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1. INTRODUCTION 

In [13] and [14], Hudson and Zeeman proved in the PL category 
that if M is a manifold properly embedded in a manifold N and 
F: M x I” +.N is a locally unknotted n-isotopy (see definition below), 
then F extends to an ambient isotopy H: N x P + N x I”,. If the 
codimension of M is at least 3, then the local unknottedness condition 
is automatically satisfied. My purpose here is to prove that this condition 
is satisfied for codimension 1 if dim N < 3 and to apply this result to 
obtain uniform versions of some theorems of Bing and Sanderson on 
approximating homeomorphisms by PL ones. 

I assume that the reader has some acquaintance with the two papers 
of Hudson and Zeeman cited above. The isotopy extension theorems 
in the topological category were proved in several of my own papers [7, 
9, lo]. Many of the ideas involved are discussed in my expository 
paper [12]. In particular, outlines of the proofs of the approximation 
theorems appear there. 

2. DEFINITIONS AND BACKGROUND 

I work in the two categories PL and TOP. In the first, all objects are 
polyhedral manifolds and all morphisms are piecewise linear (PL) maps; 
in the second, everything is topological. In either category, let M be a 
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manifold properly embedded in a manifold N, i.e., M A aN = aM. 
I suppose once and for all that M has codimension 1, dim N < 3 and 
that M and N are compact. 

The symbol I denotes the unit interval, 1’” the unit n-cube, d” the 
standard n-simplex, and 2?--l the (n - l)-sphere bounding either I’” or 
An. As usual, 8 denotes boundary and 0 denotes interior. If f: M -+ N 
is an embedding, I write f: M c-+ N; if f: N CA N is onto, I write 
f: N 3. A homeomorphism f: M x 1” -+ N x I’” is level preserving 
(with respect to I”) if f commutes with p, , projection on the second 
factor. In this case, f determines, for each t EJ’~, an embedding 
ft: M c+ N defined by fl(x) = pl(x, t). A homeomorphism such as f 
above is called an n-isotopy. An S”-isotopy is similarly defined by 
replacing 1’” by S” in the definition of n-isotopy. In all cases, lh7 denotes 
the identity homeomorphism on N, the subscript being dropped if 
there is little danger of confusion. 

In TOP, the symbol Top(N) d enotes the identity component of the 
space of homeomorphisms of N onto itself with the sup norm metric 
and Top(N; M) denotes the subspace consisting of all those homeo- 
morphisms leaving M pointwise fixed. In PL, the symbol PL(N) denotes 
the semisimplicial complex whose k-simplices are level preserving PL 
homeomorphisms f: N x AL 3, each ft PL isotopic to 1 and PL(N; M) 
denotes that whose k-simplices are level preserving PL homeomorphisms 
f: N x A” 4 leaving the points of M x Ak fixed, each ft PL isotopic 
to 1 under an isotopy leaving M pointwise fixed. Since Top(N) is a 
topological space, homotopy is defined there in the usual way. There is 
a homotopy theory in PL, the details of which can be found in [16, 18-j. 
It suffices here to note than an element of n,.(PL(N)) is represented by 
a level preserving PL homeomorphism f: N x A” 3 such that 
f!Nx iYAk= and that f and g represent the same element of rk if 
there is a level preserving F: N x A” x 13, F. = f, F, = g and 
F 1 N x aA’” x I = 1. It is also possible to look at homotopy in TOP 
in this same way. 

Also, it is useful to consider PL,(N x 1’~). Here, the k-simplices 
are PL level preserving (with respect to FL and Ak) homeomor- 
phisms f: N x I’” >< AL 5. Similar definitions hold for Top,(N x In), 
PL,(N x ~2~~) etc. 

In either category, n-connected means that r,; = 0 for K < n. The 
set PL(N) is LP if for each E > 0, there is a 6 > 0 such that if 
f: N x Sk 3, k < n, is a level preserving homeomorphism that moves 
no point as much as 8, then there is a level preserving PL homeomor- 
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phism F: N x SL x IS that moves no point as much as E and is such 
that F, = f and Fl = 1. Similar definitions hold in TOP and for 
PL(N; M) and Top(N; M). 

