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Abstract

We give a new, simple proof for the sequential access theorem for splay trees. For an n-node
splay tree, our bound on the number of rotations is 4:5n, with a smaller constant than the
bound of 10:8n concluded by Tarjan. We extend our proof to prove the deque conjecture for
output-restricted deques. Our proofs provide additional insights into the workings of splay trees.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A binary search tree is a binary tree whose nodes contain items in symmetric order.
In other words, for any node x, all the items in the left sub-tree of x are less or equal
to the item in x, and all the items in the right sub-tree of x are greater. The nodes of
an n-node tree are identi<ed by their symmetric order numbers, from 1 to n.

The splay tree, introduced by Sleator and Tarjan [1], is a self-adjusting binary search
tree, which supports a restructuring operation of the tree called splay. The splay op-
eration is implemented as a sequence of rotations of edges. A rotation of an edge
maintains the symmetric property. See Fig. 1.

When any node of the tree is accessed, a splay is performed at this node. Let p(x)
be the parent of x. A splay at x repeats the following step until x becomes the root of
the tree.
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Fig. 1. Rotation of the edge joining x and y.

Fig. 2. The zig–zig case.

Zig case: If p(x) is the root: Make x the new root by rotating the edge joining
x and p(x).
Zig–zig case: If x and p(x) are both left or right children: Rotate the edge joining

p(x) to its parent, and then rotate the edge joining x to p(x). Because of its special
interest in this paper, we show this case in Fig. 2.
Zig–zag case: If x is a left child and p(x) is a right child or vice versa: Rotate the

edge joining x to p(x), and then the edge joining x to its new parent.
It is easy to use splaying to implement such search tree update operations as insertion

and deletion as well as joining and splitting [1]. Sleator and Tarjan [1] also proved
that, in an amortized sense, the splay tree is as eFcient as any balanced search tree and
the static optimal binary search tree, when used for processing a sequence of dictionary
operations. They made an even stronger conjecture known as the dynamic optimality
conjecture. Consider any sequence of accesses, and suppose we carry out the accesses
by beginning with an arbitrary binary search tree and searching it from the root for
the desired items in the desired order, with the provision that between accesses we can
change the tree by performing arbitrary rotations. The total cost of the access sequence
is the total number of nodes on access paths plus the total number of rotations. Let
T (s) be the minimum total cost of access sequence s for any such binary search tree
algorithm.

Dynamic optimality conjecture. If s is any access sequence, then the cost of perform-
ing s by using splaying is O(T (s) + n), for any n-node initial tree.
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If this conjecture is true, splay trees are a form of universally eFcient search trees.
The sequential access theorem for splay trees is a special case of the above conjecture.

Sequential access theorem. If we access each of the n nodes of an arbitrary initial
tree once, in symmetric order, the total time spent is O(n).

Tarjan [3] proved the sequential access theorem, bounding the number of rotations
with 10:8n. Sundar [2] gave an easier proof that uses a potential function technique.
His bound for the number of rotations is 15n. In this paper, we give a new proof for
the sequential access theorem, bounding the number of rotations with at most 4:5n.

A deque (double-ended queue) is an abstract data structure, on which the following
operations can be performed:
• push(e): add item e to the front of the queue,
• pop: remove the front item from the deque and return it,
• inject(e): add item e to the rear of the deque,
• eject: remove the rear item from the deque and return it.

The deque conjecture (Tarjan [3]). If we perform a sequence of m deque operations
on an arbitrary n-node splay tree, the total time is O(n+ m).

When the dynamic optimality conjecture is extended to include update operations it
implies the deque conjecture. Sundar [2] gave an inverse Ackermann upper bound of
O((n+m)
(n+m)) for the deque operations. Tarjan [3] proved a special case of this
conjecture for output-restricted deques, i.e. no eject operations are allowed. He gave
a bound of 11:8n + 14:8m rotations. Both Tarjan and Sundar suggested implementing
the deque operations as follows. To carry out push(e), the current tree becomes the
right sub-tree of item e, which becomes the new root. To carry out pop, left child
pointers are followed until reaching a node x with no left child, a splay operation is
then performed at node x removing it from the tree. The implementations of inject and
eject are symmetric.

