
 Procedia Computer Science 83 (2016) 621 – 627

Available online at www.sciencedirect.com

1877-0509 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs
doi: 10.1016/j.procs.2016.04.140

ScienceDirect

The 7th International Conference on Ambient Systems, Networks and Technologies
(ANT 2016)

Towards Identifying Performance Anomalies

Haroon Malika*, Elhadi M. Shakshukib
aWeisberg Division of Computer Science, Marshall University, WV, USA
 bJodery School of Compueter Science, Acadia, Univeristy, NS, Canada

Abstract

Large-scale-software systems (LSSs) are composed of hundreds of subsystems that interact with each other in an unforeseen and
complex ways. The operators of these LSSs strictly monitor thousands of metrics (performance counters) to quickly identify
performance anomalies before a catastrophe. The existing monitoring tools and methodologies have not kept in pace with the
rapid growth and inherit complexity of these LSSs; hence are ineffective in assisting practitioners to effectively pinpoint
performance anomalies. We propose a methodology that uses entropy analysis to assist practitioners/operators of LSSs in quickly
detecting underlying anomalies in the system. Our performance tests conducted on an open source benchmark system reveal that
the proposed methodology is robust in pinpointing anomalies, do not require any domain knowledge to operate, and avoid
information overload on practitioners.

© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Performance counter; Large scale systems; Datacenter; Performance

1. Introduction

Today’s large scale systems (LSSs) such as Facebook, Google, Amazon and many other datacenters comprise
hundreds or thousands of machines running complex software applications that require high availability and
responsiveness. They provide composite services, support a large user base and handle complex business demands.

* Corresponding author. Tel.: +1-304-696-5655.

E-mail address: malikh@marshall.edu

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81963439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.04.140&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.04.140&domain=pdf

622 Haroon Malik and Elhadi M. Shakshuki / Procedia Computer Science 83 (2016) 621 – 627

In line with Lehman’s laws of continuing change and increasing complexity1, the periodic monitoring of such LSS
has become more critical and challenging than before since processing is spread across hundreds of subsystems and
millions of hardware nodes (and users). These LSSs must be carefully monitored for performance anomalies before a
serious harm is done2-4. A performance anomaly is an unexpected situation that causes system to deviate from
abiding its Server Level Agreements (SLAs)5-8. Its symptoms include, but not limited to delayed response time,
increases latency, decreased throughput and in cases, system hanging, freezing and crashing under heavy workload;
usually introduced into the system by operator errors, hardware software failures, resource over-/under-provisioning,
and unexpected interaction between geographically distributed system components6.

LSSs are usually service oriented systems and generate revenue by providing composite services to a large user
base. Any discrepancy in their performance can cause huge monetary losses. For example, an hour-long PayPal
outage due to periodic maintenance may have prevented up to $7.2 million in customer transactions9. Similarly, an
overloading of Google Server resulted into thousands of accounts being inaccessible for several days, worst many
contents of many of the many of the clients were lost. Therefore, the operator of these LSSs continuously monitor
their system to identify performance anomalies so a fix can be made quickly10-13.

2. Current State of Practice

In LSSs, the current practice of discovering performance anomalies is centered on three major approaches:

2.1. Reactive Approach

Reactive techniques are used to set thresholds for observed performance counters (e.g., CPU utilization, disk I/O,
memory consumption and network traffic) and raise alarms when these thresholds are violated. In LSSs, such as
data centers and cloud providers, hosting multitenant application, the workload volume can be un-predictive. Using
static thresholds, may lead to false alarms, thereby wasting analyst’s time. Moreover, reactive approach is
inadequate for understanding the performance changes resulting from application updates.

2.2. Proactive Approach

This category includes techniques for continuous evaluation of a system behavior by comparing it against
baselines or statistical models. LSSs are continuously evolving and baseline rarely exist. Furthermore, there is an
overhead involved in keeping the performance models up-to-date since continuous training of models on the
performance data is required to keep them abreast with the dynamic and evolving behavior of LSSs.