The celebrated Alexander trick proves that PL(I”; S--l) and 
Top(1”; SrL-l) are h-connected and LP for each k ([2; 12, Sec. 2, 
chap. II). Since PL([*, l] ; {i}), PL([O, *]; {-$}), and PL(Sl; (p}), p E S1, 
are isomorphic to PL(IT; al), it is an immediate consequence that 
PL(I; {g}) and PL(Si; (p}) are k-connected and LC” for each k. It also 
follows that PL(IT”) and Top(l”) are homotopically equivalent to 
PL(S”-l) and Top(S+i), respectively. For dim N < 3, PL(N) and 
Top(N) are LC” for each k [S, 10, 151. Also, PL(Si) and TOP(~) are 
homotopically equivalent to S l; PL(S1 x I; Si x 0) and Top(Si x I; 
S x 0) are k-connected for each k [ 1, 8, 201. 

Finally, I list some facts that follow readily from results in [7, 10, 111. 
First, PL,(ITp x S”; 81~ x S”) and Top,(ln x S” ; 8Ifl x Sn) are k-con- 
nected and LCk for each k. Second, since PL(N, M) is LC” for each k, 
PL,(N x Sn), PL,(N x Sn; M x S%), PL,(N x Ik; M x P), and 
PL,(N x Ik; (M x rk) u (N x ark)) are LCO. In general, if PL(N) is 
k-connected for each k, PL,(N x S”) is also and in any case, PL,(N x I”) 
is connected if PL(N) is connected. 

I now consider the local unknottedness condition of Hudson and 
Zeeman (see their papers for more details). This is a PL definition. 
Everything in this paragraph is PL. A ball pair (BQ’, B’“), q > m, is a 
pair of balls with B”” properly embedded in Bq. It is unknotted if it is 
PL homeomorphic to the standard pair (ZAm, A”“), where Z denotes 
(Q - m)-fold suspension. If f: M c-+ N is a proper PL embedding, 
f is locally unknotted if for some triangulations K, L of M, N, for which f 
is simplicial, the ball pair (st(f(v), L), f (st(v, K)) is unknotted for each 
vertex o of K. (Here st denotes the closed star.) This is equivalent to 
saying that the pair (Zk(f (v), L),f(Zk(v, K)) is PL homeomorphic to 
(JYSn+1, Sl+i) if 7~ E iG2 or (,Ql~~-l, d+l) if es E ail4. A proper isotopy 
f: M x 1” c+ N x 1” is locally unknotted if for each t E I”, fi is locally 
unknotted and for every simplex 0 linearly embedded in I’“, f 1 M x u c+ 
N x 0 is locally unknotted. 

3. LEMMAS ON FITTING ~SOTOPIES TOGETHER 

LEMMA 1. Suppose that f: M x S” + N x P is a locally unknotted 
PL S*-isotopy and that PL(N; M) is k-connected for each k. Then, f 
extends to a PL P-isotopy F of N. 
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Proof. Consider S” as the union of two PL balls, D, and D, , with 
D, n D, = ,Y1, By the Hudson-Zeeman theorems, f 1 M x D, and 
f 1 M x D, extend to a level preserving homeomorphismsFi: N x Di 3. 
The homeomorphisms F, and F, must be fitted together on N x S-l. 
Let 9-l x J, J = [0, 11, d eno e t a standard collar of S-l in D, , 
x x 0 being identified with x for each x in 9-l. It is easy to see that 
F;lFl / M x 57-r = 1, so that F;%, E PL,(N x 9-i; M x ,Y-l). 
Thus, by the remarks in Section 2, there is a level preserving (with 
respect to 9-l and J) homeomorphism 0: N x S-r >< J 3, such that 
@in/r x STL-1 x J= l,QO=FglF1,andQD,= l.Then,F,‘:Nx De3, 
defined by F,’ 1 N x (D, - (,!T1 x J)) = Fz 1 N % (D, - (S+l j: J)) 
and F3’ j N x S--l x J = F,@ 1 N x S--l x ] extends f ! M x D, 
and equals Fl on N x SIL--l. 

