
Theoretical Computer Science 425 (2012) 117–125

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Analysis of an iterated local search algorithm for vertex cover in sparse
random graphs✩

Carsten Witt ∗

DTU Informatics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

a r t i c l e i n f o

Keywords:
Randomized search heuristics
Iterated local search
Vertex cover
Random graphs
Karp–Sipser algorithm
e-phenonemon

a b s t r a c t

Recently, various randomized search heuristics have been studied for the solution of the
minimum vertex cover problem, in particular for sparse random instances according to the
G(n, c/n) model, where c > 0 is a constant. Methods from statistical physics suggest that
the problem is easy if c < e. This work starts with a rigorous explanation for this claim
based on the refined analysis of the Karp–Sipser algorithm by Aronson et al. (1998) [1].
Subsequently, theoretical supplements are given to experimental studies of search
heuristics on random graphs. For c < 1, an iterated local search heuristic finds an optimal
cover in polynomial time with a probability arbitrarily close to 1. This behavior relies on
the absence of a giant component. As an additional insight into the randomized search, it
is shown that the heuristic fails badly also on graphs consisting of a single tree component
of maximum degree 3.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Randomized search heuristics (RSHs) such as Evolutionary Algorithms (EAs), Simulated Annealing, Ant Colony
Optimization etc. are general optimization techniques that prevail in applicationswhere problem-specific algorithms are not
available. In the last few years, substantial progress has been made in the rigorous runtime analysis of RSHs for problems
from combinatorial optimization [23,11,22,18,9,8,14]. In these works, the key question is how long the heuristics take in
expectation to find a solution of a prespecified quality.

Recently, the behavior of RSHs for theminimum vertex cover (VC) problem has received increasing attention [9,8]. These
studies were concerned with specific instances of the problem. A mostly empirical work [19] studies an average case where
the graph is drawn randomly according to the G(n, p) model [3] with p = c/n for constant c. In particular, that paper
highlights the well-known phase transition in this model. If c < 1 then all connected components of the graph are of size
O(log n) with high probability 1 − o(1) (abbreviated as w. h. p. hereinafter), and the problem is easy to solve by complete
enumeration. Actually, by references to methods from statistical physics [12], it is claimed in [19] that VC is easy in random
graphs if c < e. However, no rigorous argument is given.

One aim of this work is to supply theoretical justifications to the experimental analyses of RSHs for VC in sparse random
graphs.We start with a rigorous proof in Section 2 that VC in sparse random graphs can be solved in polynomial timew. h. p.
for c < e. Despite being a simple consequence of the refined analysis of the Karp–Sipser algorithm presented by Aronson
et al. [1], this result does not yet seem to have been stated explicitly so far (at least in the community of theoretical computer
science). Afterwards, we study the behavior of a simple RSH in our random graph model. An iterated local search algorithm
called ILS that combines ingredients of blind randomized local search with a greedy component is defined in Section 3. It is

✩ An extended abstract of this work appeared in Witt (2009) [24].
∗ Tel.: +45 492317552469.

E-mail address: cawi@imm.dtu.dk.

0304-3975/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2011.01.010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81963614?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.tcs.2011.01.010
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:cawi@imm.dtu.dk
http://dx.doi.org/10.1016/j.tcs.2011.01.010

118 C. Witt / Theoretical Computer Science 425 (2012) 117–125

proved to find optimal VCs in the domain c < 1with probability 1−ϵ, ϵ > 0 an arbitrary small constant. This result relies on
the absence of the giant component, but it still comes unexpected since the local search is far from complete enumeration.
In order to fathom the limits of the approach, it is shown that ILS fails even on trees of small degree when the tree forms a
giant component. We finish with some conclusions.

2. A modified Karp–Sipser algorithm for vertex cover

The vertex cover problem (occasionally also called node cover problem) is one of the classical NP-hard problems [15].
Given an undirected graph G = (V , E), the aim is to find a subset V ∗

⊆ V of minimum cardinality such that every edge is
covered, i. e., for all {v, w} ∈ E it holds v ∈ V ∗ or w ∈ V ∗ (or both). The hardness of the problem motivated the study of
average-case models, one of which is the random graph model called G(n, c/n) [3]. Here a graph on n vertices is built by
inserting every possible edge independently with probability c/n, where c is a constant. This results in the expected vertex
degree c(n − 1)/n and the expected number of edges c(n − 1)/2. The graph is typically called sparse since its expected
number of edges is only linear in the number of vertices.

In [19], various heuristics including EAs, SA, and branch and bound are studied for the VC problem in sparse random
graphs drawn according to the G(n, c/n) model. While evaluating their experiments, Pelikan et al. [19] claim that the
problem is ‘‘typically’’ polynomial-time solvable for c < e, where e = 2.718 . . . is the base of the natural logarithm. This
phenomenon is explained by a reference to methods from statistical physics [12,2]. The underlying idea described by Bauer
and Golinelli [2] is to study the application of a procedure called leaf-removal to the input graph: as long as the graph has at
least one leaf (a vertex of degree 1), choose such a leaf uniformly and delete the leaf and its neighbor (along with incident
edges) from the graph. The graph that finally remains is called the ‘‘core’’ by Bauer and Golinelli [2] (a notion different
from the well-known (k-)core of a graph). The non-rigorous analysis using statistical mechanics reveals that the ‘‘core’’ is
of size O(log n) provided that c < e. Hence, it is proposed by Bauer and Golinelli [2] to solve the VC problem by applying
leaf-removal, putting cover marks on the leaves’ neighbors, and finally solving the VC problem on the ‘‘core’’ using branch
and bound as a brute-force approach.