2.3. Rule of Thumbs

In this category, analysts use a few of the important performance counters known to them from past practice and
domain gurus, among thousands that are collected, during the performance monitoring process. They usually
perform manual ad-hoc checks such as conducting simple correlation tests and producing plots for visual
inspections. For example, up-ward trend for the memory usage, throughout, is a good indicator of a memory leak.

3. Proposed Methodology

We believe the current practice of identifying performance anomalies in not effective since it can take hours of
manual analysis and still analyst may miss performance anomalies that are not associated with ‘rule of thumbs’.
Towards this end, we proposed a methodology based on Shannon Entropy; which intuitively provides a measure of
the uncertainty remaining in the system after an observation has been made2. The entropy of a continuous random
variable X with probability density function p(x), is given by:

623 Haroon Malik and Elhadi M. Shakshuki / Procedia Computer Science 83 (2016) 621 – 627

Though a valuable statistical measure, the entropy of a string (i.e., a sequence) is a poor predictor of anomalies in

the system generating that string, because it focuses on randomness. As a consequence, a performance counter
variable reading pure white noise would have the highest entropy and a performance counter variable reading a flat
line would have zero entropy.

Unfortunately, most interesting phenomena occur somewhere between these two extremes, meaning that neither a
rise nor a drop in entropy necessarily mean that a performance anomaly is detected. Furthermore, entropy only
focuses on the frequency of the observed performance counter values, not their ordering.

As such a periodic binary string and a random binary string containing the same number of ones and zeros have
the same entropy. To overcome some of these limitations of entropy, in our proposed methodology, we examine all
the data (values) of performance counter variables for a particular time-stamp at once to generate a ‘signature’ value.
Examining only a signature value rather that the data of thousands of performance counters makes the job of
discovering performance anomalies easier for analysts. Before computing signature values for the entire system,
(i.e., system wide entropy), we perform following series of pre-processing operations as shown in Fig 1:

3.1. Smoothing the Time-Series

For the first step, we smoothen the time series data for each of the performance counter variable. This is done by
averaging time-series values together in groups of twenty. Smoothing is required due to the fact that components of
LSSs are usually deployed across different machines, each of which is responsible for gathering performance data.
The clock on each machine can be out-of-sync. Thus the performance counter data recorded by different machines
may have slight difference of the timestamps. Moreover counters can be recorded at different rates. For example, the
CPU utilization can be recorded after 10 seconds while disk I/O is recorded every half minute.

3.2. Normalizing the Time-Series

We normalized the performance counter time series by dividing each counter value by the average value in the
series.

3.3. Discretizing the Time-Series

We discretized the time series values into uniformly sized K bins. Through the experimentation, we found that
sixty-four bins are sufficient to capture most of the variability in performance counter data. Nevertheless, the value
of K is a tunable parameter. Some experimentation is required to find an optimal value of K for a system in a given
domain.

3.4. Computing the Entropy

Once each performance counter time-series has been preprocessed, the Shannon Entropy is computed for each

Fig. 1 Steps Involved in Our Proposed Methodology

Performance
Counter

Repository

Smoothing
Time Series

Normalizing

the Time-
Series

Discretizing
the Time-

Series

 Computing
 the Entropy

Anomaly
Detection

Report

(1) (3) (4) (2)

624 Haroon Malik and Elhadi M. Shakshuki / Procedia Computer Science 83 (2016) 621 – 627

time-stamp across all the performance counter variables. This is done by first forming a vector of size ,
containing all the pre-processed performance counters values for a time-stamp. The Shannon Entropy for the
discrete string of length is given by:

Smoothing of a Performance Counter
Normalization

Discretization

Performance Counter Data (log)

Discretization

Performance Counter Data (log)

Smoothing of a Performance Counter

DDDDDDDiiisisisiscrcrcrcr ttetetetetiiiziziziz ttatatatatiiioioioionnnn

SSSSSSmoo hthththiiiing fffof a PPPPerfffformance CCCCou ttnter
Normalization

2. Smoothing of a Performance Counter
3. Normalization

4. Discretization

1. Performance Counter Data (log)

5. Entropy Calculation

Fig. 2 A running example for calculating entropy values of a performance counter log

625 Haroon Malik and Elhadi M. Shakshuki / Procedia Computer Science 83 (2016) 621 – 627

Where is the count of number of times value appears inn When most of the elements in are equal to a
small subset of the total possible values, the entropy is low.