The notation in the proof of Lemma 1 appears below. 

LEMMA 2. Suppose that fi and fi are PL leael preserving homeomor- 
phisms of M x D, and M x D, into N x D, and N x D, such that 
f,(M x Dl) n f2(M x D,) = f,(M x 9-l). If PL(M) is k-connected 
for each k, then there is a PL homeomorphism f of M x D, onto f2(M x Dz) 
such that f 1 M x Sjl--l = fi / M x 5+-l. 

Proof. The proof is essentially the same as that for Lemma 1. 

LEMMA 3. For each E >- 0, there is a 6 > 0 such that if Fl and F3 in 
the proof of Lemma 1 move no point as much as 6, then F can be chosen so 
as to move no point as much as E. 

Proof. Since PL,(N x S-l; M x 3-l) is LC” (see Section 2), 
there is a 6, 0 < 6 < l ,12, such that any element of PL,(N x S1-l; 
M x 53-l) within 26 of the identity is isotopic to the identity in an 
cj2-neighborhood of the identity. Thus, if Fl and Fz move no point as 
much as 6, then FilFl I N x S-1 moves no point as much as 26, so 
that @ can be chosen so as to move no point as much as l ,“2. Thus, 
Fz@ and, therefore, F move no point as much as E. 

There are several useful variations of these lemmas whose proofs are 
virtually identical to the proofs above. These will be mentioned as 
needed. 

4. THE LOCAL UNKNOTTEDNESS OF ISOTOPIES IN Low DIMENSIONS 

In this section, everything is PL. 
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PROPOSITION 1. If P . zs a polyhedron properly embedded in I x Q, 
where Q = In or S” and P meets each I x {x} in a point of 1 x (x}, then P 
is locally unknotted. 

Proof. Suppose P has a triangulation T. For each vertex v of T, 
st(v, T) is a ball. The union of the I x {x} that meet st(v, T) is clearly 
a ball B and (B, St(z), T)) is an unknotted ball pair. 

COROLLARY. If f: {B) x Q CA I x Q is proper, then f extends to an 
ambient isotopy F: I x Q 3. 

Proof. Since (see Section 2), PL(I; {i}) is LC” and k-connected for 
each k, this follows from Proposition 1 and Lemma 1 of Section 3. 

PROPOSITION 2. Proposition 1 is true with I replaced by S1. 

Proof. Let TJ be a vertex of T and x its Q coordinate. There is a 
l-cell U in Si that is a union of two 1-simplices such that U x {x> is 
a neighborhood of z? in Si x {.x>. There is a ball neighborhood B of x 
in Q such that (8U x B) n P = o . If T’ is a refinement of T so fine 
that st(v, T’) C C x B, then, as in the proof of Proposition 1, the ball 
B’ that is the union of the segments U x [y} that meet st(a, T’) is such 
that (B’, st(v, T’)) is an unknotted ball pair. 

COROLLARY. If f: (p} x Q C+ S x Q is a proper isotopy, then f 
extends to an ambient isotopy F: S x Q 3. 

Proof. Since PL(Sl; p) is k-connected for each k (see Section 2), 
the proof is like that of the corollary to Proposition 1. 

THEOREM 1. Let P be a polyhedron properly embedded in I” x I’” 
such that for each q E I’“, P n (I2 x {q)) is an arc. Then, (I) P is locally 
unknotted and (2) there is a level preserving PL homeomorphism of I x In 
onto P. 

Proof. This is done by induction on n and is evident if n = 0. 
Suppose the theorem is true for n < k and that we have n = k + 1. 
Let v be a vertex of P with second coordinate q. The worst possible 
situation is when q E aIk+l and z’ E aI x {q}, so I consider this case 
and leave the other cases to the reader. Throughout, I use the linear 
structure of I2 X Ix’+l. 

