SnapShot: F Box Proteins I

Jeffrey R. Skaar,¹ Julia K. Pagan,¹ and Michele Pagano^{1,2} ¹NYU School of Medicine and ²Howard Hughes Medical Institute, New York, NY 10016, USA

D. melanogaster				
F Box Protein	Substrate	Biological Functions of Substrates or Orphan F Box Proteins	Kinase(s)	
Ago	Trh	txn factor, trachea development		
	CycE	cyclin, cell cycle	Cdk2	
	dMyc	txn factor, cell growth/proliferation		
	Notch	transmembrane receptor, Notch signaling		
Slimb	ARM	txn activator, Wingless pathway	Sgg	
	Ci	txn factor, Hedgehog signaling	CK1	
	Cact	txn factor, NF- κ B signaling		
	DI	txn factor, NF-κB signaling		
	E2F	txn factor, cell cycle		
	PER	txn activator, circadian rhythms	Dbt	
	PLK4	kinase, cell cycle		
	Rel	txn factor, NF- κ B signaling		
CG11033/ dKdm2	histone H2A	core histone component		
CG13213/Fbl6	Yan	txn factor, cell growth/proliferation		
Fbxl4	unknown	calcium signaling		
Jetlag	Tim	txn activator, circadian rhythms		
Рра	Prd	homeobox txn factor, development		
CG4643/dFsn	Wnd	kinase, synaptic growth		
Morgue	Th/DIAP1	Ub ligase, inhibitor of apoptosis		
Pall	unknown	phagocytosis of apoptotic cells		
Rca1	unknown	APC/C inhibitor		

S. pombe					
F Box Protein	Substrate	Biological Functions of Substrates or Orphan F Box Proteins	Kinase(s)		
Pof14p	unknown	oxidative stress response			
Fbh1p	unknown	DNA damage/recombination			
Pop1p	Cdc18p	MCM loader, DNA replication	Cdc2p		
	Cig2p	cyclin, cell cycle	Cdc2p		
	Mid2p	anillin homolog, cytokinesis			
	Rum1p	Cdk inhibitor, cell cycle	Cdc2p		
Pop2p	same as Pop1p	see Pop1p	see Pop1p		
Pof1p	Zip1p	txn factor, cadmium response			
Pof3p	unknown	genome integrity/telomere function			
Pof6p	unknown	endocytosis/cytokinesis			

S. cerevisiae					
F Box Protein	Substrate	Biological Functions of Substrates or Orphan F Box Proteins	Kinase(s)		
Cdc4p	Cdc6p	pre-RC component, DNA replication	Cdc28p		
	Clb6p	B-type cyclin, cell cycle	Cdc28p, Pho85p		
	Ctf13p	CBF3 complex member, chromosome cohesion			
	Far1p	CDK inhibitor, cell cycle, pheromone pathway	Cdc28p		
	Gcn4p	txn factor, amino acid synthesis	Pho85p, Srb10		
	Gis4p	RAS/cAMP signaling			
	Hac1p	txn factor, unfolded protein response			
	Rcn1p	calcineurin regulation, calcium signaling	Mck1p		
	Sic1p	CDK inhibitor, cell cycle	Cdc28p		
	Swi5p	txn factor, cell cycle			
	Tec1p	txn factor, filamentation pathway	Fus3p		
Met30p	Fzo1p	integral membrane, mitochondrial fusion			
	Met4p	txn activator, sulfur amino acid synthesis			
	Swe1	kinase, Cdk inhibitor, cell cycle			
Amn1p	unknown	mitotic exit network			
Ctf13p	unknown	centromeric/chromosome cohesion			
Dia2p	unknown	DNA replication			
Grr1p	Aro1p	aromatic amino acid synthesis			
	Cln1p	G1 cyclin, cell cycle	Cdc28p		
	Cln2p	G1 cyclin, cell cycle	Cdc28p		
	Gal2p	galactose permease, galactose pathway			
	Gal4p	txn factor, galactose pathway			
	Gic2p	actin cytoskeleton regulation	Cdc28p		
	His4p	multiple enzymatic steps of histidine synthesis			
	Hof1p	cytokinesis			
	Hom3p	aspartate kinase, methionine/threonine synthesis			
	lme2p	kinase, meiosis activation			
	Mae1p	sugar metabolism and amino acid synthesis			
	Mks1p	txn repressor, regulates metabolic processes			
	Mth1p	negative regulator of glucose signal trans- duction	Yck1, Yck2		
	Pfk27p	kinase, metabolic processes	Snf1		
	Туе7р	txn factor, glycolysis			
Mdm30p	Gal4p	txn factor, galactose pathway			
	Mdm34p	mitochondrial morphology			
Ela1p	Rpo21p	RNA Polymerase II subunit			
Hrt3p	unknown	methylmercury resistance			
Mfb1p	unknown	mitochondrial morphogenesis			
Rcy1p	unknown	endocytosis/protein recycling			
Ufo1p	Нор	endonuclease, mating type switching			
	Rad30p	DNA polymerase, lesion bypass			

F Box Proteins				
FBXW: WD40 repeats				
FBXL: leucine-rich repeats (LRR); possibly other domains				
FBXO: no WD40 or LRR repeats; possibly other domains				

SnapShot: F Box Proteins I

Jeffrey R. Skaar,¹ Julia K. Pagan,¹ and Michele Pagano^{1,2} ¹NYU School of Medicine and ²Howard Hughes Medical Institute, New York, NY 10016, USA