This often happens when most of the performance counters are in highly correlated groups, since the normalized
values in these groups will tend to be the same. When the elements in S tend to take a wide range of possible values,
the entropy is high. This often happens when many counter variables become uncorrelated, or there is lots of noise
induced in the system. Note that entropy is insensitive to noise coming from a small subset of performance counters,
since each term in the summation is weighted by . Fig 2 shows a running example of our proposed methodology.

If a performance counter erroneously takes on a common value, then is large and the single performances
counter value has little impact on the term. Also, if a performance counter erroneously takes on an uncommon value,
then is small and the entire term has little impact on the entropy.

4. Results/Discussion

To evaluate the effectiveness of our anomaly detection approach, we conducted performance tests using Dell
DVD store (DS)14; an open source e-commerce system used by Dell to benchmark the performance of their systems.
It is designed for benchmarking Dell hardware. It includes basic e-commerce functionalities such as user
registrations, user login, product search and purchase. DS2 consists of a back-end database component, a web
application component, and a driver programs (load generator).

We used the framework of Thakkar15 to automate the load tests and to ensure that the environment remains
constant throughout the experiments. We used Thakkar framework due to its simplicity and previous success in
practical performance testing15. DS2 has multiple distributions to support different languages such as PHP, JSP, or
ASP and databases such as MySQL, Microsoft SQL server, and Oracle. In this case study, we use the JSP
distribution and a MySQL database(s). The JSP code runs in a Tomcat container. Our load consists of a mix of
transactions, including user registration, product search and purchases. We created a similar environment as in Fig 3
for running performance test experiments on the open source system.

 Web Server
(A)
 Web Server (B)

 Web Server (C)

 Web Server (D)

 Web Server (E)

 Web Server
(F)

 Web Server
(G)

 Web Server
(H)

 Web Server
(I)

L
oa

d
G

en
er

at
or

System
Under Test

Performance
Counter Logs

Fig. 3 Enviornment for the performance test experiments

626 Haroon Malik and Elhadi M. Shakshuki / Procedia Computer Science 83 (2016) 621 – 627

Fig. 4 Detection of Injected Anomalies in Performance Tests

4.1. Performance Tests

To evaluate the effectiveness of our anomaly detection approach, we conducted performance tests using Dell
DVD store (DS)14; an open source e-commerce system used by Dell to benchmark the performance of their systems.
The system-under-test comprises of fifteen Dell PowerEdge 860 severs; fourteen to set up the DS and one server as
load generator. For all the performance test, we kept the workload constant to maintain a stable response time of the
DS system. We injected the following anomalies into our performance tests and made note of times.

627 Haroon Malik and Elhadi M. Shakshuki / Procedia Computer Science 83 (2016) 621 – 627

 CPU Stress: We slowed down the CPU of the one of DS web server using a CPU stress tool, known as win

Throttle.
 Memory Stress: We injected a memory bug into the webserver using a customized open-source memory

stress tool called EatMem. The tool allocates a random amount of available memory rapidly and at
recurring intervals to mimic a transient memory spike.

 Interfering Workload: This performance test aims to trigger an interfering workload anomaly, mostly due
to procedural errors. Such as, planning a security scan at the time when peak workload is expected, or due
to unconstrained activities such as RAID construction, self-cleanup activities of mail stores and storage
replications. We created an interfering background workload anomaly mimicking a situation where the
administrator schedules an antivirus scan that conflict with the timing of the performance test. We scanned
one of the web server machines with an antivirus for 50 minutes to disrupt the normal workload.

