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1. Introduction

The Lemma on the Logarithmic Derivative states that outside of a possible small e
tional set

m

(
r,

f ′

f

)
= O

(
logT (r, f ) + logr

)
, (1)

wherem(r,f ) denotes the Nevanlinna proximity function andT (r, f ) is the characteristic
of a meromorphic functionf [7]. This is undoubtedly one of the most useful results
Nevanlinna theory, having a vast number of applications in the theory of meromo
functions and in the theory of ordinary differential equations. For instance, the pro
the Second Main Theorem of Nevanlinna theory [12] and Yosida’s generalization [1
the Malmquist theorem [9] both rely heavily on the Lemma on the Logarithmic Deriva
One major problem in the study of complex difference equations has so far been th
of efficient tools, which can play roles similar to that played by relation (1) for differe
equations. This has meant that most results have had to be proved separately f
difference equation. This slows down the efforts to construct a coherent theory, and
be one of the reasons why the theory of meromorphic solutions of complex diffe
equations is not as developed as the theory of differential equations.

The foundations of the theory of complex difference equations were laid by Nör
Julia, Birkhoff, Batchelder and others in the early part of the twentieth century. Late
Shimomura [14] and Yanagihara [16,17] studied non-linear complex difference equ
from the viewpoint of Nevanlinna theory. Recently, there has been a renewed inte
in the complex analytic properties of solutions of difference equations. In differe
equations, Painlevé and his colleagues identified all equations, out of a large c
second-order ordinary differential equations, that possess the Painlevé property [4
Those equations which could not be integrated in terms of known functions or throu
lutions of linear equations are now known as the Painlevé differential equations. Sim
Ablowitz, Halburd and Herbst [1] suggested that the growth of meromorphic solutio
difference equations could be used to identify those equations which are of “Painlevé
In [6] the existence of one finite-order non-rational meromorphic solution was sho
be sufficient to single out a list of difference Painlevé equations from a general cl
second-order difference equations, provided that the solution does not satisfy a
first-order difference Riccati equation or a linear difference equation. The proof o
fact relies on a difference analogue of the Lemma on the Logarithmic Derivative, T
rem 2.1, as well as on its consequences, Theorems 3.1 and 3.2, which were use
without proving them. Findings in [6] suggest that finite-order meromorphic solutio
difference equations have a similar role as meromorphic solutions of differential equa

The purpose of this paper is to prove a difference analogue of the Lemma on th
arithmic Derivative, and to apply it to study meromorphic solutions of large class
difference equations. The difference analogue appears to be in its most useful form
applied to study finite-order meromorphic solutions of difference equations, which
agreement with the findings in [6]. Applications include, for instance, a difference
logue of the Clunie lemma [3]. The original lemma has proved to be an invaluable t
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the study of non-linear differential equations. The difference analogue gives similar
mation about the finite-order meromorphic solutions of non-linear difference equatio

2. Difference analogue of the Lemma on the Logarithmic Derivative

Theorem 2.1. Let f be a non-constant meromorphic function,c ∈ C, δ < 1 and ε > 0.
Then

m

(
r,

f (z + c)

f (z)

)
= o

(
T (r + |c|, f )1+ε

rδ

)
(2)

for all r outside of a possible exceptional setE with finite logarithmic measure
∫
E

dr
r

< ∞.

Proof. Let ξ(x) and φ(r) be positive, nondecreasing, continuous functions defined
e � x < ∞ andr0 � r < ∞, respectively, wherer0 is such thatT (r + |c|, f ) � e for all
r � r0. Then by Borel’s lemma [2, Lemma 3.3.1]

T

(
r + |c| + φ(r)

ξ(T (r + |c|, f ))
, f

)
� 2T

(
r + |c|, f )

for all r outside of a setE satisfying

∫
E∩[r0,R]

dr

φ(r)
� 1

ξ(e)
+ 1

log2

T (R+|c|,f )∫
e

dx

xξ(x)

whereR < ∞. Therefore, by choosingφ(r) = r andξ(x) = xε/2 with ε > 0, and defining

α = 1+ r

(r + |c|)T (r + |c|, f )ε/2
, (3)

we have

T
(
α
(
r + |c|), f ) = T

(
r + |c| + φ(r)

ξ(T (r + |c|, f ))
, f

)
� 2T

(
r + |c|, f )

(4)

for all r outside of a setE with finite logarithmic measure. Hence, iff (0) �= 0,∞, the
assertion follows by combining (3) and (4) with Lemma 2.3 below. Otherwise we a
Lemma 2.3 with the functiong(z) = zpf (z), wherep ∈ Z is chosen such thatg(0) �=
0,∞. �

Whenf is of finite order, the right-hand side of (2) is small compared toT (r, f ), and
therefore relation (2) is a natural analogue of the Lemma on the Logarithmic Derivativ
Concerning the sharpness of Theorem 2.1, the finite-order functions�(z), exp(zn) and
tan(z) show thatδ in (2) cannot be replaced by any number strictly greater than one.