Roughly speaking, Bauer and Golinelli [2] identify a second phase transition in the G(n, c/n) model besides the well-
known emergence of a giant component at c = 1: namely, the emergence of a giant ‘‘core’’ at c = e. They also relate the
latter to the so-called e-phenomenon first observed by Karp and Sipser [16] w. r. t. the maximum matching problem and
studied in more detail by Aronson et al. [1]: i. e., the leaf-removal approach can also be applied to find a large matching (a
set of vertex-disjoint edges) in the graph. The famous Karp–Sipser algorithm [16] selects edges incident on leaves for the
matching and reduces the graph afterwards, i. e., it performs leaf-removal in the above sense, until there are no leaves left
(the subsequent behavior of Karp–Sipser is not important for this paper). If c < e, the ‘‘core’’ remaining after leaf-removal
is of asymptotically negligible size w. h. p., hence the set of edges chosen by leaf-removal yields a (1− o(1))-approximation
of a maximummatching.

The reference to the Karp–Sipser algorithm is more or less a side remark in the paper by Bauer and Golinelli [2]. From the
viewpoint of theoretical computer science, we are aiming at making the interplay of the Karp–Sipser algorithm, the ‘‘core’’,
maximum matchings and minimum VC more explicit. In particular, we are interested in a rigorous statement regarding
the ‘‘typical’’ O(log n) size claimed by Bauer and Golinelli [2] for the ‘‘core’’ graph. Fortunately, such a statement is already
contained in the analysis by Aronson et al. [1]. This results in the forthcoming Theorem 2 that VC in sparse random graphs
can be solved to optimality w. h. p. if c < e. The algorithm used is a modification of the Karp–Sipser algorithm for the VC
problem, called KS-VC and described in Algorithm 1. The notion G \ N for a set of vertices N denotes the subgraph of G
induced by V (G) \ N . By V (G) and E(G) we denote the set of vertices and edges of G, respectively.

Algorithm 1 (KS-VC).
1. C := ∅.
2. While E(G) ≠ ∅

If G has at least one leaf then
choose a leaf w ∈ V (G) uniformly,
let {v, w} ∈ E(G) be the unique edge incident on w,
C := C ∪ {v}, G := G \ {v, w} (double-vertex removal)

else
choose v ∈ V (G) uniformly,
C := C ∪ {v}, G := G \ {v} (single-vertex removal).

3. Output C as Vertex Cover.

We describe the underlying ideas of the algorithm. If the graph has at least one leaf, the vertex adjacent to the leaf gets
a cover mark, and these two vertices, along with their incident edges, are removed. The idea not to choose leaves for the
cover is sometimes called domination and is present in many different approximation algorithms and search heuristics for
VC (or, from a different viewpoint, independent set); see, e. g., [21,6]. Otherwise, a vertex is picked uniformly for the cover
and only this single vertex and its incident edges are removed. In the first case, the graph is reduced in same manner as
with the original Karp–Sipser algorithm for maximum matchings. At the first instance where there are no leaves left, our
approach starts to behave differently. By definition, KS-VC outputs a valid vertex cover.

C. Witt / Theoretical Computer Science 425 (2012) 117–125 119

Let Phase 1 end at the first point of time when G has no more leaves (note that new leaves can still be created
afterwards), in otherwordsG corresponds to the ‘‘core’’ as defined by Bauer andGolinelli [2].We summarize amain result by
Aronson et al. [1]:

Theorem 1 (Aronson et al. [1]). Let c < e. Then at the end of Phase 1 of KS-VC, G is w. h. p. a collection of vertex-disjoint cycles.

We are ready to present the rigorous supplement to the study by Bauer and Golinelli [2]. Despite being a simple
consequence from the previous theorem, the following result does not seem to have been stated explicitly so far (at least in
the TCS community). A connection between Karp–Sipser and minimum VC is drawn by Gamarnik et al. [10], however, only
the possibility of a (1 + o(1))-approximation is noticed in the interesting domain c < e.

Theorem 2. Let c < e. Then KS-VC finds an optimal vertex cover w. h. p.

Proof. We analyze the first phase and the rest of the run separately. Let G∗ be the graph remaining after the end of the
first phase. Each optimal VC for the graph G \ G∗ can be converted into the result produced by KS-VC on this subgraph by
iteratively moving the cover marks from leaves to their neighbors. All edges incident on vertices from G \ G∗ are covered in
the first phase. Hence, it remains to prove that KS-VC produces an optimal cover on G∗.

By Theorem 1, G∗ is a collection of vertex-disjoint cycles w. h. p. Let us assume this to happen. KS-VC covers a cycle of
length k by a single execution of a single-vertex removal, followed by ⌈(k − 2)/2⌉ executions of a double-vertex removal,
altogether using ⌈k/2⌉ cover marks. Since the cycles are disjoint, an optimal cover for G∗ is produced, in total yielding an
optimal cover for G. �

3. Iterated local search

Many analyses of RSHs, most notably EAs, on problems from combinatorial optimization reveal that the heuristics are
able tomimic components of problem-specific algorithmswith a certain probability [11,23,17]. Often this results in expected
polynomial runtimes to find optimal or at least good approximate solutions to the problem. Compared to problem-specific
algorithms, a loss of polynomial factors in the runtime seems to be a fair price to pay for thewide applicability of the heuristic.
Of course, if the problemat hand iswell understood and tailored algorithms are available, onewould probably prefer to apply
the tailored algorithm. Still, it is interesting how RSHs compete with problem-specific algorithms on well-studied problems
from combinatorial optimization since such analyses improve our understanding of the working principles of heuristics on
realistic problems.

