is a zero block and $A_{i+1,i+1}$ is positive. Move up to the next superdiagonal (if there is one).

(ii) Determine each off-diagonal block $A_{i,i+k}$ on the kth superdiagonal using step (i) with $A_{i+k,i+k}$ replacing $A_{i+1,i+1}$ if $P_{i,i+k} = A_{ii}A_{i,i+k} + A_{i,i+k}A_{i+k,i+k}$; otherwise let $A_{i,i+k} = A_{i,i+1}A_{i+1,i+k}$. When all blocks are specified on this superdiagonal, move up to the next superdiagonal, if there is one, increase k by 1 for all $k = 2, 3, \ldots, m - 2$, and repeat (ii).

A matrix $A = (a_{ij})$ is said to be transitive if $a_{ik} \neq 0$ and $a_{kj} \neq 0$ imply $a_{ij} \neq 0$; and A is transitively closed if any two of a_{ik}, a_{kj} and a_{ij} are nonzero, then the third is also nonzero. Using Algorithm 1, Eschenbach obtained two main results, i.e., the two following characterizations of reducible sign idempotent sign patterns:

Theorem 1.3. A reducible sign pattern A, in modified Frobenius normal form (2), each of whose nonzero diagonal blocks is positive, is sign idempotent if and only if each off-diagonal block is obtained using the upper superdiagonal completion process (Algorithm 1).

Theorem 1.4. A reducible sign pattern A, in modified Frobenius normal form (2), each of whose nonzero diagonal blocks is positive, is sign idempotent if and only if the reduced matrix of A is transitively closed (the definition of the reduced matrix of A can be seen in [1, p. 162]).

Unfortunately, we easily give some counterexamples to show that both Theorem 1.3 and Theorem 1.4 are incorrect. For Theorem 1.3, let $A = (a_{ij})$ be a partially specified sign pattern:

$$
\begin{pmatrix}
+ & ? & ? & ? \\
+ & ? & ? & \\
0 & ? & + \\
\end{pmatrix}.
$$

Next we use Algorithm 1 to complete the partially specified sign pattern A. By step (i), A can be completed into the form

$$
\begin{pmatrix}
+ & + & ? & ? \\
+ & 0 & ? & \\
0 & + & + \\
\end{pmatrix}.
$$

By step (ii), we can get

$$
\begin{pmatrix}
+ & + & - & ? \\
+ & 0 & + & \\
0 & + & + \\
\end{pmatrix}.
$$

Thus, by step (ii) again, $a_{14} = a_{12}a_{24} = +$, i.e.,

$$
A = \begin{pmatrix}
+ & + & - & + \\
+ & 0 & + & \\
0 & + & + \\
\end{pmatrix}.
$$
Obviously, the obtained matrix A is not sign idempotent. So Theorem 1.3 does not hold. For Theorem 1.4, let
\[
A = \begin{pmatrix}
+ & + & + \\
+ & 0 & \\
+ & & \\
\end{pmatrix}.
\]
Obviously, A is sign idempotent, but A is not transitively closed. So Theorem 1.4 does not hold.

The source of this difficulty is Lemma 3.1 in [1, p. 160] which is needed to prove Theorem 1.3 and Theorem 1.4. This lemma is:

Lemma 1.5. Suppose A is a reducible sign pattern in modified Frobenius normal form (2) containing m diagonal blocks. If each nonzero diagonal block is positive, and if each off-diagonal block is determined using Algorithm 1, then A is signature similar to an $m \times m$ upper block triangular matrix, each of whose blocks is positive or entrywise zero.