If f is of infinite order, the quantityT (r + |c|, f )r−δ may be comparable toT (r, f ).
For instance, by choosingf (z) = exp(exp(z)), we have

m

(
r,

f (z + 1)
)

= (e − 1)T (r, f ).

f (z)
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Therefore Theorem 2.1 is mostly useful when applied to functions with finite orde
though the assertion remains valid for all meromorphic functions. In the finite-order
we can also remove theε in Theorem 2.1.

Corollary 2.2. Let f be a non-constant meromorphic function of finite order,c ∈ C and
δ < 1. Then

m

(
r,

f (z + c)

f (z)

)
= o

(
T (r + |c|, f )

rδ

)
(5)

for all r outside of a possible exceptional set with finite logarithmic measure.

Proof. Choose anyδ < 1 and denoteδ′ = (1 + δ)/2. Sincef is of finite order, we have
T (r + |c|, f ) � rρ for someρ > 0 and for allr sufficiently large. Therefore, by Theo
rem 2.1

m

(
r,

f (z + c)

f (z)

)
= o

(
T (r + |c|, f )

rδ′−ερ

)
,

whereε > 0. The assertion follows by choosingε = (δ′ − δ)/ρ. �
Note that by replacingz by z + h, whereh ∈ C, andc by c − h in (5), and using the

inequality

T
(
r, f (z + h)

)
� (1+ ε)T

(
r + |h|, f (z)

)
, ε > 0, r > r0,

see [16] or [1], we immediately have

m

(
r,

f (z + c)

f (z + h)

)
= o

(
T (r + |c − h| + |h|, f )

rδ

)
(6)

for all δ < 1 outside of a possible exceptional set with finite logarithmic measure.

Lemma 2.3. Let f be a meromorphic function such thatf (0) �= 0,∞ and letc ∈ C. Then
for all α > 1, δ < 1 andr � 1,

m

(
r,

f (z + c)

f (z)

)
� K(α, δ, c)

rδ

(
T

(
α
(
r + |c|), f ) + log+ 1

|f (0)|
)

,

where

K(α, δ, c) = 8|c|(3α + 1) + 8α(α − 1)|c|δ
δ(1− δ)(α − 1)2rδ

.

Proof. Let {an} denote the sequence of all zeros off , and similarly let{bm} be the pole
sequence off , where{an} and{bm} are listed according to their multiplicities and order
by increasing modulus. By applying Poisson–Jensen formula withs = α+1

2 (r + |c|), see,
for instance, [7, Theorem 1.1], we obtain

log

∣∣∣∣f (z + c)

f (z)

∣∣∣∣ =
2π∫

log
∣∣f (seiθ )

∣∣Re

(
seiθ + z + c

seiθ − z − c
− seiθ + z

seiθ − z

)
dθ

2π

0
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+
∑

|an|<s

log

∣∣∣∣ s(z + c − an)

s2 − ān(z + c)

s2 − ānz)

s(z − an)

∣∣∣∣
−

∑
|bm|<s

log

∣∣∣∣ s(z + c − bm)

s2 − b̄m(z + c)

s2 − b̄mz)

s(z − bm)

∣∣∣∣
′

=: S1(z) + S2(z) − S3(z). (7)

Therefore, by denoting

E :=
{
ϕ ∈ [0,2π):

∣∣∣∣f (reiϕ + c)

f (reiϕ)

∣∣∣∣ � 1

}
,

we have

m

(
r,

f (z + c)

f (z)

)
=

∫
E

log

∣∣∣∣f (reiϕ + c)

f (reiϕ)

∣∣∣∣ dϕ

2π

�
2π∫
0

∣∣S1(re
iϕ)

∣∣ + ∣∣S2(re
iϕ)

∣∣ + ∣∣S3(re
iϕ)

∣∣ dϕ

2π
.