Let L be a triangulation of 1* x Ik+l and K a triangulation of P such 
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that e! is a vertex of K, K is a subcomplex of L, K restricted to 
P n (1” x {g]) is a subcomplex K. , and L restricted to I” x (4) is a 
subcomplex L, . Consider st(v, Ko) and st(v, L,). The first consists of a 
single l-simplex, o; the second has two edges, u1 and ~a , on W x (4) 
and is the cone of a polyhedral arc that meets W x [q} in two points. 
There is a convex polyhedral disc D in I” with D x (4) a neighborhood 
of ii’ in int st(o, L,) such that D x [Q) has on its boundary three edges 
T, pi , TV , perpendicular to U, err , uz , respectively, 7 crossing u. If p is 
a (k -- 2)-simplex of K having u as an edge and p meets some F i: {x} 
in a l-simplex, then that l-simplex is parallel to u. Thus, if Q is a 
sufficiently small convex polyhedral neighborhood of 4 in Wi, 
D :i, Q C int st(z:, L) and for each M in Q, ?D x [XI consists of an arc 
D, x ix:. in W x {” > 2: and an arc D, x [x> in I? x [x> that meets P 
in just one point and i3JA x IX} in two points. Note that if X = 
cl[b(D x Q) n int(1’ x WI)] and I7 = cl(X n P), then (X, Y) is a 
((K + 2), (k + 1)) ball pair, D x Q = z~.+X, and (D s: Q) n P = el,Y. 
If (S, Y) is an unknotted ball pair, then, since D ;< Q is convex and lies 
in st(z., L), (&a, L), Ik(z;, K)) is an unknotted ball pair. 

Note that ZQ is the union of nonoverlapping balls, Qi C ;iFi and Qa 
lying except for aQa in 9; j+l.Then, a(D x Q)=(aD x Cl) u (D x aQ)= 
((Dl A Q) u (D x Ql)) u ((D, x Q) u (D A C&J). The set X is 

(D, x (2) ” (D x 0,) and Y meets each D, x [x> in an interior point 
of D, x {A-!- and each D x (x). in an arc with one endpoint in fia x (x}, the 
other in .Di :: (x). By the induction hypothesis, (D x 0, , Y n (D x Q3)) 
is an unknotted ball pair and by the corollary to Proposition 1, 
(D, x g, Y n (D, x 0)) is as well. These fit together properly so that 
(S, 1’) is an unknotted ball pair. The other cases are handled similarly. 
Thus, (1) is proved. 

To see that (2) is true, note that the induction hypothesis and Proposi- 
tion 1 tell us more. There is a PL level preserving (with respect to Qa 
and Q) homeomorphism h on (1 x Q,) u (101 x Q) taking I x Qa onto 
Y n (D x Qa) and {O) x Q onto Y n (D, x Q). Get a triangulation of 
I x Q isomorphic to that induced on zl,Y by st(e, K) and use this to 
star 12 and thus, extend F to a level preserving homeomorphism of 
I X: Q onto P n (D x Q). This construction can be made at any point 
of Y. Therefore, for each q E P+l, there are a sequence Q, ,..., Qp of 
PL (k I 1)-ball neighborhoods of q in Ix-~l and a sequence D, ,..., Dp 
of discs in 13 such that the balls Bi = Di x Qi are nonoverlapping, 
lJ B, is a ball neighborhood of P n (I” x [q)), and for each i, Bi n Bi+l 
is a ball, Bj n B, = c unless ~ i - j j < 1, and P n (Di 2: Qi) is level 
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preserving homeomorphic to I x Qi . By fitting the B, together, we 
get a PL ball neighborhood Q of Q such that P n (I2 x 9) is level 
preserving homeomorphic to I x Q. Now, Tk+l is a union of balls 

Q1 > Q2 ,...y Qr 7 such that for each i, Qi+l n uiE1 Qj is a ball. Since the 
Qi can be chosen, as above, so that P n (I2 x Q,) is level preserving 
homeomorphic to I x Qi and Pl,(I x F+‘) is connected (see Section 2), 
a suitable variation of Lemma 2 can be applied to fit the P n (F >. Qi) 
together to obtain the required homeomorphism of P onto I x Ik+l. 

COROLLARY. There is a PL level preserving homeomorphism of Ii x I” 
onto itself taking (t} x I x I’” onto P. 

