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Abstract

The Lemma on the Logarithmic Derivative of a meromorphic function has many applications in
the study of meromorphic functions and ordinary differential equations. In this paper, a difference
analogue of the Logarithmic Derivative Lemma is presented and then applied to prove a number of
results on meromorphic solutions of complex difference equations. These results include a difference
analogue of the Clunie lemma, as well as other results on the value distribution of solutions.
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1. Introduction

The Lemma on the Logarithmic Derivative states that outside of a possible small excep-
tional set

m(r, f7/> =0(logT(r, f) +logr), (@D

wherem (r, f) denotes the Nevanlinna proximity function afi¢r, f) is the characteristic

of a meromorphic functiory [7]. This is undoubtedly one of the most useful results of
Nevanlinna theory, having a vast number of applications in the theory of meromorphic
functions and in the theory of ordinary differential equations. For instance, the proofs of
the Second Main Theorem of Nevanlinna theory [12] and Yosida's generalization [18] of
the Malmquist theorem [9] both rely heavily on the Lemma on the Logarithmic Derivative.
One major problem in the study of complex difference equations has so far been the lack
of efficient tools, which can play roles similar to that played by relation (1) for differential
equations. This has meant that most results have had to be proved separately for each
difference equation. This slows down the efforts to construct a coherent theory, and it may
be one of the reasons why the theory of meromorphic solutions of complex difference
equations is not as developed as the theory of differential equations.

The foundations of the theory of complex difference equations were laid by Nérlund,
Julia, Birkhoff, Batchelder and others in the early part of the twentieth century. Later on,
Shimomura [14] and Yanagihara [16,17] studied non-linear complex difference equations
from the viewpoint of Nevanlinna theory. Recently, there has been a renewed interested
in the complex analytic properties of solutions of difference equations. In differential
equations, Painlevé and his colleagues identified all equations, out of a large class of
second-order ordinary differential equations, that possess the Painlevé property [4,5,13].
Those equations which could not be integrated in terms of known functions or through so-
lutions of linear equations are now known as the Painlevé differential equations. Similarly,
Ablowitz, Halburd and Herbst [1] suggested that the growth of meromorphic solutions of
difference equations could be used to identify those equations which are of “Painlevé type.”
In [6] the existence of one finite-order non-rational meromorphic solution was shown to
be sufficient to single out a list of difference Painlevé equations from a general class of
second-order difference equations, provided that the solution does not satisfy a certain
first-order difference Riccati equation or a linear difference equation. The proof of this
fact relies on a difference analogue of the Lemma on the Logarithmic Derivative, Theo-
rem 2.1, as well as on its consequences, Theorems 3.1 and 3.2, which were used in [6]
without proving them. Findings in [6] suggest that finite-order meromorphic solutions of
difference equations have a similar role as meromorphic solutions of differential equations.

The purpose of this paper is to prove a difference analogue of the Lemma on the Log-
arithmic Derivative, and to apply it to study meromorphic solutions of large classes of
difference equations. The difference analogue appears to be in its most useful form when
applied to study finite-order meromorphic solutions of difference equations, which is in
agreement with the findings in [6]. Applications include, for instance, a difference ana-
logue of the Clunie lemma [3]. The original lemma has proved to be an invaluable tool in
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the study of non-linear differential equations. The difference analogue gives similar infor-
mation about the finite-order meromorphic solutions of non-linear difference equations.

2. Difference analogue of the Lemma on the Logarithmic Derivative

Theorem 2.1. Let f be a non-constant meromorphic functiang C, § <1 ande > 0.
Then

( f(z+6)> (T(r+ |c|,f)1+€)
m\r, =0\ ———— (2)
f@ rd

for all  outside of a possible exceptional gewith finite logarithmic measurg,. dr—r < 00.

Proof. Let £(x) and ¢ (r) be positive, nondecreasing, continuous functions defined for
e < x <ooandrg < r < oo, respectively, whereg is such thatl' (r + |c|, f) > e for all
r > ro. Then by Borel's lemma [2, Lemma 3.3.1]

¢(r)
E(T(r+lcl, )

for all » outside of a seE satisfying

T(r—i—lcl—f- f)<2T(7+|C|7f)

T(R+]cl.f)

/‘ dr 1 1 /‘ dx
<—+—=
¢(r) " &(e) log2 x&(x)

EN[ro.R] e

whereR < oo. Therefore, by choosing(r) = r and& (x) = x¢/2 with e > 0, and defining
r

= TG el S ®)
we have
_ ()
T(oe(r+ |C|),f) _T<r+ lc] + —é(T(r-l- El f))’f> <2T(r+ lel, f) (4)

for all » outside of a sef with finite logarithmic measure. Hence, jf(0) # 0, oo, the
assertion follows by combining (3) and (4) with Lemma 2.3 below. Otherwise we apply
Lemma 2.3 with the functior (z) = z” f(z), where p € Z is chosen such that(0) #
0,00. O

When f is of finite order, the right-hand side of (2) is small compared'ts, /), and
therefore relation (2) is a natural analogue of the Lemma on the Logarithmic Derivative (1).
Concerning the sharpness of Theorem 2.1, the finite-order funcEi¢ns exp(z”) and
tan(z) show that in (2) cannot be replaced by any number strictly greater than one.