We will now proceed to estimate each
∫ 2π

0 |Sj (re
iϕ)| dϕ

2π
separately. Since

|S1| =
∣∣∣∣∣

2π∫
0

log
∣∣f (seiθ )

∣∣Re

(
2cseiθ

(seiθ − z − c)(seiθ − z)

)
dθ

2π

∣∣∣∣∣
� 2|c|s

(s − r − |c|)2

2π∫
0

∣∣log
∣∣f (seiθ )

∣∣∣∣ dθ

2π
= 2|c|s

(s − r − |c|)2

(
m(s,f ) + m

(
s,

1

f

))
,

we have
2π∫
0

∣∣S1(re
iϕ)

∣∣ dϕ

2π
� 4|c|s

(s − r − |c|)2

(
T (s, f ) + log+ 1

|f (0)|
)

. (8)

Next we consider the casesj = 2,3 combined together. First, by denoting{qk} := {an}∪
{bm} and using the fact that| logx| = log+ x + log+(1/x) for all x > 0, we have

2π∫
0

∣∣S2(re
iϕ)

∣∣ + ∣∣S3(re
iϕ)

∣∣ dϕ

2π
�

∑
|qk |<s

2π∫
0

log+
∣∣∣∣1+ c

reiθ − qk

∣∣∣∣ dθ

2π

+
∑

|qk |<s

2π∫
0

log+
∣∣∣∣1− c

reiθ + c − qk

∣∣∣∣ dθ

2π

+
∑

|q |<s

2π∫
log+

∣∣∣∣1+ q̄kc

s2 − q̄k(z + c)

∣∣∣∣ dθ

2π

k 0
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+
∑

|qk |<s

2π∫
0

log+
∣∣∣∣1− q̄kc

s2 − q̄kz

∣∣∣∣ dθ

2π
. (9)

Second, for anya ∈ C, and for allδ < 1,

2π∫
0

dθ

|reiθ − a|δ � 4

π/2∫
0

dθ

|reiθ − |a||δ � 2π

1− δ

1

rδ

since|reiθ − |a|| � rθ 2
π

for all 0� θ � π
2 . Therefore

2π∫
0

log+
∣∣∣∣1+ c

reiθ − a

∣∣∣∣ dθ

2π
� 1

δ

2π∫
0

log+
(

1+
∣∣∣∣ c

reiθ − a

∣∣∣∣
δ)

dθ

2π

� 1

δ

2π∫
0

∣∣∣∣ c

reiθ − a

∣∣∣∣
δ

dθ

2π
� |c|δ

δ(1− δ)

1

rδ
, (10)

and similarly

2π∫
0

log+
∣∣∣∣1− c

reiθ + c − a

∣∣∣∣ dθ

2π
� |c|δ

δ(1− δ)

1

rδ
. (11)

Third, since for alla such that|a| < s,∣∣∣∣ a

s2 − āz

∣∣∣∣ � 1

s − r
,

we have
2π∫
0

log+
∣∣∣∣1+ āc

s2 − ā(z + c)

∣∣∣∣ dθ

2π
� |c|

s − r − |c| (12)

and
2π∫
0

log+
∣∣∣∣1− āc

s2 − āz

∣∣∣∣ dθ

2π
� |c|

s − r
. (13)

Finally, by combining inequalities (8)–(13), we obtain

m

(
r,

f (z + c)

f (z)

)
�

(
2|c|

s − r − |c| + 2|c|δ
δ(1− δ)

1

rδ

)(
n(s, f ) + n

(
s,

1

f

))

+ 4|c|s
(s − r − |c|)2

(
T (s, f ) + log+ 1

|f (0)|
)

.

Therefore, using the fact that

n(s, f ) + n

(
s,

1
)

� 4α
(

T
(
α
(
r + |c|), f ) + log+ 1

)
,

f α − 1 |f (0)|
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see [7, p. 37], ands = α+1
2 (r + |c|), we conclude

m

(
r,

f (z + c)

f (z)

)

�
(

8|c|(3α + 1)

(α − 1)2(r + |c|) + 8α|c|δ
δ(1− δ)(α − 1)rδ

)(
T

(
α
(
r + |c|), f ) + log+ 1

|f (0)|
)

� 8|c|(3α + 1) + 8α(α − 1)|c|δ
δ(1− δ)(α − 1)2rδ

(
T

(
α
(
r + |c|), f ) + log+ 1

|f (0)|
)

. �

3. Difference analogues of the Clunie and Mohon’ko lemmas

The Lemma on the Logarithmic Derivative is an integral part of the proof of the Se
Main Theorem, one of the deepest results of Nevanlinna theory. In addition, logar
derivative estimates are crucial for applications to complex differential equations.
larly, Theorem 2.1 enables an efficient study of complex analytic properties of finite-
meromorphic solutions of difference equations. We are concerned with functions
are polynomials inf (z + cj ), wherecj ∈ C, with coefficientsaλ(z) such that

T (r, aλ) = o
(
T (r, f )

)
except possibly for a set ofr having finite logarithmic measure. Such functions will
calleddifference polynomials inf (z). We also denote

|c| := max
{|cj |

}
.