THEOREM 2. I f  P is a polyhedron properly embedded in N x I”, 
where N is a compact 2-manifold, such that each P n (N x (qj) is an arc, 
or each P n (N x {q}) is a simple closed curve, then P is locally unknotted. 

Proof. The proof of Theorem I, although it uses the linear structure 
of I2 x P, is essentially local. Let A be a ball neighborhood of v in N. 
There is a PL homeomorphism of A onto 12. We use this homeomor- 
phism and apply the proof of Theorem 1 locally in A x I”. 

COROLLARY. IffM is a I -manifold properly embedded in the 2-manifold 
N andf:M x I 1L c-t N x I” is a proper n-isotopy, then f extends to an 
n-isotopy F: N x I’” 3. 

THEOREM 3. I f  Q is S’” or I” and P is a polyhedron in 12 x Q such 
that P n (13 x (XT)) is a simple closed curve for each x in Q, then there is 
a PL level preserving homeomorphism of S x Q onto P. 

Proof. The proof of Theorem 1 shows that P is locally unknotted 
and that for each x E Q, there is a PL ball neighborhood B of x such 
that P n (I2 x B) is level preserving homeomorphic to S1 x B. Since 
FL is the union of balls B, ,..., B,n. , such that for each i, B+, n tJi=, Bi 
is a ball and PL,(Sl x 1’“) is connected, a suitable variation of T,emma 2 
can be applied to prove Theorem 3 in the case Q = In. 

If Q = S”, then Q is the union of two balls D, and D, such that 
D, n D, = 9-i. The Hudson-Zeeman theorems and the proof above 
imply for S1 in j2, that there are PL level preserving homeomorphisms 
Fi , i = 1,2, of I2 x Di onto I2 x Di taking S1 x Di onto P n (I2 x Di) 
and leaving each point of aI x Di fixed. These may not agree on 
I2 x 9-l. However, if A is the annulus in I2 bounded by S and a12, 
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PL(A; W) is k-connected for each k (see Section 2) so that F, ] A x D, 
and Fz 1 A x Da may be fitted together to obtain a level preserving 
homeomorphism F of A x S” onto itself taking S1 x S” onto P. The 
Hudson-Zeeman theorems and Lemma 1 imply that F extends to all 
of I” ;.: S”. 

COROLLARY. If S C I2 andf: S1 x S” + i2 x S” is a PL S”-isotopy, 
then f extends to a PI, isotopy F: I” x S’” 3. 

~'HEORESI 4. Supp ose that M is the disc:*] x I” in I3 and that 
f: M x I” C+ I” x I’” is a proper leael preserving embedding. Then, f is 
locall?, unknotted. 

Proof. The proof is by induction on n and is evident if n = 0. 
Suppose the theorem is true for n < k and we have n = k + 1. Let A 
be a simplex linearly embedded in 1 1 &+l. By the induction hypothesis, 
f 1 31 Y Ll . - 1 15 oca 11 y unknotted if dim A < k, so suppose A has dimen- 
sion k +- 1. Let K and L be triangulations of M x A and N x d with 
respect to which f 1 M x d is simplicial and let 29 = (p, q) be a vertex 
of K. Again, the worst situation is when q E 8A and p E aM. However, 
the proof is much like that of Theorem 1 in spirit, so, for variation, 
I consider the case v E A!2 ;Y jk+i and use, as before, the linear structure 
of &1 x I”+l and I3 x Ik+l. Suppose further, that I, 1 I3 x (q} is a sub- 
complex L, of L, K j &l s {qj- is a subcomplex K,, of K and that for 
each x E M, f(x, q) = (x, q). This last is assumed for notational con- 
venience and is made possible by composing f with f;’ :< 1. 

