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a b s t r a c t

In this paper, the authors give a new refinement of the Janous–Gmeiner inequality for a
triangle by making use of certain analytical techniques for systems of nonlinear algebraic
equations. Some other closely-related geometric inequalities are also considered.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction, preliminaries and the main result

For a given △ABC , let a, b and c denote the side-lengths facing the angles A, B and C , respectively. Also letma,mb andmc
denote the corresponding medians, s =

1
2 (a + b + c) the semi-perimeter, R the circumradius and r the inradius of △ABC .

As long ago as 1986, Janous [1] posed the following conjecture involving a geometrical inequality:
1
ma

+
1
mb

+
1
mc

>
5
s
. (1.1)

Later, in the year 1988, Gmeiner and Janous [2] proved the inequality (1.1) by using calculus. In 1989, Shan and Liu [3] also
independently proved the inequality (1.1) by using calculus techniques. Moreover, Shan and Liu [3] pointed out that the
following inequality does not hold true:

1
ma

+
1
mb

+
1
mc

=
3
√
3

s
. (1.2)

Motivated by the work of Shan and Liu [3], An [4] considered the inequality (1.2) and proved the following inequality:

1
ma

+
1
mb

+
1
mc

=
3
√
3

s +
1

√
6
(|a − b| + |b − c| + |c − a|)

. (1.3)

Subsequently, Shi [5] refined the inequality (1.3) as follows:
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mb
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mc

=
3
√
3

s +
3
√
3 − 5
10

(|a − b| + |b − c| + |c − a|)

, (1.4)
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which also sharpened the inequality (1.1). Shi [6], on the other hand, obtained the following result:

1
ma

+
1
mb

+
1
mc

=
3
√
3

Mk(a, b, c)


k =

ln 9 − ln 4
ln 25 − ln 12


, (1.5)

where, for convenience,Mk(a, b, c) is given by

Mk(a, b, c) :=


ak + bk + ck

3

 1
k


k =

ln 9 − ln 4
ln 25 − ln 12


. (1.6)

In the same year 1996, Yang [7] improved the inequality (1.1) as follows:

1
ma

+
1
mb

+
1
mc

=
5
s

+ (6
√
3 − 10)

r
Rs

. (1.7)

Analytic as well as geometric inequalities are potentially useful in many different areas of the mathematical, physical
and engineering sciences (see, for details, [8,9]; see also [10]). With this objective in view, we present a new refinement of
the Janous–Gmeiner inequality (1.2) as asserted by the following theorem.

Theorem. The best constant k for the following inequality:

1
ma

+
1
mb

+
1
mc

=
3
√
3

s + k(s − 3
√
3r)

(1.8)

is given by

k =
3
√
3

5
− 1. (1.9)

2. A set of lemmas

In order to prove our main result asserted by the Theorem in the preceding section, we require each of the following four
lemmas.

Lemma 1. The following implication holds true:

r 5
a
√
s(s − a)
2s

⇐⇒ −r = −
a
√
s(s − a)
2s

(2.1)

with equality if and only if b = c.

Proof. Making use of the familiar formula:

r =

√
s(s − a)(s − b)(s − c)

s
(2.2)

and the well-known AM–GM inequality, we easily obtain the inequality (2.1). Furthermore, it is not difficult to observe that
the equality in (2.1) holds true if and only if b = c. �

Lemma 2 (see [6]). If a 5 b 5 c, then

1
ma

+
1
mb

+
1
mc

=
1

√
s(s − a)

+
4

2a2 +
(b+c)2

4

, (2.3)

where the equality holds true if and only if b = c.

Lemma 3 (see [11] and [12]). Suppose that f (x) is a polynomial with real coefficients given by

f (x) = a0xn + a1xn−1
+ · · · + an. (2.4)

If the number of the sign changes of the revised sign list of its discriminant sequence

{D1(f ),D2(f ), . . . ,Dn(f )} (2.5)

is v, then the number of the pairs of distinct conjugate imaginary roots of f (x) equals v. Furthermore, if the number of non-
vanishing members of the revised sign list is ℓ, then the number of the distinct real roots of f (x) equals ℓ − 2v.
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Lemma 4 (see [12]). Let the polynomials F(x) and G(x) be given by

F(x) = a0xn + a1xn−1
+ · · · + an (2.6)

and

G(x) = b0xm + b1xm−1
+ · · · + bm, (2.7)

respectively. If

a0 ≠ 0 or b0 ≠ 0, (2.8)

then the polynomials F(x) and G(x) have common roots if and only if

R(F ,G) =



a0 a1 a2 · · · an 0 · · · 0
0 a0 a1 · · · an−1 an · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · ·

0 0 · · · a0 · · · · · · · · · an
b0 b1 b2 · · · · · · · · · · · · 0
0 b0 b1 · · · · · · · · · · · · 0
· · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 · · · b0 b1 · · · bm


= 0, (2.9)

where R(F ,G) is Sylvester’s resultant of the polynomials F(x) and G(x).