We provide a counterexample to show that Lemma 1.5 is incorrect. Let
\[
A = \begin{pmatrix}
+ & 0 & + & - \\
+ & + & + & \\
+ & 0 & & \\
\end{pmatrix}.
\]
It is easy to check that the sign idempotent sign pattern A is obtained using Algorithm 1, and A is not signature similar to a nonnegative sign pattern. Next we identify the errors in the proof of Lemma 1.5. In the proof [1, p. 161], there is a statement that “Consequently
\[
(S_{i+1}PS_{i+1})_{hk} = Q_{nh}P_{hk}Q_{nk} = P_{hk}
\]
is positively signed or a 0-block”. We observe that the equation (3) does not always hold. By the definition of S_{i+1}, if $P_{i+1,k}$ is negatively signed, then (3) should be
\[
(S_{i+1}PS_{i+1})_{hk} = Q_{nh}P_{hk}(-Q_{nk}) = -P_{hk},
\]
which means that the key statement that “Thus the first i rows of $S_{i+1}PS_{i+1}$ consist of positively signed matrices or 0-blocks” is not true. So Lemma 1.5 does not hold. This also means that not all sign idempotent sign patterns are similar to nonnegative sign patterns.

2. Sign idempotent sign patterns similar to nonnegative sign patterns

In this section, we present two classes of sign idempotent sign patterns that are similar to nonnegative sign patterns. Let I_n denote the identity sign pattern. A generalized permutation pattern P is either a permutation sign pattern or a sign pattern obtained by replacing some or all of the + entries in a permutation sign pattern with −’s. Obviously, $P^{-1} = P^T$. Denote the kth column of A as $A^{(k)}$. Let \mathbb{R}^n be the set of all $n \times n$ real matrices. For a sign pattern A, define
\[
Q(A) = \{B \in \mathbb{R}^n | \text{sign}(B) = A\}.
\]
We easily get the following equivalent relation on sign idempotent sign patterns.

Theorem 2.1. Let A be a sign pattern. Then $B^2 \in Q(A)$ for all matrices $B \in Q(A)$ if and only if $A^2 = A$.
Here are two further results from [1]. We give a simple proof of the second because it provides a tool we will use later.

Lemma 2.2 1. If A is an irreducible sign idempotent sign pattern, then A is entrywise nonzero.

Theorem 2.3 1. If A is an $n \times n$ irreducible sign idempotent sign pattern, then there exists a signature matrix S such that $S^T AS$ is positive.

Proof. Let A be an irreducible sign idempotent sign pattern. By Lemma 2.2, A is entrywise nonzero. Denote the first row of A as $\alpha = (\alpha_1, \ldots, \alpha_n)$. Since $A^2 = A$, it is easy to verify that $A = \alpha^T \alpha$ where $\alpha_1 = +$. Set $S = \text{diag}\{\alpha_1, \ldots, \alpha_n\}$. Then

$$S^T AS = S^T \alpha^T \alpha S = \begin{pmatrix} + & \cdots & + & \cdots & \cdots & + \\ \vdots & \ddots & \vdots & \ddots & \ddots & \vdots \\ + & \cdots & + & \cdots & \cdots & + \\ \end{pmatrix} = \alpha_1 J. \quad \Box$$

Lemma 2.4. Let $A = \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix}$ be a sign idempotent sign pattern, where each A_{ii} is $t_i \times t_i$ and either irreducible or entrywise zero. Then there exists a signature matrix S such that $S^T AS$ is nonnegative.

Proof. If A_{11} and A_{22} are zero blocks, obviously $A = 0$ since A is sign idempotent.

Case (i) Both A_{11} and A_{22} are nonzero. Without loss of generality, we may assume that both A_{11} and A_{22} are positive by Theorem 2.3. If A_{12} is a zero block, obviously the result holds. If A_{12} is nonzero, by Lemma 1.1, $A_{12} = \alpha J$ where $\alpha \in \{+, -\}$. Set $S_1 = \alpha I_{t_2}$. Then

$$\begin{pmatrix} I_{t_1} & S_1^T \\ \end{pmatrix} A \begin{pmatrix} I_{t_1} \\ S_1 \end{pmatrix}$$

is nonnegative.