If f is of infinite order, the quantity (» + |c|, f)r~® may be comparable td (r, f).

For instance, by choosing(z) = exp(exp(z)), we have

( fz+1)
m\r,
f@)

) =(e—=DT( ).
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Therefore Theorem 2.1 is mostly useful when applied to functions with finite order, al-
though the assertion remains valid for all meromorphic functions. In the finite-order case
we can also remove thein Theorem 2.1.

Corollary 2.2. Let f be a non-constant meromorphic function of finite ordet, C and
3 <1.Then

( f(z+C)>_ <T(r+|C|,f)>
m|lr,—— | =0l ——————— (5)
f@) rd

for all r outside of a possible exceptional set with finite logarithmic measure.

Proof. Choose any < 1 and denoté’ = (1 + §)/2. Sincef is of finite order, we have
T(r +|c|, f) < rP for somep > 0 and for allr sufficiently large. Therefore, by Theo-
rem2.1

( f(z+c)>_ <T(r+|c|,f)>
m r? =0 - v_., )
f@) ro'—ep

wheres > 0. The assertion follows by choosiag= (8’ —§)/p. O

Note that by replacing by z + &, whereh € C, andc by ¢ — & in (5), and using the
inequality

T(r. fz+h)<A+e)T(r+1hl, f(z)), &>0,r>ro,
see [16] or [1], we immediately have
( f(z+c)> 0<T(r + |c — h| +|hl, f)>
fz+h) rd
for all § < 1 outside of a possible exceptional set with finite logarithmic measure.

(6)

Lemma 2.3. Let f be a meromorphic function such th#t0) # 0, co and letc € C. Then
foralla > 1,8 <landr > 1,

fz+0) K(a,38,0) 1
(r’ ) >< " <T(“(r+'c')’f)+'°g |f(0)|>
where
_ s
K(@.8.0) — 8c|(3c + 1) 4 8ar(a — 1)|c]

S(L—8)(a — 1)2r9

Proof. Let {a,} denote the sequence of all zerosfofand similarly let{b,,} be the pole
sequence of’, where{a, } and{b,,} are listed according to their multiplicities and ordered
by increasing modulus. By applying Poisson—-Jensen formulas\nﬂih";r—l (r + |c), see,
for instance, [7, Theorem 1.1], we obtain

i0
log fz+o) /Iog}f(se"’)]Re<s: tzte se +z>ﬁ

f@) —z—c s —z) 21
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+Zlo

S(z+c—an) 52— ayz)
52— ay(z+¢) sz —ay)

lan|<s
_ Z log s(z+c—bp) SZ_EmZ) '
|bm|<s Sz_l;m(z+c) $(z = bm)

=:81(2) + S2(2) — $3(2). (7)
Therefore, by denoting

E = {(pe[O,Zn): % }1},
we have
m<r’ f(z+6)> =/Iog fre' +0)| dg
f@ J f(re'?) | 2n
21

. . . d
< / [S1r¢)] +[S20rei®)] + 57| 5

We will now proceed to estimate eaﬁﬁ" ISj(re'?)| ‘éﬂ—‘/’ separately. Since

2

. 2cseif 6

1] = ‘flog|f(se’9)|Re( e )Z
0

(sel? —z —c)(sel? —7)

2
2|c|s NI 2|cls 1
S <s—r—|c|)2/|'°g‘f(“ )HZ‘(s—r—|c|>2<’"(s’f)+m<s’f))’
0

we have
o d Ac| 1
ipy ¢ _  4cls
o/|51(r€ )|_zn<<s_r—|c|>2<m’f)+'°g If(0)|> @

Next we consider the casg¢s= 2, 3 combined together. First, by denotifig} := {a,}U
{b,,} and using the fact thatog x| = log™ x + log* (1/x) for all x > 0, we have

o deo
/ v+ 6 2 < [t |2
lgxl<s el
c de
* Z /IOg Crei® +c—qp| 21
|qk\<so
qkc deo
+ logt|1+ 57— | &=
Z/ g s2—qr(z+c)| 2n