Most of the above-mentioned runtime analyses up to now consider the worst case from a class of problems rather than
average-case models. As seen before, the KS-VC algorithm is itself a heuristic, which performs extraordinarily well in the
average-case model of sparse random graphs if c < e. We now turn our view to more classical search heuristics such as EAs
and local search, which have already been analyzed on certain VC instances [8,9]. Thewell-known (1+1) EAmaintains search
points from {0, 1}|V |, i. e., each bit decides whether the corresponding vertex is picked for the cover or not. The ‘‘fitness’’ of
a search point is just the size of the current cover, or a penalty value greater than |V | if no valid VC is encoded. The (1+1) EA
creates a new tentative solution by flipping each bit of the current cover with probability 1/|V |. If the new solution has at
most the same fitness value as the current one, the new solution is accepted as the current solution, otherwise it is rejected.
This procedure is repeated until some stopping criterion is satisfied.

We see that the (1+1) EA has the ability to change many bits in a step but is more likely to perform local steps changing
only few bits. If at most two bits, chosen uniformly at random, are allowed to flip, we arrive at a randomized local search
(RLS) algorithm. This RLS variant has been investigated by Giel and Wegener [11] and Neumann and Wegener [17] for
the maximum matching problem and the minimum spanning tree problem, respectively. In both cases, it turns out that
a runtime behavior competitive with the (1+1) EA can be proved with a significantly simpler analysis. Also for other
combinatorial optimization problems, it is believed that the search behind globally searching algorithms like the (1+1) EA is
driven by quite local steps that flip only few bits and that the more global steps do not constitute a real advantage but only
complicate the analysis. Of course, there are artificial examples where a considerable number of bits has to be changed to
improve the current search points, e. g., the functions with large Hamming cliffs studied by Droste et al. [5]. However, to the
best of the author’s knowledge, all runtime analyses of simple EAs in combinatorial optimization focus on neighborhoods
of small size.

Let us consider the VC problemmore closely and assume that either one or two bits, i. e., vertices, are chosen uniformly at
random to be flipped. Elitist search heuristics like the (1+1) EA and RLS only go from valid to valid covers and never increase
cover size. Hence, the steps of size 1 are only accepted if they flip a bit from 1 to 0, i. e., conceptually remove a cover mark
from a vertex. Steps of size 2 may remove two cover marks or swap a cover mark on a vertex with a previously unmarked
vertex. If the two vertices involved in such a swap are not connected by an edge, we already obtain a cover of smaller size
by only removing the cover mark from the first vertex.

Motivated by the latter observation, we decide to go a step further towards hybridizations of different randomized search
heuristics. One well-known approach is called iterated local search [13], which combines ‘‘blind’’ and relatively general
stochastic search heuristics with greedy local search. Typically, such algorithms refine the solutions obtained by the more
general search heuristic by greedily following local search steps as long as there is a better solution in the neighborhood of
the local search. (If worsenings are accepted, the approach might be extended to variable-depth local search; see [20] for a

120 C. Witt / Theoretical Computer Science 425 (2012) 117–125

recent runtime analysis.) For the greedy local search procedure, a small neighborhood is preferred, most often the Hamming
neighborhood. In terms of vertex cover problem, this means that we follow improving steps that only remove cover marks
from the vertices until there is no such step left. Only then the search heuristic tries steps flipping two bits. Such steps
can solely be successful if they swap the cover marks of two adjacent vertices since, as mentioned above, otherwise an
improvement would already have been realized by the greedy procedure removing a single cover mark.

Inspired by the preceding considerations, we define a search heuristic which can be seen as an iterated local search
algorithm combining RLS in a neighborhood of size 2 with a greedy local search algorithm. The search heuristic studied here
is simply called Iterated Local Search (ILS) and defined as Algorithm 2. It starts from the full cover. As long as there is a vertex
with all neighbors covered, this vertex is immediately removed from the cover, which is the greedy aspect. Otherwise, an
edge is chosen uniformly. If swapping its endpoints in and out the cover still leads to a valid cover, the swap is accepted. The
swaps can be considered as the ‘‘blind’’ steps changing the cover without leading to an immediate improvement.
Algorithm 2 (ILS).
1. C := V (G).
2. Repeat forever

If there is a vertex v ∈ C with all neighbors in C then
choose a such a vertex, say v, uniformly, and set C := C \ {v}

(vertex-removal operation)
else
choose {v, w} ∈ E(G) uniformly; assume w. l. o. g. that v ∈ C ,
if w /∈ C and (C \ {v}) ∪ {w} is a cover then set C := (C \ {v}) ∪ {w}

(edge-swap operation).
Like many local search algorithms, ILS does not necessarily find an optimum. Consider a complete bipartite graph with

unequally sized subsets in the bipartition and at least two vertices in the smaller subset. If ILS happens to remove all vertices
of the smaller subset from the cover, there will be no possible swap operations. Still, VC on bipartite graphs is polynomial-
time solvable [4].

For the following analyses, it is crucial to note that ILS never includes a vertex and all its neighbors in the cover when
an edge swap is executed. The reason is that a vertex-removal operation would be possible before this edge swap. If the
conditions for the cover marks to be swapped are satisfied, we call an edge selectable.

3.1. Sparse random graphs and the case c < 1

In this subsection, we investigate the performance of the ILS heuristic in the G(n, c/n) model. As mentioned above, the
idea is to relate the random choices of the heuristic to an optimal algorithm, in this case KS-VC. It will turn out that ILS is
able to reproduce an important subset of the decisions made by KS-VC with polynomially small probability, implying that
ILS finds minimum VCs in the domain c < 1 with good probability in polynomial time. This result is not obvious since our
heuristic only allows local steps and is unable to explore connected components by complete enumeration.

We need a technical lemma.

Lemma 1. Let G be a random graph according to G(n, c/n) with c < 1. Then w. h. p., all induced subgraphs of G on O(log n)
vertices contains O(log n) edges.