Extending our proof of the sequential access theorem, we easily prove the deque
conjecture for the output-restricted deques, improving over Tarjan’s constant. Our bound
on the number of rotations is 4:5n+m. More interesting is to try to extend our proof
to prove the deque conjecture in its general form. The paper is interesting in two
aspects. Firstly, because it improves the constants, and secondly, because it follows an
interesting proving procedure, using a coloring framework, which is surprisingly simple
and eFcient. Furthermore, the proof gives more insights on how the splay operation
is eFcient as a restructuring heuristic, demonstrating the strength of splaying.

2. The proof

In a binary tree, the left spine of a sub-tree is de<ned to be the path from the root
of this sub-tree to its leftmost leaf. In other words, every node on the path is the left
child of its predecessor. The right spine is de<ned analogously.
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Fig. 3. The eJect of the ith splaying. The splaying path contains nodes x1; x2; : : : ; xk .

We may think about the sequential access theorem for splay trees as repeated splay-
ing on the leftmost leaf of the right sub-tree of the root. (The <rst splay operation is
an exception being performed on the leftmost leaf of the tree.) As a result of a splay-
ing operation on such node, this node becomes the root of the tree and the old root
becomes the root of the left sub-tree. Hence, we may ignore the left sub-tree (which
is always a path) entirely and only keep track of the right sub-tree. We call the left
spine of the right sub-tree of the root, the splaying spine.

Before a splay operation, name the nodes on the splaying spine xi, such that xi is
the left child of xi+1, for all i starting from 1. As a result of a splaying operation
performed on x1, the following restructuring takes place: The node x1 becomes the
root of the tree, leaving, on the splaying spine, its right child and the nodes on the
left spine of this right child’s sub-tree. For every odd value of i¿3, xi is linked to
xi−1 as its right child, and the right sub-tree of xi−1 becomes the left sub-tree of xi.
See Fig. 3.

For the purpose of the proof, we use a coloring scheme to distinguish some nodes
from others. The following coloring rules are applied:
• initially, all the nodes are uncolored,
• when an uncolored node becomes a node on the splaying spine, it is colored yellow,
• when a yellow node is linked to another node, this yellow node is colored green,
• when a green node is linked to a yellow node, the yellow node is colored green,
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• all the nodes on the right spine of the tree are colored black, overriding the above
coloring rules.

As a result of these coloring rules, we can deduce the following:
• the nodes on the splaying spine are colored either yellow or green,
• except for the black nodes that lie on the right spine of the tree, any node is <rst

colored yellow then green. Once colored green it remains green,
• the parent of a colored node is a colored node as well,
• at the moment when nodes are colored yellow, they must be the deepest (the

bottommost) nodes of the splaying spine.
The splay operations are numbered, starting from 1. We assume that the splay operation
number t takes place at time t. Consider any node x in the tree. Let gx(t) be the number
of the colored nodes on the right spine of x, after the splay operation t. Let hx(t) be
the number of the colored nodes on the right spine of the left child of x, after the
same splay operation. If x does not have a left child, then hx(t) is equal to 0. Before
any splay operation, gx(0) = hx(0) = 0. De<ne vx(t) to be equal to gx(t) − hx(t).

Consider any node w and its left child z on the splaying spine at time t, such that
w is linked to z during the splay operation t+ 1, for any t¿0. The following relations
hold:

hw(t) = gz(t); (1)

gw(t + 1) = gw(t); (2)

hw(t + 1) = hw(t) − 1; (3)

gz(t + 1) = gw(t) + 1; (4)

hz(t + 1) 6 hz(t) + 1: (5)

The equality in relation (5) always holds, except for the special case when z is x2 (i.e.
the left child of z is the node we are splaying at, which has no left children). For such
a special case, we have hz(t + 1) = hz(t) − 1.