lgkl<s o
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+Z/Iog

lgkl=<s $2 = iz
Second, for any: € C, and for all§ < 1,
/2
/ +f o
|ret? —a|5 s |re19 |a||‘S S155p
sincelre’’ — |a|| > r0 2 for all 0< 6 < 5. Therefore
T 1 = do
C
log™ . log™| 1
/ g rel? —a 8/ g ( + )27'(
0 0
2r
1/ c d@ el 1
<< | |—— < —
8 ) |ret? —a 8(1—28) rd’
0

and similarly

/ log*

Third, since for allz such thafa| < s,

C
1(9

de el 1
— < -
27 8(1—08)r®

retY +~c—a

a 1
s2—az| “s—r’
we have
27T —_
f"’g* ac |49 I
s2—a(z+c)|2r " s—r—]c|
0
and
i a do Ic|
ac c
log™|1— < )
/ g s2—az|2r Ss—r
0

Finally, by combining inequalities (8)—(13), we obtain

fz+o) 2|c| 2|C|8 1 1
m(r’ f@ ><<s—r—|c|+8(1—a)r_5)(”(s’f)+”<s’?))

+&<T(s £ +lo L)
6 —r—lch? 9 7o

Therefore, using the fact that

1\ 4« 1
i (s 7) < 5 (e ) 1o ).

(9)

(10)

(11

(12)

(13)



R.G. Halburd, R.J. Korhonen / J. Math. Anal. Appl. 314 (2006) 477-487 483

see [7, p. 37], and = "‘T*l(r + lc]), we conclude

< f(z+c))
m| r,
@
8|c|(Ba + 1) 8a|c|® L1
s ((a “120 +1eh | 3A- )@ - 1>r5><T(°‘(r *lel). 1)+ log If(O)I)
8lc|(3a 4 1) + 8a(a — 1) c|? L1
ST A s - 120 <T(“(’+'C')’f)+'°g If(O)I)'

3. Difference analogues of the Clunie and Mohon’ko lemmas

The Lemma on the Logarithmic Derivative is an integral part of the proof of the Second
Main Theorem, one of the deepest results of Nevanlinna theory. In addition, logarithmic
derivative estimates are crucial for applications to complex differential equations. Simi-
larly, Theorem 2.1 enables an efficient study of complex analytic properties of finite-order
meromorphic solutions of difference equations. We are concerned with functions which
are polynomials inf (z + ¢;), wherec; e C, with coefficientsz, (z) such that

T(r,a)) = o(T(r, f))

except possibly for a set of having finite logarithmic measure. Such functions will be
calleddifference polynomials irf (z). We also denote

el :=maxX{|c;|}.

The following theorem is analogous to the Clunie lemma [3], which has numerous appli-
cations in the study of complex differential equations, and beyond.

Theorem 3.1. Let f(z) be a non-constant meromorphic solution of

f@"Pz, f)=0(z, f),

whereP(z, f) and Q(z, f) are difference polynomials ifi(z), and letd < 1 ande > 0. If
the degree oD (z, f) as a polynomial inf (z) and its shifts is at most, then

T , 1+¢
m(r, P(z, f)) =0<%) +o(T(r, 1))

for all  outside of a possible exceptional set with finite logarithmic measure.

Proof. We follow the reasoning behind the original Clunie lemma, see, for instance, [7,8],
just replacing the Lemma on the Logarithmic Derivative with Theorem 2.1. First of all,

m(r, P)=/|og+|P(ref9,f)| ‘2171—9 +/Iog+|P(rei9,f)| ;’ﬂ—e, (14)
Eq E3
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whereEy = {0 € [0, 2n]: | f(re'?)| < 1}, and E5 is the complement oE1. Now, by de-
noting P(z, f) =, ax(z) Fa(z, f), we have

i0)| f@re® +ep |
f(rel)
whenevep € E1. Therefore for each we obtain

et cosa{ e 52)

by

fire”
fre®)

|, (ré'®) Fi(re', )| < |ax(re

Eq j=1
and so, by Theorem 2.1,
; do T(r+|c|, /)¢
/Iog+|P(re N > :0<r—8 +o(T(r, 1)) (15)
E1

outside of an exceptional set with finite logarithmic measure.
Similarly on Ez, by denotingQ(z, f) =3, b, (2)G, (z, f), we obtain

PG )| = Zb @Qf@°fz+c) ... flz+c)

f()"

Z|by( )| f(re ;:)Cl)

sinceZS‘:O I; < n by assumption. Therefore by Theorem 2.1 again,

(T(r +lel, )M

fre
firei®)

; de
[1oat P, |5 = G ol ). (16)
E>

The assertion follows by combining (14)—(16)0

Similarly as Theorem 3.1 can be used to obtain information about the pole distribution
of meromorphic solutions of difference equations, the next result is concerned with dis-
tribution of slowly moving targeta such thatT (r, a) = o(T (r, f)) outside of a possible
exceptional set of finite logarithmic measure. In particular, constant functions are always
slowly moving. The following theorem is an analogue of a result due to A.Z. Mohon’ko
and V.D. Mohon’ko [11] on differential equations.