F box proteins are the variable substrate adapters for the Skp1-Cul1-F box protein-Rbx1 (SCF) ubiquitin ligase complexes and dictate the substrate specificity of the ubiquitin ligase. Cul1 acts as the scaffold for the SCF complex, recruiting Rbx1 and an E2 ubiquitin-conjugating enzyme to its C terminus and the Skp1-F box protein pair to its N terminus. The number of F box protein genes varies greatly depending on the organism, ranging from \sim 20 in yeast species (20 in the budding yeast *Saccharomyces cerevisiae*, 17 in the fission yeast *Schizosaccharomyces pombe*) to 27 in the fly *Drosophila melanogaster* to 69 in humans. With little overlap between the S. *cerevisiae* and *S. pombe* F box proteins and only six apparent orthologs conserved between flies, worms, and humans, evolutionary conservation of individual F box proteins appears to be rare. In this SnapShot, we list reported F box protein-substrate pairs in the model organisms *D. melanogaster*, *S. cerevisiae*, and *S. pombe*. Additionally, we include orphan F box proteins with known biological functions but no reported substrate pairs.

The F box protein is characterized by the F box domain, an approximately 40 amino acid region named for cyclin F (or Fbxo1), the protein in which the domain was first identified. The annotation of known F box proteins is based on the presence of this domain, which has the consensus sequence of L P X [E, K] I L X K [I, V] L X₂ L D P X D L/R X [L, F] [R, S] K V [S, C] [K, R] [K, R] [W, F] [R, K] X L V D X₈ I (L, leucine; P, proline; X, any amino acid; E, glutamic acid; K, lysine; I, isoleucine; V, valine; R, arginine; S, serine; C, cysteine; W, tryptophan; F, phenylalanine; D, aspartic acid). The F box domain mediates binding to Skp1, which links the F box protein to the rest of the SCF complex. However, there is a small interaction interface between the F box protein and Cul1 that likely stabilizes the SCF complex. In fact, the interaction of the F box protein with Skp1 is necessary, but not sufficient, for binding to Cul1 (binding of the Skp1-F box protein pair to Cul1 has not been demonstrated for all F box family members, and certain F box proteins do not appear to form SCF ubiquitin ligase complexes with Cul1).

F box proteins are grouped into three families on the basis of the presence of WD40 repeats (FBXW) or leucine-rich repeats (FBXL), or the absence of either of these domains (F box only; FBXO). FBXO family members often contain additional functional domains with homology to other protein families. Typically, F box proteins recognize their substrates through the WD40 repeats, the leucine-rich repeats, or other domains. Substrate recognition generally requires a posttranslational modification of the substrate in a discreet degradation sequence (degron). This requirement for posttranslational modification suggests that F box proteins have the ability to integrate multiple pathways by "sensing" the activity of other enzymes. Although phosphorylation is the most common posttranslational modification involved in substrate targeting, other posttranslational modifications, such as glycosylation, have been reported. In plants, hormones can also mediate binding between F box proteins and their substrates. A single F box protein can recognize multiple substrates, expanding the functional range of the core SCF scaffold to hundreds of targets and numerous biological processes.

All reported substrates of the F box proteins listed in this SnapShot are included in the table, even if the evidence is currently limited or if there are conflicting reports. The kinases that phosphorylate the substrate degrons are also listed, if known. Although there are established roles for F box proteins in many diverse pathways, the majority of the F box proteins in each organism remain orphans without known substrates.

ACKNOWLEDGMENTS

J.R.S. is supported by the American Cancer Society—Mr. and Mrs. William G. Campbell Postdoctoral Fellowship in Memory of Carolyn Cabott. J.K.P. is supported by an NHMRC Overseas Based Biomedical Fellowship. M.P. is supported by NIH grants and is an HHMI investigator.

REFERENCES

Bai, C., Sen, P., Hofmann, K., Ma, L., Goebl, M., Harper, J.W., and Elledge, S.J. (1996). SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86, 263–274.

Cardozo, T., and Pagano, M. (2004). The SCF ubiquitin ligase: insights into a molecular machine. Nat. Rev. Mol. Cell Biol. 5, 739–751.

Feldman, R.M., Correll, C.C., Kaplan, K.B., and Deshaies, R.J. (1997). A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91, 221–230.

Frescas, D., and Pagano, M. (2008). Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat. Rev. Cancer 8, 438-449.

Ho, M.S., Tsai, P.I., and Chien, C.T. (2006). F-box proteins: the key to protein degradation. J. Biomed. Sci. 13, 181–191.

Jin, J., Cardozo, T., Lovering, R.C., Elledge, S.J., Pagano, M., and Harper, J.W. (2004). Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev. 18, 2573–2580.

Lehmann, A., Katayama, S., Harrison, C., Dhut, S., Kitamura, K., McDonald, N., and Toda, T. (2004). Molecular interactions of fission yeast Skp1 and its role in the DNA damage checkpoint. Genes Cells 9, 367–382.

Petroski, M.D., and Deshaies, R.J. (2005). Function and regulation of cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 6, 9–20.

Schulman, B.A., Carrano, A.C., Jeffrey, P.D., Bowen, Z., Kinnucan, E.R., Finnin, M.S., Elledge, S.J., Harper, J.W., Pagano, M., and Pavletich, N.P. (2000). Insights into SCF ubiquitin ligases from the structure of the Skp1–Skp2 complex. Nature 408, 381–386.

Skowyra, D., Craig, K.L., Tyers, M., Elledge, S.J., and Harper, J.W. (1997). F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin–ligase complex. Cell 91, 209–219.