3. Proof of the Theorem

For the symmetry of the inequality (1.8), there is no harm in assuming that a 5 b 5 c . Thus, by Lemmas 1 and 2, we only
need to consider the best constant k for the following inequality:

1
√
s(s − a)

+
4

2a2 +
(b + c)2

4

=
3
√
3

s + k
[
s − 3

√
3

a
√
s(s − a)
2s

] . (3.1)

Without loss of generality, we can set

b + c
2

= 1 and a = x (0 < x 5 1). (3.2)

Then, clearly,

s =
x + 2
2

(0 < x 5 1)

and the inequality (3.1) is equivalent to

2
√
4 − x2

+
4

√
2x2 + 1

=
6
√
3

x + 2 + k


x + 2 −

3x

3(4 − x2)
x + 2

 . (3.3)

We consider the following two cases separately.
Case 1. When x = 1, the inequality (3.3) holds true for any k ∈ R := (−∞, ∞).
Case 2. When 0 < x < 1, the inequality (3.3) is equivalent to

k = g(x) (0 < x < 1), (3.4)

where

g(x) =
(x + 2)2 + 3x


3(4 − x2)

4(7x + 2)(x − 1)2(5 − 2x2)
[2

√
3(4 − x2)


2x2 + 1

−
√
3(2x2 + 1)


4 − x2 − (x + 2)(5 − 2x2)] (0 < x < 1). (3.5)

Upon calculating the derivative of g(x) in (3.5), we get

g ′(x) =
p(x, u, v, w)

2(7x + 2)2(1 − x)3(2x2 − 5)2
√
2x2 + 1

√
12 − 3x2

(0 < x < 1), (3.6)
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where

p(x, u, v, w) = −432ux9 + (1422u + 228v + 480w)x8 + (−768v − 324vuw
+ 870w + 3150u)x7 + (−5679u − 288vuw − 3282w − 3696v)x6

+ (3936v + 1224vuw − 8019u − 6963w)x5 + (3744vuw + 1041w
+ 16305v − 3780u)x4 + (7032w − 693vuw + 8964u − 915v)x3

+ (−18960v − 4977vuw + 7320w + 14616u)x2 + (1440u − 7572v
− 2880vuw + 6864w)x + 1440u − 1680v − 240w − 180vuw (3.7)

and

u =
√
3, v =


2x2 + 1 and w =


4 − x2.

For g ′(x) and p(x, u, v, w) given by (3.6) and (3.7), respectively, we now solve the equation

g ′(x) = 0 or p(x, u, v, w) = 0 (3.8)

and consider the following system of nonlinear algebraic equations:
p(x, u, v, w) = 0
u2

− 3 = 0
v2

− 2x2 − 1 = 0
w2

+ x2 − 4 = 0.

(3.9)

It is easy to see that the roots of the second equation in (3.8) would also provide the solution of the system of nonlinear
algebraic equations in (3.9). If we eliminate the ordinals u, v and w by means of Sylvester’s resultant (by using Lemma 4),
then we get

11019960576(7x + 2)8(x + 2)4(x + 1)4(2x2 − 5)8(x − 1)20q2(x) = 0, (3.10)

where q(x) is given by

q(x) = 192x10 − 576x9 + 1600x8 − 2808x7 + 2801x6 − 5832x5 + 2946x4

− 612x3 + 3833x2 + 5940x − 2300. (3.11)

It is easily observed that the following algebraic equation:

(7x + 2)8(x + 2)4(x + 1)4(2x2 − 5)8(x − 1)20 = 0 (3.12)

has no real root on the interval (0, 1).
The revised sign list of the discriminant sequence of q(t) is given by

[1, −1, −1, 1, 1, 1, 1, −1, −1, −1]. (3.13)

Consequently, the number of the sign changes of the revised sign list in (3.13) is 3. Thus, by applying Lemma 3, we find that,
for q(x) given by (3.11), the following equation:

q(x) = 0 (3.14)

has 4 distinct real roots. Also, by using the function ’’realroot()’’ in Maple (Version 9.0) [13, pp. 110–114], we can find that
the algebraic equation (3.14) has 4 distinct real roots in the following intervals:[

41
128

,
21
64

]
,

[
181
128

,
91
64

]
,

[
123
64

,
247
128

]
and

[
−

101
128

−
25
32

]
. (3.15)

Therefore, the algebraic equation (3.14) has only one real root

x0 = 0.3215884740 · · · (3.16)

in the open interval (0, 1).
Next, we set

v0 =


2x20 + 1 and w0 =


4 − x20. (3.17)

Then

p(x0, u, v0, w0) ≈ −404.4633105 < 0. (3.18)



H.M. Srivastava et al. / Computers and Mathematics with Applications 62 (2011) 2349–2353 2353

Hence x0 is an extraneous root. It follows that the second equation in (3.8) has no real root in the open interval (0, 1), that
is, that the first equation in (3.8) has no real root in the open interval (0, 1). Furthermore, we have

g ′


1
2


=

13525
√
2 − 8762

√
5

1089
+

673
√
10 − 2122
121

< 0. (3.19)

Consequently, for any x ∈ (0, 1), we have

g ′(x) < 0 (0 < x < 1), (3.20)

so the function g(x) given by (3.5) is strictly monotone decreasing on the interval (0, 1). Then

sup
x∈(0,1)

{g(x)} = lim
x→0+

{g(x)} =
3
√
3

5
− 1. (3.21)

Hence, the best constant k for the inequality (3.4) is given by

k =
3
√
3

5
− 1,

that is, just as asserted by the Theorem, the best constant k for the inequality (1.8) is given by (1.9). The proof of our proposed
refinement of the Janous–Gmeiner inequality (1.2) is thus completed.
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