Case (ii) A_{22} is a zero block and A_{11} is nonzero. Without loss of generality, we may assume that A_{11} is positive by Theorem 2.3. By Lemma 1.2, the ith column of A_{12} is constantly signed for all $1 \leq i \leq t_2$, i.e., $A_{12}^{(i)} = \alpha_i J^{(i)}$ where $\alpha_i \in \{+, -, 0\}$. Set $S_1 = \text{diag}\{\alpha'_1, \ldots, \alpha'_n\}$, where $\alpha'_i = \alpha_i$ if $\alpha_i \neq 0$ and $\alpha'_i = +$ if $\alpha_i = 0$. Then

$$\begin{pmatrix} I_{t_1} & S_1^T \\ \end{pmatrix} A \begin{pmatrix} I_{t_1} \\ S_1 \end{pmatrix}$$

is nonnegative.

Case (iii) When A_{11} is a zero block but A_{22} is not, the argument is analogous to case (ii). \quad \Box

Theorem 2.5. Let A be a sign idempotent sign pattern with no zero diagonal entries. If A is transitively closed, then there exists a generalized permutation pattern P such that $P^T AP$ in the form (2) is nonnegative, and further, every block in $P^T AP$ above the block diagonal is positive or entrywise zero.

Proof. Note that the transitive closure property of A still holds after permutation similarity. Since A is a sign idempotent sign pattern with no zero diagonal entries, there exists a generalized
permutation pattern P_1 such that $A' = P_1^T A P_1$ is in the form (2) with each diagonal block A_{ii} being positive.

To get the result, we use induction on r, the number of diagonal blocks in A'. The case $r = 1$ is trivial. The case $r = 2$ is true by case (i) of Lemma 2.4. Now we assume that the assertion holds for $r - 1$ and prove the result for r. By our induction assumption, there exists a generalized permutation pattern S_1 such that

$$A_1 = \left(S_1^T I_{t_r} \right) A' \left(S_1 I_{t_r} \right) = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1,r-1} & A_{1r} \\ A_{22} & \ddots & & \vdots & \vdots \\ \vdots & & \ddots & \vdots & \vdots \\ A_{r-1,r-1} & & & A_{r-1,r} & A_{rr} \end{pmatrix}$$

(4)

where each A_{ii} is $t_i \times t_i$ and positive, and A_{ij} is positive or entrywise zero for $1 \leq i < j \leq r - 1$. If $A_{1r}, \ldots, A_{r-1,r}$ are all zero blocks, then the result holds, so we assume that at least one of these blocks is not zero. That is, there is an i with $1 \leq i < r$ such that $A_{ir} \neq 0$. There are two cases that we need consider.

Case (1) Suppose $A_{1r} \neq 0$. If $A_{ir} = 0$ for all $1 < i < r - 1$, since $A_{1r} \neq 0$ is constantly signed, by the transitive closure property, we get that $A_{1i} = 0$ for all $1 < i < r - 1$. Thus, by (4), A_1 is permutation similar to the following form:

$$\begin{pmatrix} A_{11} & 0 & \cdots & 0 \\ A_{rr} & 0 & \cdots & 0 \\ A_{22} & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots \\ A_{r-1,r-1} & & & A_{rr} \end{pmatrix}$$

where each A_{ii} is positive, and A_{ij} is positive or entrywise zero for all $2 \leq i < j \leq r - 1$. By Lemma 2.4, the result holds.

If $A_{ir} \neq 0$ for some $1 < i \leq r - 1$, since $A_{1r} \neq 0$, by the transitive closure property, we get $A_{1i} \neq 0$. By Lemma 1, A_{1r}, A_{ir} and A_{1i} are each constantly signed. By the induction assumption, A_{1i} is positive. By sign idempotence, $A_{1r} = A_{1i} A_{ir}$, so $A_{1r} = \alpha J_{Ir}$ and $A_{ir} = \alpha J_{Ii}$ for some $\alpha \in \{+, -\}$. Let $S = \alpha I_{t_r}$. Then $A_{1r} S$ and $A_{ir} S$ are positive, and $S^T A_{rr} S = A_{rr}$. If $A_{jr} \neq 0$ for some j with $j \neq i$ and $1 < j < r$, then the same argument shows that $A_{jr} S$ is positive. Thus

$$\begin{pmatrix} I_{n-t_r} \\ S^T \end{pmatrix} A_1 \begin{pmatrix} I_{n-t_r} \\ S \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1,r-1} & A_{1r} S \\ A_{22} & \ddots & & \vdots & \vdots \\ \vdots & & \ddots & \vdots & \vdots \\ A_{r-1,r-1} & & & A_{r-1,r} & A_{rr} \end{pmatrix}$$

which means that the result holds.