Consider f (st(v, K,)) and st(f (v), L,). The first is the cone of a 
polyhedral simple closed curve; the second is the cone of a 2-sphere 

and (st(f(e.),L,),f(st(@, K,)) is an unknotted ball pair. There is a 
convex (triangulated) polyhedral ball D in 1” such that (1) D x [q] C 

int(st(f Cc>, Lo>), (2) neither L, nor D contains a vertex of the other, 
(3) no edge of D meets an edge of L and (4) any face of aD x (q} that 
meets f (M x {q}) is perpendicular to f (M x {q}). It follows, then, 
that D x {q) meets f(st(z!, I;=(J) in a disc E x [q> and that aE x {q} 
meets each interior l-simplex of f (st(a, k;)) in exactly one point, 
that point interior to the edge of aE x {q} containing it. Suppose that 
cr is a (k + 3)-simplex of K having a I- or 2-simplex T of f(st(v, K,)) 
as a face. If 7 is a 2-simplex and x is near q, then f(u) meets 13 x {x} 
in a 2-simplex; if T is a l-simplex, then f (u) meets I3 x (x> in a 2-cell. 
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Thus, f(M x ($1) h as an obvious cellular decomposition. If Q is a 
sufficiently small convex polyhedral neighborhood of q in d, D x Q 
lies in st(f(v),L) and for each x in Q, aD x (x> meets f(M x -[x)) 
in a simple closed curve. To see that this intersection is a simple closed 
curve, note that (1) ‘f 1 u is a simplex of aD, u x {x) meetsf(M x 1x1) 
if and only if u x (q} meets f(M x {q}), (2) neither SD *: [x> nor 
f(n/r x {x)) contains a vertex of the other and (3) no l-simplex of 
aD x {x> meets a l-simplex of f(M x {x}). Thus, if a 2-simplex of 
aD x {x} meets a 2-cell in f(n/r x {x)), the intersection is a straight 
line interval. It readily follows that (aD x (x}) nf(n/r x -IX}) is a simple 
closed curve. By Theorem 3, there is a PL level preserving homeo- 
morphism h: aE x Q c+f(&! x Q) taking aE x (x) onto (aD K [x}) n 

f(M x b4>- BY Th eorems 1 and 2 and the corollaries, h extends to a PL 
level preserving 

h,: (Ii u aD) x Q C-F (3D x Q) u ((D x Q) nf(M >< Q)). 

By the induction hypothesis, Hudson-Zeeman theorems, and Lemma 1, 
hi j (E u aD) x GQ extends to N,: D x aQ 4. Now, 

C(D x Q) = (aD x Q) u (D x aQ) g P’3, 

f(M) n a(D x Q) = h(aE /: Q) u h,(E c 3Q) g Sk+“, 

and (a(D x Q),f(M) n a(D ;< Q)) is an unknotted sphere pair. -4s in 
the proof of Theorem 1, (Zk(f(v), L),f(lk(zy, K)) is an unknotted 
sphere pair. Thus, the isotopy f is unknotted. 

THEOREM 5. If M is a 2- mnnljCold properly embedded in the 3-mnnifold 
N, then every proper n-isotopy f: M x IrL C+ N x P extends to an 
ambient n-isotopy F: N x In 3. 

Proof. Again, the proof of Theorem 4 is essentially local. 

5. APPROXIMATIONS OF TOPOLOGICAL ISOTOPIES BY PL ONES 

In this section, N is a compact 3-manifold, M is a compact 2-manifold 
properly embedded in N, and N has a fixed PL structure in which 
M is a polyhedron. The proofs have been outlined in [12]. 

In [4] and [17], M oise and Bing prove that if f E Top(N) and E > 0, 
there is an f * E PL(N) such that d(f, f *) < E. Sanderson proved in 
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[19], that if F E Top(N), f = F / M, and f*: M C--t N is a proper PL 
embedding sufficiently close to f, then f * extends to F* E PL(N), a 
close approximation to F. In [3], Bing proved that every proper 
embedding f of M in N can be approximated by a proper PL embedding. 
In this section, I give some uniform versions of these theorems in 
the form of approximations of isotopies. In [5, 61, Craggs also proves 
some approximation theorems. In particular, he approximates l- 
isotopies. 

Remark. All the theorems below are true for dim M = 1 and 
dim N = 2. 

Notation. Suppose we have N x I. If a, b E I, let nU,b: N x (a} -+ 
N x {b} be the homeomorphism taking (x, a) onto (x, b). Note that 

“u.bnbsa = 1. 