The following theorem is analogous to the Clunie lemma [3], which has numerous
cations in the study of complex differential equations, and beyond.

Theorem 3.1. Letf (z) be a non-constant meromorphic solution of

f (z)nP (z, f ) = Q(z,f ),

whereP(z,f ) andQ(z,f ) are difference polynomials inf (z), and letδ < 1 andε > 0. If
the degree ofQ(z,f ) as a polynomial inf (z) and its shifts is at mostn, then

m
(
r,P (z, f )

) = o

(
T (r + |c|, f )1+ε

rδ

)
+ o

(
T (r, f )

)
for all r outside of a possible exceptional set with finite logarithmic measure.

Proof. We follow the reasoning behind the original Clunie lemma, see, for instance,
just replacing the Lemma on the Logarithmic Derivative with Theorem 2.1. First of a

m(r,P ) =
∫

log+∣∣P(reiθ , f )
∣∣ dθ

2π
+

∫
log+∣∣P(reiθ , f )

∣∣ dθ

2π
, (14)
E1 E2
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ution
h dis-

lways
n’ko
whereE1 = {θ ∈ [0,2π]: |f (reiθ )| < 1}, andE2 is the complement ofE1. Now, by de-
notingP(z,f ) = ∑

λ aλ(z)Fλ(z, f ), we have

∣∣aλ(re
iθ )Fλ(re

iθ , f )
∣∣ �

∣∣aλ(re
iθ )

∣∣∣∣∣∣f (reiθ + c1)

f (reiθ )

∣∣∣∣
l1

. . .

∣∣∣∣f (reiθ + cν)

f (reiθ )

∣∣∣∣
lν

wheneverθ ∈ E1. Therefore for eachλ we obtain∫
E1

log+∣∣aλ(re
iθ )Fλ(re

iθ , f )
∣∣ dθ

2π
� m(r, aλ) + O

(
ν∑

j=1

m

(
r,

f (z + cj )

f (z)

))
,

and so, by Theorem 2.1,∫
E1

log+∣∣P(reiθ , f )
∣∣ dθ

2π
= o

(
T (r + |c|, f )1+ε

rδ

)
+ o

(
T (r, f )

)
(15)

outside of an exceptional set with finite logarithmic measure.
Similarly onE2, by denotingQ(z,f ) = ∑

γ bγ (z)Gγ (z, f ), we obtain

∣∣P(z,f )
∣∣ =

∣∣∣∣ 1

f (z)n

∑
γ

bγ (z)f (z)l0f (z + c1)
l1 . . . f (z + cµ)lµ

∣∣∣∣
�

∑
γ

∣∣bγ (z)
∣∣∣∣∣∣f (reiθ + c1)

f (reiθ )

∣∣∣∣
l1

. . .

∣∣∣∣f (reiθ + cµ)

f (reiθ )

∣∣∣∣
lµ

since
∑µ

j=0 lj � n by assumption. Therefore by Theorem 2.1 again,∫
E2

log+∣∣P(reiθ , f )
∣∣ dθ

2π
= o

(
T (r + |c|, f )1+ε

rδ

)
+ o

(
T (r, f )

)
. (16)

The assertion follows by combining (14)–(16).�
Similarly as Theorem 3.1 can be used to obtain information about the pole distrib

of meromorphic solutions of difference equations, the next result is concerned wit
tribution of slowly moving targetsa such thatT (r, a) = o(T (r, f )) outside of a possible
exceptional set of finite logarithmic measure. In particular, constant functions are a
slowly moving. The following theorem is an analogue of a result due to A.Z. Moho
and V.D. Mohon’ko [11] on differential equations.

Theorem 3.2. Letf (z) be a non-constant meromorphic solution of

P(z,f ) = 0, (17)

whereP(z,f ) is difference polynomial inf (z), and letδ < 1 andε > 0. If P(z, a) �≡ 0 for
a slowly moving targeta, then

m

(
r,

1

f − a

)
= o

(
T (r + |c|, f )1+ε

rδ

)
+ o

(
T (r, f )

)
for all r outside of a possible exceptional set with finite logarithmic measure.
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c

func-
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over,

2.2,
Mo-
Proof. By substitutingf = g + a into (17) we obtain

Q(z,g) + D(z) = 0, (18)

whereQ(z,g) = ∑
γ bγ (z)Gγ (z, f ) is a difference polynomial ing such that all of its

terms are at least of degree one, andT (r,D) = o(T (r, g)) outside a set of finite logarithmi
measure. AlsoD �≡ 0, sincea does not satisfy (17). Next we computem(r,1/g). To this
end, note that the integral to be evaluated vanishes on the part of|z| = r where|g| > 1. It
is therefore sufficient to consider only the case|g| � 1. But then,

∣∣Q(z,g)

g

∣∣∣∣ = 1

|g|
∣∣∣∣∑

γ

bγ (z)g(z)l0g(z + c1)
l1 . . . g(z + cν)

lν

∣∣∣∣
�

∑
γ

∣∣bγ (z)
∣∣∣∣∣∣g(z + c1)

g(z)

∣∣∣∣
l1

. . .