Case (2) Suppose $A_{1r} = 0, \ldots, A_{sr} = 0$ and $A_{s+1,r} \neq 0$ for some s with $s < r - 1$. Then $A_{s+1,r}$ is positive or entrywise negative by Lemma 1.1. Thus, by the transitive closure property, A_1 is in the form
where each A_{ii} is positive, and A_{ij} is positive or entrywise zero for $1 \leq i < j \leq r - 1$. Now we only need consider the submatrix of A as follows:

$$
\begin{pmatrix}
A_{s+1,s+1} & \cdots & A_{s+1,r} \\
\vdots & \ddots & \vdots \\
A_{rr} & & A_{rr}
\end{pmatrix}.
$$

According to the proof of the previous case (1), we conclude that the result holds. This completes the proof. □

Theorem 2.6. Let A be a sign idempotent sign pattern in modified Frobenius normal form (2) with no block above the block diagonal containing zero entries. Then there exists a signature matrix S such that S^TAS is nonnegative, and further, every block in S^TAS above the block diagonal is positive.

Proof. To get the result, we use induction on r, the number of diagonal blocks in A. The case $r = 1$ is trivial. The case $r = 2$ is true by Lemma 2.4. Now we assume that the assertion holds for $r - 1$ and prove the result for r. Note that no block above the block diagonal of A contains zero entries. By our induction assumption, there exists a signature matrix S_1 such that

$$
A_1 = \left(S_1^T \right) A \left(S_1 \right) = \begin{pmatrix}
A_{11} & A_{12} & \cdots & A_{1,r-1} & A_{1r} \\
A_{21} & A_{22} & \cdots & A_{2,r-1} & A_{2r} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
A_{r-1,1} & A_{r-1,2} & \cdots & A_{r-1,r-1} & A_{r-1,r} \\
A_{rr} & & & \cdots & A_{rr}
\end{pmatrix},
$$

where each A_{ii} is $t_i \times t_i$ and either positive or entrywise zero, and A_{ij} is positive for all $1 \leq i < j \leq r - 1$.

Since A_1 is sign idempotent,

$$
A_{1r} = A_{11}A_{1r} + \cdots + A_{1r}A_{rr}.
$$

Note that A_{1i} is positive for $i = 2, \ldots, r - 1$. Since A_{1r} is nonzero entrywise for $i = 2, \ldots, r - 1$, we get $A_{1r} = A_{i1}A_{ir}$, which means that the kth columns of A_{1r} and A_{1r} are constantly signed for all $1 \leq k \leq t_r$, i.e.,

$$
A_{1r}^{(k)} = \alpha_k J_{1r}^{(k)}, \quad A_{ir}^{(k)} = \alpha_k J_{ir}^{(k)},
$$

where $\alpha_k \in \{+, -\}$. Set $S_2 = \text{diag}[\alpha_1, \ldots, \alpha_r]$. Then $A_{ir}S_2$ is positive for $i = 1, \ldots, r - 1$. Next we need consider two cases:
Case (i) If $A_{rr} = 0$, then

\[
\left(I_{n-t_r} \right) A_1 \left(I_{n-t_r} \right)^T S_2 = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1,r-1} & A_{1r} S_2 \\ A_{22} & A_{2,1} & \cdots & A_{2,r-1} & A_{2r} S_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ A_{r-1,r-1} & A_{r-1,1} & \cdots & A_{r-1,r-2} & A_{r-1,r} S_2 \\ A_{rr} & 0 & \cdots & \cdots & 0 \end{pmatrix},
\]

which means that the result holds.