Proof. Let γ be a constant which can be chosen arbitrarily large, in particular larger than the constant in the first O-term.
We consider all subsets of vertices of size exactly γ log n and the event that the induced subgraph on these vertices contains
at least γ 2 log n edges. In the end, a union bound will be applied.

The expected number of edges in an arbitrary subgraph of size γ log n equalsµ :=

γ log n

2

·(c/n) ≤ (cγ 2 log2 n)/n. Using

Chernoff bounds with (1 + δ)µ = cγ 2 log n, the probability of having at least cγ 2 log n edges in the subset is at most
e

1 + δ

(1+δ)µ

≤

e log n

n

cγ 2 log n

The number of subsets of size γ log n equals
 n
γ log n

≤ (en/(γ log n))γ log n. Hence, the probability that there is such a subset

containing at least γ 2 log n edges is at most
en

γ log n

γ log n
e log n

n

cγ 2 log n

Choosing γ > e2 and γ > 1/c , the last expression is o(1). �

We are ready to state the announced positive result regarding ILS.

Theorem 3. Let c < 1. For every constant ϵ > 0, ILS finds an optimal vertex cover in polynomial timewith probability1−ϵ−o(1).

Proof. WeassumeG to have connected components (CCs) ofmaximal sizeO(log n) andO(log n) edges in each CC.Moreover,
we assume that each CC is unicyclic, i. e., there is at most one cycle in each CC. Using standard results on random

C. Witt / Theoretical Computer Science 425 (2012) 117–125 121

Fig. 1. Example: edge ei′ = {vi′ , wi′ }, the subtree of vi′ and the edges eij = {vij , wij } with all these edges in correct state. The vij have distance 1 or 2 from
vi′ . Covered vertices are filled.

graphs [3, p. 105] and Lemma 1, the probability that the three properties are satisfied together is 1 − o(1). Moreover, with
probability at least 1 − ϵ/2, the longest cycle has length O(1) [3, p. 117]. All four assumptions hold with probability at least
1 − ϵ/2 − o(1).

In the following, we consider the CCs of G separately and study the probability that ILS to a sufficient extent ‘‘simulates’’
the behavior of KS-VC on this CC. Let a component C∗ be fixed. All our following ideas go back to the case of cycle-free
CCs, so let us temporarily assume that C∗ is a tree. Then KS-VC only executes double-vertex removals, i. e., it chooses edges
incident on leaves. We have the freedom to determine the random order according to which KS-VC selects these edges.
Therefore, let a root vertex r∗

∈ V (C∗) for the connected component be fixed arbitrarily and let us assume that KS-VC
always chooses a leaf of maximal distance to r∗. Denote by e1 = {v1, w1}, . . . , ek = {vk, wk} the edges from C∗ chosen in
this order by KS-VC, i. e., v1, . . . , vk are covered. Since a tree structure is assumed, v1, . . . , vk is in fact a valid and optimal
vertex cover w. r. t. C∗. Let N(vi) denote the set of neighbors of vi and note that wi ∈ N(vi). Since v1, . . . , vk is a cover, we
have V (C∗) =

k
i=1({vi} ∪ N(vi)).

While analyzing ILS, we concentrate on the edges e1, . . . , ek and their neighbors. Let ei, 1 ≤ i ≤ k, be called correct
w. r. t. a current solution of ILS if only its v-vertex is chosen, wrong if only its w-vertex is chosen and complete otherwise.
The case of both vertices unchosen cannot happen as ILS always maintains valid covers. Moreover, it is crucial that ILS never
increases the number of covermarks in a CC.Wewill show that with probability n−O(1), ILS is able to correct the k edges and,
in amanner explained below, also their neighbors, or to arrive at an equally good cover iteratively by a sequence of swap and
removal operations. Since the waiting time for such a sequence can be estimated by means of a geometric distribution and
since at most n CCs must be corrected, an expected time of nO(1) to find an optimal cover will follow. ByMarkov’s inequality,
the time is nO(1) with probability 1 − ϵ/2, altogether an optimal cover is found with probability at least 1 − ϵ − o(1).

We distinguish between two cases. Each edge ei = {vi, wi}, 1 ≤ i ≤ k, is either adjacent to a leaf in the original graph G,
or adjacent to a leaf only after at least one double-vertex removal of KS-VC. In the first case, the edge can always be corrected
by either removing the w-vertex from the cover (if the edge was complete) or a swap operation (if the edge was wrong). Let
pi be the parent of vi and note that all neighbors y ∈ N(vi) except pi must be leaves since wi is a leaf of maximal depth. After
the correction of ei, all covered vertices in N(vi) \ {pi} (and possibly further ones) will undergo removal operations by ILS.
Restricted to the induced subgraph on N∗(i) := {vi}∪N(vi)\{pi}, we have already obtained the same cover as KS-VC, which
is, in fact, an optimal cover for this subgraph; we say that N∗(i) has been corrected. Moreover, unless vi is involved in a swap
operation, the number of covermarks in the subtree rooted at vi never increases. For this to happen, a swap operationwould
be required choosing an edge not involving vi and having one vertex in and one vertex outside the subtree, implying a cycle
on the whole graph, which has been ruled out by assumption.

Now let us study the case that ei becomes incident on a leaf only after some steps of KS-VC. Consider the deepest ancestor
of vi lying on one of the edges e1, . . . , ek. Let i′ denote the index of this edge and observe that i′ > i. If vi′ has s children, we
investigate for each child the subtree rooted at the child and, in this subtree, all edges from e1, . . . , ek having a v-vertex of
smallest depth. In particular, ei is such an edge. Let ei1 = ei, ei2 , . . . , eis be all these edges (see Fig. 1 for an example). Due to
the choice of these edges, each vij , 1 ≤ j ≤ s, has distance either 1 or 2 from vi′ . Distance 1 corresponds to a child of vi′ being
also in the cover produced by KS-VC, distance 2 corresponds to an uncovered child. KS-VC processes the eij-edges before
ei′ . Hence, let us suppose that N∗(i1), . . . ,N∗(is) are correct in the current cover of ILS, i. e., these sets contain the same
cover marks as would be chosen by KS-VC; different neighborhoods N∗(ℓ), ℓ < i′ and ℓ /∈ {i1, . . . , is}, need not be correct
at this moment (any more). In order to correct N∗(i′), it can be necessary for ILS to (1) apply a swap operation to ei′ and
(2) apply removal operations to some children of vi′ . Both operations remove cover marks from some children of vi′ and are
only guaranteed to lead to a valid cover if all edges incident to these children are covered.