The following lemma relates the color of the nodes to their v values.

Lemma 1. (a) For any yellow node x, vx¿0.
(b) If x is green, then vx¿0.
(c) If a green node w is linked to a node z at time t + 1, then vz(t + 1)¿vz(t).

Proof. We prove the lemma by induction on the lifetime of nodes. When a node x
is colored yellow at time t0, the base case follows from the fact that gx(t0) = 1 and
hx(t0) = 1 (except for the deepest node of the splaying spine that will have hx(t0) = 0).
If x is nonblack and is not involved in a rotation, then vx will not change. Consider
a node w that is linked to a node z at time t + 1. If w is black at time t (w is on
the right spine of the tree), z becomes black at time t + 1, and the conditions of the
lemma do not apply to w and z anymore. Hence, we may assume that both w and z are
either yellow or green. Using the induction hypothesis for w at time t, then vw(t)¿0.
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Subtracting (3) from (2), then vw(t + 1)¿vw(t), which implies vw(t + 1)¿0. Since
w is green after this link, the hypothesis is true for w at time t + 1. Adding (1) and
(4) implies

gz(t + 1) = vw(t) + gz(t) + 1: (6)

Two cases follow depending on the color of w at time t:
Case 1: w is yellow at time t: Using the induction hypothesis for w at time t,

vw(t)¿0. It follows from (6) that gz(t + 1)¿gz(t) + 1. Subtracting (5) from the latter
relation, then vz(t + 1)¿vz(t), and vz is nondecreasing with time. Since the color of
z does not change as a result of such a link, the hypothesis is true for z at time t+ 1.
Case 2: w is green at time t: Using the induction hypothesis for w at time t, vw(t)¿0.

It follows from (6) that gz(t + 1)¿gz(t) + 1. Subtracting (5) from the latter relation,
then vz(t + 1)¿vz(t), proving part (c) of the lemma. Using the induction hypothesis
for z at time t, vz(t)¿0. It follows that vz(t + 1)¿0. Since z is green after this link,
the hypothesis is true for z at time t + 1.

Other than the links that involve black nodes, there are four possible types of
links: yellow-to-yellow, yellow-to-green, green-to-yellow and green-to-green. For the
<rst three types, the color of one yellow node changes to green. Once colored green it
remains green. This bounds the count of these three types of links with at most n. What
is left is bounding the green-to-green links. Using part (b) of Lemma 1, for any green
node z, vz¿0. We distinguish between two types of green-to-green links. If a green
node is linked to z while vz = 1, we call this link a green-to-green A-link. Otherwise,
if a green node is linked to z while vz¿2, we call this link a green-to-green B-link.
Using part (c) of Lemma 1, when a green node is linked to a node z, the value of vz
increases. Hence, any green node z may gain at most one child by a green-to-green
A-link before vz becomes at least 2, bounding the count of the green-to-green A-links
with at most n.

Bounding the green-to-green B-links is more involved. We use the accounting method
[4] for bounding the number of such links. In such a method we allocate credits in the
data structure. These credits are used later on to pay for the structure’s operations, one
credit per operation. If the allocated credits are enough to pay for all the operations,
the number of such credits is used as an upper bound on the cost of the corresponding
operations. Consider a green node w that is linked to a green node z, whose vz(t)¿2,
at time t+ 1. The problem is that both w and z may be involved in several links after
this one, while their v values are at lease 2, as a result of both of them keep coming
back to the splaying spine. The question is how many credits should we allocate per
node to cover such links. What we are looking for is to allocate a number of credits
on such nodes that would represent some structural behavior of the splay tree. When
the structure changes as a result of such a link, the required number of credits should
decrease. More precisely, for the case of such a green-to-green B-link, the diJerence
between the credits allocated to w and z before the link and the required number of
credits on w and z after the link should be at least 1. This extra credit is then used
to pay for that link, while the remaining credits are enough to pay for the succeeding
operations. We keep the invariant that, after the splay operation t, there are h2

x(t)=2



A. Elmasry / Theoretical Computer Science 314 (2004) 459–466 465

credits on any node x. Next, we show that these credits are enough to pay for all the
green-to-green B-links, while maintaining the invariant. Let d be the diJerence between
the sum of the number of credits on w and z before the splay operation t+1 and those
needed after the splay operation t + 1. It follows that

d =
h2
z (t)
2

+
h2
w(t)
2

− h2
z (t + 1)