THEOREM 6. If f: N x I’” 3 is a topological n-isotopy, then for each 
E > 0, there exists a PL n-isotopy f *: N x I”, 3 such that d(f, f *) < E. 
If f j N x aIn = 1, i.e., f represents an element of rTI,(Top(N)), then 
f * may be chosen to represent nn element of 7;,,(PL(N)). 

Proof. The theorem, which is obvious if n = 0, is proved by induc- 
tion on n. Suppose the theorem is true for n < k and that here, n = 
k -+- 1, f 1 N j: aIk+l = 1, and E > 0. For the rest of the proof, all 
homeomorphisms are I on N x l!Ik+l and explicit mention of this 
fact will not be made. Consider Ik+l as Ik x I. From a slight variation 
of the proof of Lemma 3, it follows that there is a positive number 8 
such that if 0 < a < b < c < 1 and F, and F2 are level preserving PL 
&approximations to f 1 N x Ik x [a, b] and f 1 N x Ik x [b, c], then 
there is a level preserving E-approximation F to f ! N x Ik x [a, c], 
such that 

F / -V x IL: >: [a, b] = Fl and F 1 N x P x {c) = F2 / N x It :\I {cl. 

Now, let 0 = t, < t, <; ... -:: t,, = 1, be such that for each i and each 
s, t E [ti-l , tJ, d( f (x, y, s),f(x, y, t)) < 6:4. Letf,: N x I’ x (O} 4 be 1, 
fndl: N x Ik x (tjL--l) 3 be 1, and for 1 < i < n - 2, let fi be a PL 
8;4-approximation to f; N x Ik x [tJ. Let Fi 1 N x Ix’ i: [tie1 , ti] be 

defined by Fi(x, Y, t) = ~~‘_l,Ifi--l~l,I~_l(x, Y, t), i.e., Fi(x7 Y, t) has the 
same first coordinate as fipl(x, y, tiel). Then, Fi is a &approximation 
to f j N x Ik x [t,pl , ti]. Th us, as indicated above, F2 can be fitted 

607/19/I-z 
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to Fl to get ja*, F3 can be fitted to j2* to get f3* and so on until the 
required f * is obtained. 

Remark. As observed in [12, Sec. 3.11, this argument proves that 
for compact 3-manifolds N, Top(N) and PL(N) are homotopically 
equivalent. 

THEOREM 7. Let f: M x I n C--t N x In be a topological isotopy 
that extends to an ambient isotopy F: N x I”, 3 and let E be a positive 
number. Then, there is a positive number 6 such that if h: M x I’” c+ 
N x I” is a proper PL isotopy and d(f, h) < 6, then h extends to a PL 
ambient isotopy H such that d(F, H) < E. 

Proof. By the theorem of Sanderson mentioned above, the theorem 
is evident if n = 0. Suppose the theorem is true for n < k and that 
here n = k + 1 and E > 0. Consider Ik+l as Ik x I. Since PL(N; M) 
is LC” for each k, PL,(N x I”; M x Ik) is LC” (see Section 2). It 
follows from a suitable variation of the proof of Lemma 3, that there 
is a positive number 7, such that if 0 < a < b < c < 1 and Fl and F, 
are PL level preserving r-approximations to F 1 N x Ik x [a, b] and 
F 1 N x Ik x [b, c] that agree on M Y Ik x -[b), then there is a PL 
level preserving E-approximation H to F 1 N x I” x [a, c], such that 
H 1 N x Ik x [a, b] = Fl , H I M x Ik x [b, c] = F2 / M x Ik x [b, c] 
and H j N x Ik x {c} = F, [ N x Ik x (c). It follows from the induc- 
tion hypothesis, that for each t E I, there is a 6, < r/2 such that if 
h, is a PL a,-approximation to f / M x 1’” x {t], then h, extends to a 
PL q/8-approximation to F 1 N x 1” x {t]. There is a 6,!4-neighborhood 
U of t such that if s E U, d(F(x, y, s), F(x, y, t)) < 6J4. Thus, if h,$ 
is a PL 6,;‘4-approximation to f j M x Ik x [s}, r,,[hs is a PL S,- 
approximation to j j M x 1’” x {t} and thus, extends to a PL q/S- 
approximation H, to F I N x P x (t>. Then, T~,~H~ is a PL q/2-approxi- 
mation to F j N x Ik x {s>. Th us, a compactness argument shows that 
there is a 6 > 0 such that for t ~1, if h, is a PL &approximation to 
j 1 M x IL x (t), th en h, extends to a PL 7 2-approximation H, to 
FIN x Ik x {t>. 