However, this is guaranteed by our choice of the edges eij since we use all edges from e1, . . . , ek with the v-vertex at
distance 1 or 2 from vi′ . Concluding, if we derive sufficient conditions for the correction of N∗(i′) before any of the edges
incident on vi1 ∪ · · · ∪ vis are touched by ILS again, we obtain a cover of optimal size in terms of the subgraph rooted at vi′ . A
sufficient condition is that ei′ is chosen for a swapoperation before this happens to the edges incident on vi1∪· · ·∪vis . Since all
vij must have distance atmost 2 from vi′ , the probability is at least 1/|N3(v

′

i)|, whereN3(v
′

i)denotes the 3-neighborhood of v′

i ,
i. e., all vertices of distance at most 3 from v′

i . The probability of creating an optimal cover in C∗ by an appropriate sequence
of swap/removal operations is therefore at least

k
i=1 1/|N3(vi)|. It remains to show that the last product is polynomially

122 C. Witt / Theoretical Computer Science 425 (2012) 117–125

Fig. 2. FoolingTree for k = 2 with deep-end edges drawn solid and optimal VC marked by filled vertices.

bounded. Let us instead study

v∈C∗ 1/|N3(v)|, i. e., we consider even all vertices in C∗. It is easy to see that this product is
minimal in regular graphs. Let a denote the number of edges in C∗ and c denote the cardinality of C∗. Hence, the size of a
regular 3-neighborhood is (a/c)3. We have to bound (c/a)3c from below. As a = O(log n) and c = O(log n) is assumed, the
term is minimal for a = ec , hence (c/a)3c = 2−O(log n)

= n−O(1), which completes the proof for the case that all components
are cycle-free.

Our argumentation can be extended to the case of unicyclic components as follows. Let c1, . . . , cℓ be the unique cycle in
the considered CC C∗. Then C∗ is made up of the cycle and r ≤ ℓ disjoint trees T1, . . . , Tr rooted at the vertices ci1 , . . . , cir .
We again have the freedom to determine the random decisions of KS-VC. Suppose that it chooses as many edges from the
trees T1, . . . , Tr as possible before it considers edges belonging to the cycle. Let E∗ be the set of edges incident on any of
the cij , 1 ≤ j ≤ r , except those edges belonging to the cycle itself. Recalling our argumentation from above, it happens
with probability n−O(1) that ILS optimizes all trees T1, . . . , Tr and sets all vertices on edges from E∗ to the same state as
KS-VC. If the state of these vertices never changes before the cycle is optimized, we are done. Since the cycle size is O(1),
there is a sequence of O(1) swap/removal operations by ILS which leads to the same cover as KS-VC chooses for the cycle
(with possibly more than half of the vertices of the cycle chosen). Since there is altogether a number of O(1) edges that we
assume not to be touched before the cycle has been optimized, our asymptotic estimations from the last paragraph are not
affected. �

3.2. Trees with large connected components

The previous results relied on the fact that connected components are of logarithmic size w. h. p. In this section, we
study the behavior of ILS on a sparse graph of maximum degree 3 having a single connected component and show a
superpolynomial lower bound on its runtime. Previous results showing that randomized search heuristics fail to efficiently
find minimum VCs were available only for dense graphs or graphs with large maximum degrees [8,9].

Our example called FoolingTree is defined on n = 2k+2
− 3 vertices. The graph is the subdivision obtained from a

complete, rooted binary tree by replacing each edge with a path of length two (see Fig. 2 for an example). Hence, there are
2⌈i/2⌉ vertices at depth 0 ≤ i ≤ 2k. Any VC must include vertices from at least every other level.
Fact 1. The unique optimal VC for FoolingTree chooses all vertices of odd depth.

There are many VCs being by one vertex away from optimality, e. g., the VC choosing all vertices of even depth. In our
analyses, we concentrate mainly on the so-called deep-end edges between levels 2i − 1 and 2i, 1 ≤ i ≤ k, i. e., the deeper
edges from the paths of length two; all other edges are called high end (see also Fig. 2). Each deep-end edge has a unique
upper neighbor (vertex) in a high-end edge. This neighbor is either the root or endpoint of another deep-end edge. Since
all vertices except the root are endpoint of exactly one deep-end edge, the configuration of the deep-end edges together
with the root is sufficient to specify any vertex cover. We call a configuration of a deep-end edge correct if only its odd-level
vertex is chosen,wrong if only its even-level vertex is chosen and complete otherwise (the empty case cannot occur in valid
vertex covers). The optimal vertex cover sets all deep-end edges correctly. In the following, we conceptually restrict the tree
to the deep-end edges. From this perspective, we denote the set of deep-end edges below a deep-end edge e along with e
itself as the subtree rooted at e and denote the upmost deep-end edges in the subtree as the two children of e.