The duration of each test was set for eight hours and a total of 52 million counter values, for each test, from
twelve hundred different performance counters across the fifteen severs were logged. We applied our methodology
on the logged performance counter data for each performance test and found the findings to be consistent across all
the tests. Fig 4 shows the result of three of the performance tests. The injected anomalies are clearly visible in the
entropy trajectory of all the plots, i.e., the three performance test. The magnitude of injected anomaly was not large
enough to disturb the response time equilibrium of the system. Hence, only observing the response time counter, i.e.,
‘rule-of-thumb’, may lead to many anomalies being undetected.

5. Limitations of the Proposed Methodology

 The proposed methodology only pinpoints to occurrences of performance anomalies. It does not distinguish
between the different types of anomalies as well as overlapping anomalies, i.e., anomalies occurring at the same
time. Nevertheless, the analyst has to manually investigate root-cause of detected anomalies. As a future work, we
plan on extending our methodology to automatically recommend the performance counters to analysts that are likely
associated with anomalous resources/components.

References

1. M. M. Lehman, "Programs, life cycles, and laws of software evolution," Proceedings of the IEEE, vol. 68, pp. 1060-1076, 1980.
2. M. A. Munawar and P. Ward, "Adaptive monitoring in enterprise software systems," SysML, June, 2006.
3. Miao Jiang, M. A. Munawar, T. Reidemeister and P. A. S. Ward, "Automatic fault detection and diagnosis in complex software systems by

information-theoretic monitoring," in Proceedings of International Conference on Dependable Systems & Networks, pp. 285-294, 2009.
4. M. Jiang, M. A. Munawar, T. Reidemeister and P. A. S. Ward, "Information-theoretic modeling for tracking the health of complex software

systems," in Proceedings of the 2008 Conference of the Center for Advanced Studies on Collaborative Research: Meeting of Minds, Toronto,
Canada, pp. 236-247, 2009.

5. F. Mattosinho, "Pip: Detecting the Unexpected in Distributed Systems," in Proceedings of of 3rd Symp on Networked Systems Design and
Implementation (NSDI), 2009.

6. E. J. Weyuker and F. I. Vokolos, "Experience with Performance Testing of Software Systems: Issues, an Approach, and Case Study," IEEE
Trans.Softw.Eng., vol. 26, pp. 1147-1156, 2000.

7. E. Boschi, S. Denazis and T. Zseby, "A measurement framework for inter-domain SLA validation," Comput. Commun., vol. 29, pp. 703-716,
3/31, 2006.

8. A. Di Stefano, G. Morana and D. Zito, "A P2P strategy for QoS discovery and SLA negotiation in Grid environment," Future Generation
Comput. Syst., vol. 25, pp. 862-875, 9, 2009.

9. S. Stephen, "PayPal hit by global outage," in 2009.
10. D. Xikun, W. Huiqiang and L. Hongwu, "A comprehensive monitor model for self-healing systems," in Proceedings of Multimedia

Information Networking and Security (MINES), 2010 International Conference On, 61-2010, pp. 751-756.
11. R. Voicu, I. C. Legrand and C. Dobre, "A monitoring framework for large scale networks," in Intelligent Computer Communication and

Processing (ICCP), 2011 IEEE International Conference On, 2011, pp. 429-432.
12. M. Acharya and V. Kommineni, "Mining health models for performance monitoring of services," in Proceedings of the 2009 IEEE/ACM

International Conference on Automated Software Engineering, 33-2009, pp. 409-420.
13. C. Rathfelder, S. Becker, K. Krogmann and R. Reussner, "Workload-aware system monitoring using performance predictions applied to a

large-scale e-mail system," in Proceedings of Software Architecture (WICSA) and European Conference on Software Architecture (ECSA),
2012 Joint Working IEEE/IFIP Conference On, 2012, pp. 31-40.

14. Dave. J. Available: http://linux.dell.com/dvdstore/.
15. D. Thakkar, A. E. Hassan, G. Hamann and P. Flora, "A framework for measurement based performance modeling," in Proceedings of the 7th

International Workshop on Software and Performance, Princeton, NJ, USA, 2008, pp. 55-66.