Case (ii) If $A_{rr} \neq 0$, considering the fact that $A_{1r} = A_{1r} A_{rr}$ by (5), then the rows of A_{1r} are constantly signed. Thus, by (6), each A_{ir} is constantly signed, i.e., $\alpha_1 = \cdots = \alpha_t = \alpha$ where $\alpha \in \{+, -\}$. Hence, $S_2^T A_{rr} S_2 = A_{rr}$. Thus

\[
\left(I_{n-t_r} \right) A_1 \left(I_{n-t_r} \right)^T S_2 = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1,r-1} & A_{1r} S_2 \\ A_{22} & A_{2,1} & \cdots & A_{2,r-1} & A_{2r} S_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ A_{r-1,r-1} & A_{r-1,1} & \cdots & A_{r-1,r-2} & A_{r-1,r} S_2 \\ A_{rr} & 0 & \cdots & \cdots & 0 \end{pmatrix},
\]

which means that the result holds. This completes the proof. \[\square\]

Example 1. Let a sign idempotent sign pattern

\[
A = \begin{pmatrix} + & + & - & + & - & - \\ + & + & - & + & - & - \\ 0 & 0 & + & + \\ 0 & 0 & - & - \\ + & + \\ + & + \end{pmatrix}.
\]

Then $S^T A S$ is nonnegative, where $S = \text{diag}[+, +, -, +, -, -]$.

3. Sign idempotent sign patterns that allow idempotence

A sign pattern A is said to allow idempotence if there exists an idempotent matrix $B \in Q(A)$. In [1, p. 164], it is shown that not all sign idempotent sign patterns allow idempotence. For example, $A_1 = \begin{pmatrix} + & - \\ 0 & + \end{pmatrix}$ does not allow idempotence. Thus, identifying sign idempotent sign patterns that allow idempotence is an open problem posed by C. Eschenbach in [1]. We define the minimum rank of A as

\[\text{mr}(A) = \min\{\text{rank}(B) \mid B \in Q(A)\} \]

Theorem 3.1. Let A be an irreducible sign idempotent sign pattern. Then A allows idempotence. Moreover, $\text{mr}(A) = 1$.
Proof. By Theorem 2.3, there exists a signature matrix S such that S^TAS is positive. Let $D \in Q(S)$ with all nonzero entries belonging to $\{1, -1\}$. Set

$$B_1 = \alpha \beta^T,$$

where α and β are positive column vectors and $\beta^T\alpha = 1$. Then $B = D^{-1}B_1D \in Q(A)$ and $B^2 = B$. Hence A allows idempotence. Obviously rank$(B) = 1$, so mr$(A) = 1$ for A to be entrywise nonzero. □

Theorem 3.2. Let $A = \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix}$ be a sign idempotent sign pattern, where each A_{ii} is $t_i \times t_i$ and either irreducible or entrywise zero. Then A allows idempotence if and only if at least one of A_{11}, A_{12} and A_{22} is a zero block.

Proof. Assume that A allows idempotence, which is realized by an idempotent matrix $B \in Q(A)$. Suppose that A_{11}, A_{12} and A_{22} are nonzero. By Lemma 2.4, there exists a diagonal matrix D with all diagonal entries belonging to $\{1, -1\}$ such that

$$B_1 = D^{-1}BD = \begin{pmatrix} B_{11} & B_{12} \\ 0 & B_{22} \end{pmatrix},$$

where B_{11}, B_{12} and B_{22} are positive. Since B_1 is idempotent,

$$B_{11}B_{12} + B_{12}B_{22} = B_{12}. $$

Since $B_{11}^2 = B_{11}$, multiplying by B_{11} yields

$$B_{11}B_{12} + B_{11}B_{12}B_{22} = B_{11}B_{12}. $$

So $B_{11}B_{12}B_{22} = 0$, which means that $B_{12} = 0$. We get a contraction. So at least one of A_{11}, A_{12} and A_{22} is a zero block. Conversely, we consider the following cases:

Case (i) If both A_{11} and A_{22} are zero blocks, then $A = 0$ for A to be sign idempotent.