∣∣∣∣g(z + cν)

g(z)

lν
∣∣∣∣

since
∑ν

j=0 lj � 1 for all γ . Therefore, by Eq. (18) and Theorem 2.1,

m

(
r,

1

g

)
� m

(
r,

D

g

)
+ m

(
r,

1

D

)
= m

(
r,

Q(z, g)

g

)
+ m

(
r,

1

D

)

= o

(
T (r + |c|, g)1+ε

rδ

)
+ o

(
T (r, g)

)
outside of a set ofr-values with at most finite logarithmic measure. Sinceg = f − a the
assertion follows. �

Theorems 3.1 and 3.2, like Theorem 2.1, are particularly useful when applied to
tions having finite order. The following two corollaries on the Nevanlinna deficie
illustrate this fact.

Corollary 3.3. Letf (z) be a non-constant finite-order meromorphic solution of

f (z)nP (z, f ) = Q(z,f ),

whereP(z,f ) andQ(z,f ) are difference polynomials inf (z), and letδ < 1. If the degree
of Q(z,f ) as a polynomial inf (z) and its shifts is at mostn, then

m
(
r,P (z, f )

) = o

(
T (r + |c|, f )

rδ

)
+ o

(
T (r, f )

)
(19)

for all r outside of a possible exceptional set with finite logarithmic measure. More
the Nevanlinna deficiency satisfies

δ(∞,P ) := lim inf
r→∞

m(r,P )

T (r,P )
= 0. (20)

Proof. Equation (19) follows by combining the proof of Theorem 3.1 with Corollary
and so we are left with Eq. (20). By a well-known result due to Valiron [15] and A.Z.
hon’ko [10], we have

T (r,P ) = deg(P )T (r, f ) + o
(
T (r, f )

)
(21)
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. The

r mero-
poles.
rphic
outside of a possible exceptional set of finite logarithmic measure. In add
[8, Lemma 1.1.2] yields that ifT (r, g) = o(T (r, f )) outside of an exceptional set of fini
logarithmic measure, thenT (r, g) = o(T (r1+ε, f )) for anyε > 0 and for allr sufficiently
large. Thus, by applying (19) together with (21) and [8, Lemma 1.1.2], we have

m(r,P ) = o

(
T (r1+ε,P )

rδ

)
+ o

(
T (r1+ε,P )

)
for all sufficiently larger . Therefore, sinceP is of finite order,

m(r,P ) � rρ(1+2ε)−δ, (22)

whereρ is the order ofP andδ < 1. Also, there is a sequencern → ∞ asn → ∞, such
that

T (rn,P ) � rρ−ε
n (23)

for all rn large enough. The assertion follows by combining (22) and (23) whereε andδ

are chosen such thatε(2ρ + 1) < δ < 1, and by lettingn → ∞. �
Corollary 3.4. Letf (z) be a non-constant finite-order meromorphic solution of

P(z,f ) = 0,

whereP(z,f ) is difference polynomial inf (z), and letδ < 1. If P(z, a) �≡ 0 for a slowly
moving targeta, then

m

(
r,

1

f − a

)
= o

(
T (r + |c|, f )

rδ

)
+ o

(
T (r, f )

)
for all r outside of a possible exceptional set with finite logarithmic measure. More
the Nevanlinna deficiency satisfies

δ(a,f ) := lim inf
r→∞

m(r,1/(f − a))

T (r, f )
= 0.

We omit the proof since it would be almost identical to that of Corollary 3.3.

4. Conclusion

In this paper we have presented a difference analogue of the Lemma on the Loga
Derivative. This result has potentially a large number of applications in the study of d
ence equations. Many ideas and methods from the theory of differential equations m
be utilized together with Theorem 2.1 to obtain information about meromorphic solu
of difference equations. Section 3 provides a number of examples in this direction
analogue of the Clunie lemma, Theorem 3.1, may be used to ensure that finite-orde
morphic solutions of certain non-linear difference equations have a large number of
Similarly, Theorem 3.2 provides an easy way of telling when a finite-order meromo
solution of a difference equation does not have any deficient values.
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