2
− h2

w(t + 1)
2

:

Using (3) and (5), then d¿hw(t) − hz(t) − 1. Using (1), then

d¿ vz(t) − 1:

Since vz(t)¿2 for the green-to-green B-links, it follows that for such links d¿1. This
extra credit is used to pay for such a link. We still need to maintain these credits for
other types of links. If vz(t) = 1, then d¿0 and the credits are reserved. Alternatively,
if vz(t) = 0 (z is a yellow node), then d¿− 1. In this case, to maintain the invariant
for the number of credits, one credit is needed. Since, for this type of links, the color
of a yellow node becomes green, the shortage for this credit is paid-for by such a
yellow node. It follows that we need to allocate one credit per node at the time when
this node is <rstly colored yellow. Additionally, when a node x is colored yellow, the
value of hx is 1 and h2

x=2 equals 1
2 . Hence, to maintain the invariant for each of these

nodes, another half credit is allocated to each node when it is <rstly colored yellow,
for a total of 1:5 credits per yellow node. The total number of the allocated credits is,
therefore, 1:5n, and the count of the green-to-green B-links is bounded by 1:5n.

When the number of nodes on the splaying spine is even, the root of the splaying
spine is not linked to another node. The relations de<ned earlier may not hold for this
node. Fortunately, this node is colored black. The black nodes are involved in at most
one link per splay operation (A black node is involved in a link when the number of
nodes on the splaying spine is odd.). This costs at most n extra links.

The 4:5n bound on the number of rotations for the sequential access theorem follows
by adding the following bounds: The n links that involve at least one yellow node, the
n links bounding the green-to-green A-links, the 1:5n links bounding the green-to-green
B-links, and the n links that involve black nodes. The following theorem follows.

Theorem 2. The total number of rotations involved in sequentially accessing the
n nodes of an initial arbitrary splay tree is at most 4:5n.

Now, consider the implementation of the output-restricted deque operations using
splay trees. For making the proof easier we change the implementations of Tarjan and
Sundar for the inject(e) operation. For the new implementation, right pointers of nodes
starting with the root are followed, until a node that has no right child is reached.
The node e is then appended as this node’s right child. (For ease of implementation,
a pointer may be kept pointing to the rightmost leaf in the tree.) When a new node
is pushed or injected, it lies on the right spine of the tree, and hence it is colored
black. Every black node accounts for only one rotation, for a total of at most m
extra rotations. The proofs of the above lemmas still hold, and the following lemma
follows:
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Lemma 3. Consider a sequence of m output-restricted deque operations performed
on an arbitrary n-node splay tree. The deque operations require a total of at most
4:5n+ m rotations.

Note that, if the inject operation is implemented as in [2,3], the right spine of the
tree changes, and Lemma 1 holds for neither the injected node (current root of the
tree) nor the nodes on the right spine of its left child (previously black nodes). In
this case, we can apply Tarjan’s proof [3], while using our bound on the number of
rotations for the sequential access theorem. BrieLy, the basic idea of the proof in [3]
is to divide the process into epochs, every epoch ends when the original tree of that
epoch as well as the pushed nodes are popped. The newly injected nodes remain at
the end of the epoch, representing the new tree of the next epoch. Using our bound of
4:5n rotations for the sequential access theorem, this leads to a bound of 6:5n+ 9:5m
on the number of rotations for the output-restricted deque operations. See [3] for the
details.
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