Case (ii) If both A_{11} and A_{12} are nonzero, and A_{22} is a zero block, then the columns of A_{12} are constantly signed by Lemma 1.2. By lemma 2.4, we can assume, without loss of generality, that A_{11} is positive and A_{12} is nonnegative. Set

$$B_{11} = \begin{pmatrix} 1/t_1 & \cdots & 1/t_1 \\ \vdots & \ddots & \vdots \\ 1/t_2 & \cdots & 1/t_2 \end{pmatrix} \in t_1 \times t_2,$$

and $B_{12} \in Q(A_{12})$ is a $t_1 \times t_2$ nonnegative matrix with all nonzero entries being 1. Then $B \in Q(A)$ is idempotent. Hence A allows idempotence. Similarly, A allows idempotence if both A_{22} and A_{12} are nonzero, and A_{11} is a zero block.

Case (iii) If both A_{11} and A_{22} are nonzero, and A_{12} is a zero block, by lemma 2.4, then we can assume, without loss of generality, A_{11} and A_{22} are positive. Set

$$B_{ii} = \alpha_i \beta_i^T, \quad i = 1, 2,$$

where each α_i and β_i are positive column vectors and $\beta_i^T\alpha_i = 1$. Then $B \in Q(A)$ is idempotent. Hence A allows idempotence. Similarly, A allows idempotence if both A_{22} and A_{12} are zero blocks, or both A_{11} and A_{12} are zero blocks. This completes the proof. □
Theorem 3.3. Let A be a sign idempotent sign pattern with no zero diagonal entries. Then A allows idempotence if and only if there exists a generalized permutation pattern P such that

$$P^TAP = \begin{pmatrix} A_{11} & \cdots & 0 & A_{1r} \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & A_{22} & A_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & A_{r-1,r-1} \\ 0 & \cdots & 0 & A_{r-1,r} \\ A_{rr} & \end{pmatrix},$$

where each A_{ii} is square and positive. Moreover, $mr(A) = r$.

Proof. Since A is a sign idempotent sign pattern with no zero diagonal entries, then there exists a generalized permutation pattern P such that $A' = P^TAP$ is in the form (2) with all diagonal blocks being positive. Suppose A allows idempotence, which is realized by an idempotent matrix $B \in Q(A)$. We use induction on r, the number of diagonal blocks in A'.

The cases that $r = 1, 2$ are true by Theorem 3.1 and Theorem 3.2. Now we assume that the assertion holds for $r - 1$ and prove the result for r. By our induction assumption, A' has the following form

$$A' = \begin{pmatrix} A_{11} & 0 & \cdots & 0 & A_{1r} \\ A_{22} & \cdots & 0 & A_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ A_{r-1,r-1} & 0 & \cdots & A_{r-1,r} \\ A_{rr} & \end{pmatrix},$$

where each A_{ii} is square and positive. Since A is sign idempotent, by Lemma 1.1, A_{ir} is constantly signed for all $1 \leq i \leq r - 1$, i.e., $A_{ir} = \alpha_i I_r$ where $\alpha_i \in \{+, -, 0\}$. Set $S = \text{diag} \{\alpha'_1 I_1, \ldots, \alpha'_{r-1} I_{r-1}, I_r\}$, where $\alpha'_i = \alpha_i$ if $\alpha_i \neq 0$ and $\alpha'_i = +$ if $\alpha_i = 0$. Then $A'_{ir} = \alpha'_i A_{ir}$ is nonnegative, and

$$A_1 = S^T A' S = \begin{pmatrix} A_{11} & 0 & \cdots & 0 & A_{1r} \\ A_{22} & \cdots & 0 & A_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ A_{r-1,r-1} & 0 & \cdots & A_{r-1,r} \\ A_{rr} & \end{pmatrix},$$