We justify why FoolingTree is fooling ILS. Let us consider a configuration of ILS where at least one deep-end edge is
wrong. To correct the edge by an edge-swap operation of ILS, the configuration of the two children of the deep-end edge is
crucial. Only if the two children are not wrong, the edge is selectable and the swap results in a valid VC; otherwise an edge
in between the deep-end edge and its children would be uncovered. Let us assume for a moment that the two children are
correct. Then there are two choices among the deep-end edge and its children that decrease the number of correct edges
but only a single choice increasing this number. Hence, given that a wrong deep-end edge can be corrected, there seems to
be a tendency towards more wrong edges.

We make these ideas precise. We give each deep-end edge a depth, defined by the number of deep-end edges from the
root to the edge itself. Fix a valid VC and a deep-end edge e. In the subtree T (e) of deep-end edges rooted at e, we define
the following potential function denoted by P(e): consider the set of edges in T (e) that are (1) wrong, (2) selectable, and
(3) have only wrong ancestors in T (e). If this set is empty then P(e) := 0. Otherwise, P(e) is the maximum depth (w. r. t. e)
of these edges, increased by 1. The first aim is to show that P(e) has a strong tendency to increase in the run of ILS on the
FoolingTree instance. Later, this result will be ‘‘amplified’’ in order to show that ILS needs expected superpolynomial time
to optimize FoolingTree. In the following, we call a step of ILS relevant for a subtree if it chooses a selectable edge from this

C. Witt / Theoretical Computer Science 425 (2012) 117–125 123

tree for an edge-swap operation. We denote by d(e) the maximum value P(e) can take, i. e., d(e) is by one larger than the
depth of T (e) (where only deep-end edges are counted).

Lemma 2. Let e be a deep-end edge and consider its current P(e)-value. If P(e) > 0 then, with probability at least 1/2, the
P(e)-value increases to its maximum d(e) before it reaches 0; the conditional expected number of relevant steps for this is at
most 12d(e). From a current value P(e) = d(e), the probability to reach P(e) = 0 before falling back to P(e) = d(e) is at most
2−Ω(d(e)).

Proof. We apply the Gambler’s Ruin Model [7] to the P-value. At P(e)-value 0, the gambler is ruined; when P(e) = d(e),
where d(e) denotes the depth (measured in deep-end edges) of T (e), the gambler has won the game.

We will show that p, the probability of increasing the P(e)-value, can be bounded from below by at least 2/3. By the
definition of P(e), we consider the maximum depth of a wrong, selectable edge having only wrong ancestors. Moreover,
ILS can perform only a single swap operation in a step. Together this means that P(e) can decrease by at most 1 in a
step. Since increases by more than 1 are possible, the Gambler’s Ruin Model provides a pessimistic estimation. With an
initial capital of d, the probability of the gambler’s ruin is bounded from above by ((1 − p)/p)d ≤ 2−d regardless of the
adversary’s capital. This proves the last claim of the lemma, and estimating d ≥ 1, also the first part of the first claim of
the lemma. The expected duration of the game (the number of relevant steps of ILS is only smaller) is bounded from above
by d(e)/(2p − 1) · (1 − (1 − p)/p)−1

≤ 6d(e), implying that the conditional expected duration under the condition of the
gambler’s gain is at most 12d(e). This proves the second part of the first claim.

We are left with the claim p ≥ 2/3. Consider the deep-end edge e∗ that determines the current P(e)-value, and let e1
and e2 denote its (deep-end) children. We already argued why there is only a single way (namely choosing e∗) of decreasing
the potential and why the decrease is at most 1. The observation is that both e1 and e2 must be correct and selectable. If
any of these, w. l. o. g. e1, was wrong, the high-end edge in between e1 and e∗ would be left uncovered after applying a swap
operation to e∗, contradicting its selectability. If, w. l. o. g. e1, was complete, all three vertices on the path formed by e1 and
its high-end predecessor edge would be covered, contradicting the definition of ILS. Hence, both e1 and e2 are correct and,
since their parent is wrong, applying a swap to, w. l. o. g., e1 still results in a vertex cover with a wrong selectable edge e1
having onlywrong ancestors. Since the P(e)-value uses themaximumdepth of such edges, the swap increases it by at least 1.
Hence, p ≥ 2/3 follows. �

In the forthcoming theorem,we let the potential increase simultaneously for the complete tree and several of its subtrees.
Since Lemma 2 assumes a positive initial potential, we set up some sufficient conditions to increase a zero potential.

Lemma 3. Let e be a deep-end edge with P(e) = 0. If its upper neighbor vertex is covered, then there is a single edge-swap
operation leading to P(e) > 0.

Proof. To establish P(e) > 0, we have to create, by a single edge-swap operation, a deep-end edge in T (e) that is wrong,
selectable and has only wrong ancestors in T (e). We start by investigating the status of e. Trivially, e has no ancestors in T (e).
Since P(e) = 0, we conclude that e is not selectable or not wrong. Since its upper neighbor is covered, e cannot be complete.
Otherwise, all three vertices on the path from this upper neighbor to the lower vertex of ewould be covered, and ILS would
have performed a vertex-removal operation with respect to the upper vertex of e. Thus e is correct if it is not wrong. In the
case that e is correct, applying a swap to e results in a wrong edge which is still selectable. As this edge has only wrong
ancestors in T (e), we have P(e) > 0 then.

We are left with the case that e is wrong but not selectable. We consider a longest path of deep-end edges, starting with e
and containing only wrong edges. We have already argued why this path contains at least e itself. Let e∗ denote the last
edge on the path, where e∗

= e is possible. If e∗ did not have any children then e∗ would be selectable, contradicting the
assumption P(e) = 0.