Theorem 3.2. Let f(z) be a non-constant meromorphic solution of

P(z, f) =0, (17)

whereP (z, f) is difference polynomial irf (z), and let§ < 1ande > 0. If P(z,a) £ 0for
a slowly moving target, then

1+e
m(r, fia) =0<M> +0(T(r, f))

7d

for all  outside of a possible exceptional set with finite logarithmic measure.
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Proof. By substitutingf = g + a into (17) we obtain

0(z,8) + D(z) =0, (18)

whereQ(z, g) = Zy b, (2)G,(z, f) is a difference polynomial iz such that all of its
terms are at least of degree one, d@nd, D) = o(T (r, g)) outside a set of finite logarithmic
measure. Alsd # 0, sincea does not satisfy (17). Next we computgr, 1/g). To this
end, note that the integral to be evaluated vanishes on the pattof where|g| > 1. It
is therefore sufficient to consider only the case< 1. But then,

Q(z g)

Zby (@)g(2)"g(z +c)'t .

Z|b @ )|‘g(z+61) ‘g(z+cv)l"

g(2)

sinceZ‘J’.:Olj > 1 for all y. Therefore, by Eq. (18) and Theorem 2.1,

n(r)<m(r g el ) =m(n E52) ()
1+e
=0<—T(r+lc|,g) > +0(T(r,g))

B
,
outside of a set of-values with at most finite logarithmic measure. Sigce f — a the
assertion follows. O

Theorems 3.1 and 3.2, like Theorem 2.1, are particularly useful when applied to func-
tions having finite order. The following two corollaries on the Nevanlinna deficiency
illustrate this fact.

Corollary 3.3. Let f(z) be a non-constant finite-order meromorphic solution of

F@"P(z f)=0(@ ),

whereP(z, f) and Q(z, f) are difference polynomials ifi(z), and let§ < 1. If the degree
of Q(z, f) as a polynomial inf (z) and its shifts is at most, then

m(r, P(z, f)) = O(W) +o(T(r, 1)) (19)

for all r outside of a possible exceptional set with finite logarithmic measure. Moreover,
the Nevanlinna deficiency satisfies

5(c0, P) = liminf " 0D _
r—oo T(r, P)

(20)

Proof. Equation (19) follows by combining the proof of Theorem 3.1 with Corollary 2.2,
and so we are left with Eq. (20). By a well-known result due to Valiron [15] and A.Z. Mo-
hon’ko [10], we have

T(r, P)=dedP)T(r, f)+o(T(r, /) (21)
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outside of a possible exceptional set of finite logarithmic measure. In addition,
[8, Lemma 1.1.2] yields that i’ (r, g) = o(T (r, f)) outside of an exceptional set of finite
logarithmic measure, thefi(r, g) = o(T (r1*¢, f)) for anye > 0 and for allr sufficiently
large. Thus, by applying (19) together with (21) and [8, Lemma 1.1.2], we have

1+e
m(r, P) = 0<L8’P)> + 0(T(r1+8, P))
r

for all sufficiently larger. Therefore, since is of finite order,
m(r, P) < P20, (22)

wherep is the order ofP ands§ < 1. Also, there is a sequeneg — oo asn — oo, such
that

T(ra, P)>r)"* (23)
for all r,, large enough. The assertion follows by combining (22) and (23) wheured §
are chosen such thaf2p + 1) < § < 1, and by lettings — co. O
Corollary 3.4. Let f(z) be a non-constant finite-order meromorphic solution of

P(z, f)=0,

whereP (z, f) is difference polynomial irf (z), and lets < 1. If P(z, a) # 0 for a slowly
moving target:, then

1 T ,
for all r outside of a possible exceptional set with finite logarithmic measure. Moreover,
the Nevanlinna deficiency satisfies

5(a, f) = liminf %ff)—a)) o

We omit the proof since it would be almost identical to that of Corollary 3.3.

4, Conclusion

In this paper we have presented a difference analogue of the Lemma on the Logarithmic
Derivative. This result has potentially a large number of applications in the study of differ-
ence equations. Many ideas and methods from the theory of differential equations may now
be utilized together with Theorem 2.1 to obtain information about meromorphic solutions
of difference equations. Section 3 provides a humber of examples in this direction. The
analogue of the Clunie lemma, Theorem 3.1, may be used to ensure that finite-order mero-
morphic solutions of certain non-linear difference equations have a large number of poles.
Similarly, Theorem 3.2 provides an easy way of telling when a finite-order meromorphic
solution of a difference equation does not have any deficient values.
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