Hence, there exists a generalized permutation matrix $D \in Q(PS)$ with all nonzero entries belong to $\{1, -1\}$ such that

$$B_1 = D^{-1} BD = \begin{pmatrix} B_{11} & 0 & \cdots & 0 & B_{1r} \\ B_{22} & \cdots & 0 & B_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ B_{r-1,r-1} & 0 & \cdots & B_{r-1,r} \\ B_{rr} & \end{pmatrix},$$

where each B_{ii} is square and positive, and B_{ir} is nonnegative for $i = 1, \ldots, r - 1$. Since B_1 is idempotent,

$$B_{ii} B_{ir} + B_{ir} B_{rr} = B_{ir}.$$
Note that $B_{ii}^2 = B_{ii}$. Then

$$B_{ii}B_{ir} + B_{ii}B_{ir}B_{rr} = B_{ii}B_{ir},$$

which implies that $B_{ii}B_{ir}B_{rr} = 0$. Since B_{ii} and B_{rr} are positive, we get $B_{ir} = 0$ for $1 \leq i \leq r - 1$. Hence $A_{ir}' = 0$ for $1 \leq i \leq r - 1$. The result holds.

Conversely, Let $B_{ii} = \alpha_i \beta_i^T$, where α_i and β_i are positive column vectors and $\beta_i^T \alpha_i = 1$. Set $B' = \text{diag}\{B_{11}, \ldots, B_{rr}\}$. Then $B' \in Q(P^TAP)$ is idempotent and $\text{rank}(B') = r$. So A allows idempotence, and $\text{mr}(A) = r$.

Theorem 3.4. Let the sign idempotent sign pattern A be an $r \times r$ block matrix in modified Frobenius normal form (2) with $r \geq 4$. If no block above the block diagonal contains zero entries, then A does not allow idempotence.

Proof. Suppose A allows idempotence, which is realized by an idempotent matrix $B \in Q(A)$. By Theorem 2.6, B is similar to the following form:

$$
\begin{pmatrix}
B_{11} & B_{12} & \cdots & B_{1r} \\
B_{21} & B_{22} & \cdots & B_{2r} \\
\vdots & \ddots & \ddots & \vdots \\
B_{r1} & \cdots & B_{rr}
\end{pmatrix},
$$

where each B_{ii} is square and either positive or entrywise zero, and each B_{ij} is positive for $i < j$. Since $r \geq 4$, at least two blocks B_{ii} are positive. Assume that B_{kk} and B_{ss} are positive for $k < s$. Since $B^2 = B$,

$$B_{ks} = B_{kk}B_{ks} + \cdots + B_{ks}B_{ss}.$$

Thus

$$B_{kk}B_{ks} = B_{kk}B_{ks} + \cdots + B_{kk}B_{ks}B_{ss}.$$

Since each B_{ij} is positive for $i < j$, we have

$$B_{kk}B_{ks}B_{ss} = 0,$

from which we get $B_{ks} = 0$. This is a contraction. So A does not allow idempotence.

Remark. If $r = 3$, Theorem 3.4 is not true. Let

$$B = \begin{pmatrix} B_{11} & B_{12} & B_{13} \\ B_{22} & B_{23} & \vdots \\ B_{33} \end{pmatrix} = \begin{pmatrix} 0 & J_{12} & t_2J_{13} \\ \frac{1}{t_2}J_{22} & J_{23} & \vdots \\ 0 & \cdots & 0 \end{pmatrix},$$

where each B_{ii} is $t_i \times t_i$. It is easily checked that the sign idempotent sign pattern $A = \text{sign}(B)$ allows idempotence.

Example 2. Let a sign idempotent sign pattern

$$A = \begin{pmatrix} + & 0 & 0 \\ 0 & + & - \\ 0 & - & + \end{pmatrix}.$$
Then A is realized by an idempotent matrix $B \in Q(A)$ as follows:

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{9}{2} \\ 0 & -\frac{1}{18} & \frac{1}{2} \end{pmatrix}.$$

Acknowledgments

The author would like to thank the referee for many valuable and detailed comments, and helpful suggestions, which have led to a substantial improvement in the presentations and contents of this paper.

Reference