Let h be a PL &approximation to j. Then, for each t, h 1 M A I” x (t> 
extends to a PL 7 2-approximation H, to F ] N i: lk x (t}. For any 
s E I, Theorem 4 and the Hudson-Zeeman theorems yield a PL level 
preserving homeomorphism H T,: N x Ik x [t, s] 3, extending H, and 
h 1 M x I, x [t, s]. If s is close enough to t, HtC, is an T-approximation 
to F 1 N ‘X Ik x [t, s]. Thus, there are numbers 0 = to < t, < ... < 
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t, = 1 and PL q-approximations Hi to F 1 N x 1”’ x [t,-i , ti] that 
extend h j M x Ik x [tihl , tJ. By the remarks above (see proof of 
Theorem 3), these fit together to yield the required H. 

Remark. Since PL(N; M) is LC’” for each k, it follows that 
PL,(N x 1”; (M x lk) u (,V x ;ilk)) is LC” (see Section 2), so that a 
variation of Lemma 3 can be applied to prove that if F j N x &In = 1 
and h ] M x a1lL = 1, then H can be constructed so that H 1 N x aIn = 1* 

THEOREM 8. If f: M x I’” C--t N x I” is a topological +isotop-y 
f 1 M x aI = 1, then f may be approximated arbitrarily closely by a 
PL n-isotopy h such that h 1 M >’ ?In = I. 

Proof. In what follows, all homeomorphisms are 1 on N x a1”. 
It is convenient to consider I’” as the union of two copies of I”- 
11” u I,%, where Iln n Iz2,& = .P-1. By the topological version of the 
Hudson-Zeeman theorems [IO, 12, chap. I], f 1 M x Ii” extends to 
F$: N x 1~ 3. Let E be a positive number. Since PL(N; M) is IL’” 
for each k, PL,(N x 1’1-1; (1%’ >: 1+l) u (N x W-i)) is LCO, as noted 
in Section 2. Thus, there is a positive number 6 < c/2 such that if 
G, , G, E PL,(N x In-i; (111 x 1,-l) u (N x 8rf-1)) and d(G, , G,) < S, 
then there is a PL level preserving E, 2-homeomorphism @: N x 1+i x I 4 
such that Q. = G;lG, and @i = 1. By Theorem 7, there is a positive 
number 71 < c/2 such that if h: M x I”-l CA N x I”,-r is PI, and 
within 7 of F 1 M x 1’?-r, then h extends to a PL H: :V x I’,-l 3, a 
6/2-approximation to Fl I N x 1+-l. Let Hi: N x Ii” 4 be a PL ~;2- 
approximation to Fi . Let I)‘--l x I denote a PL collar of In-l in IzfL, 
In-i identified with F1 x (O}, so small, that 7rTT1,0HZ~o,1 is within ~“2 of 
Ha i N v In-l. Then, Hi / M x P-l and ~l,oH2~o i 1 M x P-l are 
within v off 1 M x 1+l, so extend to PL 6/2-approximations G, and 
G, to Fl ; N x In-l. (Th ere is no reason why G, cannot be taken to be 
II, / N x P-l.) Let h: M x I” c --L N x 1” be defined by h(x, t) = 
H,(x, t) if t E 1i7&, h(x, y, s) = ~o,,vGZn,q,o@(~, y, s) if ( J’, s) E I”-l x I, 
and h(x, t) = U2(x, t) if t E I271 ~ (1+-1 x I). Since G, M ,. I+1 = 
~1.RH2~0.1 , this definition is consistent and d( f, h) -: E. 
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