Consequently, e∗ has two deep-end children (edges) in T (e). Since e∗ is not selectable, at least one of these edges is not
wrong. If this non-wrong edge was complete, we would again obtain a fully covered path of length three in contradiction
to the definition of ILS. Hence, there is at least one child e′ of e∗ that is correct. Since the upper neighbor of e′ (namely, the
lower vertex of e∗) is covered, e∗ is selectable. Applying a swap to e∗ results in a wrong edge which is still selectable. As this
edge has only wrong ancestors in T (e), we have P(e) > 0 after the swap operation. �

We need the following consequence of the preceding two lemmas. As long as a deep-end edge can be turned wrong, the
probability of observing it in correct state decreases exponentially with the depth of the subtree below the edge. Later, this
will produce a long waiting time for the correction of the parent of the edge.

Lemma 4. Let e be a deep-end edge whose upper neighbor is covered. Once P(e) has reached its maximum value d(e), the
probability of e being correct is at most 2−Ω(d(e)) in every following time step before the upper neighbor of e loses its cover mark
for the first time.

Proof. We assume that P(e) = d(e). Moreover, in all following considerations, we assume the upper neighbor of e to be
covered since nothing is left to show when this cover mark has been lost for the first time. By assumption, Lemma 3 is in
force. Together with Lemma 2, this means

1. if the P(e)-value has reached 0, there is a probability of Ω(1) to increase its maximum d(e) before reaching 0 again and
2. the probability of reaching P(e)-value 0 from value d(e) before falling back to d(e) is 2−Ω(d(e)).

124 C. Witt / Theoretical Computer Science 425 (2012) 117–125

We consider a modified process that, after an occurrence of P(e) = 0, surely returns to P(e) = d(e) before reaching
P(e) = 0 again. For any t ≥ 0, let us look into the tth time step of the modified process after an occurrence of P(e) = d(e). If
the probability of observing P(e) = 0 at this time step is at least some value p, then the probability of reaching P(e) = 0 from
P(e) = d(e) before falling back to d(e) is also at least p. Hence, by the above second property, the probability of observing
P(e) = 0 at time t in the modified process is 2−Ω(d(e)). By the first property, we know that P(e) = 0 holds in the real process
for an expected number of O(1) time steps before the P(e) = d(e) is reached again. Hence, the probability of observing
P(e) = 0 is at most O(1) · 2−Ω(d(e))

= 2−Ω(d(e)) in any time step after the first occurrence of P(e) = d(e).
Since P(e) = 0 holds if e is correct, the probability of e being correct is also at most 2−Ω(d(e)) after the first occurrence of

P(e) = d(e). �

We are ready to prove our theorem.

Theorem 4. The expected optimization time of ILS on FoolingTree is superpolynomial.

Proof. Initially, all three vertices on the upmost two edges in the FoolingTree instance are chosen. With probability at
least 2/3, the first run of the greedy vertex-removal procedure of ILS removes a vertex at depth 1 rather than the root from
the cover. Then the root is covered, the cover is non-optimal and Lemma 3 is in forcewith e being the upmost deep-end edge.
Applying Lemma 2 under this condition, we obtain that with probability Ω(1), we have at least once a path consisting of
only wrong deep-end edges from the top to the bottom of the tree. The remainder of this proof shows that it takes expected
superpolynomial time to correct all edges on this path.

Let us take a closer look at the path of wrong deep-end edges, in the following denoted by e1(= e), e2, . . . , ek, where ei+1
is a deep-end child of ei, 1 ≤ i ≤ k − 1. By e′

i+1, we denote the other deep-end child of ei. The idea is to study the subtrees
T (e′

j), 2 ≤ j ≤ k/2, and to utilize that many of these reach a large potential before ILS has corrected the last k/2 edges on
the path. Note that it is impossible to correct ei unless e′

i+1 and ei+1 are both correct (the complete case will be impossible
again). Therefore, the upper neighbors of the e′

j+1, 1 ≤ j ≤ i, (which are in fact the lower vertices of the ej, 1 ≤ j ≤ i) are
covered before ei is corrected. This will allow us to apply Lemma 4. Starting from a wrong path e1, . . . , ek, let Ci denote the
random time until ei is corrected for the first time. In the following, we show for 1 ≤ i ≤ k/2 that E(Ci) = 2Ω(k)

· E(Ci+1).
Since k = Ω(log n), we obtain E(C1) = 2Ω(log2 n), i. e., a superpolynomial lower bound on the expected optimization time.

To show the claim E(Ci) = 2Ω(k)
·E(Ci+1), we assume that all subtrees T (e′

j), 2 ≤ j ≤ k/2+1, have reached their maximal
potential at least once before ek/2 is corrected. Using Lemma 4 and the fact that different subtrees are treated independently
by ILS, we obtain a probability of 2−Ω(k) that e′

i+1 is correct at the first instance where ei+1, . . . , ek are all correct. If e′

i+1 is not
correct, Lemma 2 yields a probability Ω(1) of reaching maximal potential at least once in the subtree T (ei+1) before ei+1 is
correct again. Hence, ei+1 has to be corrected in expectationΩ(1) ·2Ω(k) times from a completely wrong path (with possibly
different ei+2, . . . , ek) before ei is corrected for the first time. This proves the claim.

We still have to justify the assumption that all subtrees T (e′

j), 2 ≤ j ≤ k/2 + 1, have reached maximal potential at
least once before ek/2 is corrected. We start our considerations at the time where the path e1,ek is completely wrong.
Using Lemma 2 andMarkov’s inequality, every subtree T (e′

i) reaches maximal potential in at most O(k2) relevant steps with
probability at least 1−1/k. Hence, after this number of relevant steps, all subtrees have reached theirmaximal potentialwith
probability at least (k/2)/k = 1/2. Each step is relevant with probability at least 1/|E| = Ω(1/n). Hence, using Chernoff
bounds, O(k2n) steps suffice with probability Ω(1) to reach maximal potential in all subtrees T (e′

j), 2 ≤ j ≤ k/2+ 1. On the
other hand, by Lemma 2,we also need 2Ω(k) trials with probability 1−2−Ω(k) to correct all edges ek/2+1, . . . , ek. Since there is
atmost a single choice for a swap operation to decrease the potential of a subtree, the time to correct all those edges is at least
n2Ω(k) with probability 1− o(1), according to Chernoff bounds. Altogether, the probability of reaching maximal potential in
all those subtrees before ek/2 becomes correct is Ω(1). Since all assumptions together still hold with probability Ω(1), the
unconditional expected optimization time is superpolynomial. �

Conclusions

We have studied the behavior of randomized search heuristics for minimum vertex cover in sparse random graphs
according to the G(n, c/n) model and supplemented previous experimental analyses. At first, we have rigorously proven
that the problem can the solved to optimality for c < e using a modification of the Karp–Sipser algorithm called KS-VC.
Afterwards, a hybrid heuristic called ILS was investigated. For c < 1 it reproduces the decisions of KS-VC with a good
probability in polynomial time. However, it fails badly already on graphs consisting of a single tree component of maximum
degree 3. Our analyses provide insight into the behavior of randomized search and present methods for its analysis. At
the same time, they illustrate principles of hybridizations of problem-specific greedy algorithms and randomized search
heuristics.

References

[1] J. Aronson, A. Frieze, B. G. Pittel, Maximum matchings in sparse random graphs: Karp–Sipser revisited, Random Structures and Algorithms 12 (2)
(1998) 111–177.

[2] M. Bauer, O. Golinelli, Core percolation in random graphs: a critical phenomena analysis, The European Physical Journal B 24 (3) (2001) 339–352.

C. Witt / Theoretical Computer Science 425 (2012) 117–125 125

[3] B. Bollobás, Random Graphs, 2nd edition, Cambridge University Press, 2001.
[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, 2nd edition, MIT Press, 2001.
[5] S. Droste, T. Jansen, I. Wegener, On the analysis of the (1+1) evolutionary algorithm, Theoretical Computer Science 276 (2002) 51–81.
[6] I. K. Evans, Evolutionary algorithms for vertex cover, in: Proc. of Evolutionary Programming VII, in: LNCS, vol. 1447, Springer, 1998, pp. 377–386.
[7] W. Feller, An Introduction to Probability Theory and Its Applications, vol. 1, 3rd edition, Wiley, 1968.
[8] T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, C. Witt, Approximating covering problems by randomized search heuristics using multi-objective

models, in: Proc. of GECCO 2007, AMC Press, 2007, pp. 797–804.
[9] T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, C. Witt, Analyses of simple hybrid evolutionary algorithms for the vertex cover problem, Evolutionary

Computation 17 (1) (2009) 3–19.
[10] D. Gamarnik, T. Nowicki, G. Swirscsz, Maximumweight independent sets and matchings in sparse random graphs. Exact results using the local weak

convergence method, Random Structures and Algorithms 28 (1) (2005) 76–106.
[11] O. Giel, I. Wegener, Evolutionary algorithms and the maximummatching problem, in: Proc. of STACS’03, in: LNCS, vol. 2607, 2003, pp. 415–426.
[12] A. Hartmann, M.Weigt, Statistical mechanics perspective on the phase transition in vertex covering of finite-connectivity random graphs, Theoretical

Computer Science (265) (2001) 199–225.
[13] H. H. Hoos, T. Stützle, Stochastic Local Search: Foundations and Applications, Morgan Kaufmann, 2004.
[14] C. Horoba, D. Sudholt, Running time analysis of aco systems for shortest path problems, in: Proceedings of the 2nd International Workshop on

Engineering Stochastic Local Search Algorithms, SLS 2009, in: Lecture Notes in Computer Science, vol. 5752, Springer, 2009, pp. 76–91.
[15] R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller, J.W. Thatcher (Eds.), Complexity of Computer Computations, Plenum, 1972,

pp. 85–103.
[16] R.M. Karp, M. Sipser, 1981. Maximummatchings in sparse random graphs, in: Proc. of FOCS’81, pp. 364–375.
[17] F. Neumann, I. Wegener, Randomized local search, evolutionary algorithms, and the minimum spanning tree problem, Theoretical Computer Science

378 (1) (2007) 32–40.
[18] F. Neumann, C. Witt, Runtime analysis of a simple ant colony optimization algorithm, Algorithmica 54 (2) (2009) 243–255.
[19] M. Pelikan, R. Kalapala, A.K. Hartmann, Hybrid evolutionary algorithms on minimum vertex cover for random graphs, in: Proc. of GECCO’07, ACM

Press, 2007, pp. 547–554.
[20] D. Sudholt, Hybridizing evolutionary algorithms with variable-depth search to overcome local optima, Algorithmica, 2011, in press

(doi:10.1007/s00453-009-9384-2).
[21] R.E. Tarjan, A.E. Trojanowski, Finding a maximum independent set, SIAM Journal on Computing 6 (3) (1977) 537–546.
[22] I. Wegener, Simulated annealing beats metropolis in combinatorial optimization, in: Proc. of ICALP’05, in: LNCS, vol. 3580, 2005, pp. 589–601.
[23] C. Witt, Worst-case and average-case approximations by simple randomized search heuristics, in: Proc. of STACS’05, in: LNCS, vol. 3404, 2005,

pp. 44–56.
[24] C. Witt, Greedy local search and vertex cover in sparse random graphs (extended abstract), in: Proc. of TAMC’09, in: LNCS, vol. 5532, Springer, 2009,

pp. 410–419.

http://dx.doi.org/doi:10.1007/s00453-009-9384-2

	Analysis of an iterated local search algorithm for vertex cover in sparse random graphs
	Introduction
	A modified Karp--Sipser algorithm for vertex cover
	Iterated local search
	Sparse random graphs and the case c<1
	Trees with large connected components

	References

