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How to Benefit from Noise*

LESZEK PLASKOTA

University of Warsaw, Warsaw, Poland

Received November 15, 1995

We compare sequential and non-sequential designs for estimating linear function-
als in the statistical setting, where experimental observations are contaminated by
random noise. It is known that sequential designs are no better in the worst case
setting for convex and symmetric classes, as well as in the average case setting with
Gaussian distributions.

In the statistical setting the opposite is true. That is, sequential designs can be
significantly better. Moreover, by using sequential designs one can obtain much
better estimators for noisy data than for exact data. In this way, problems that are
computationally intractable for exact data may become tractable for noisy data.
These results hold because adaptive observations and noise make it possible to
simulate Monte Carlo.  1996 Academic Press, Inc.

1. INTRODUCTION

In this paper, we deal with estimation in the minimax statistical setting,
where available data are contaminated by Gaussian noise. Some new results
have been recently obtained in this setting for estimating linear functionals
over convex and symmetric classes. One of the most important is due to
Donoho (1994) who proved that linear estimators are within 11.1 . . . %
of being optimal among all non-linear estimators. He also gave formulas
for the optimal linear estimators. This was done by establishing a relation
between the statistical setting and the problem of optimal recovery in the
worst case setting.

Optimality properties of linear estimators in the worst case setting are
well known, see, e.g., Smolyak (1965), Sukharev (1986), and Magaril-Il’yaev
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and Osipenko (1991). Hence Donoho’s results for statistical estimation
correspond to those of Smolyak and others for optimal recovery in the
worst case setting. The same results can be obtained for classes given as
balls in Hilbert spaces, by using relations between the statistical and the
average case settings with Gaussian distributions; see Plaskota (1996).

The relations between optimal estimators in the statistical, worst, and
average case settings mentioned above hold for estimators using fixed,
nonsequential designs. Obviously, such estimators always make better use
of exact than noisy data.

It is now natural to ask whether similar relations hold for sequential
designs. In sequential designs, successive observations are performed adap-
tively. These have been studied in the worst and average case settings. The
question of how much adaption helps is one of the fundamental problems
in information-based complexity, see, e.g., Traub et al. (1988) and Plaskota
(1996). In particular, it is known that adaptation does not help for linear
functionals in the worst case setting for convex and symmetric classes, and,
under some additional assumptions, in the average case setting for Gaussian
distributions; see Section 3. (This also holds for approximating linear opera-
tors. On the other hand, for some nonlinear operators, sequential designs
are exponentially more powerful in the worst and average case settings.)
We also note that, in all these settings, exact data lead to better estimations
than noisy data.

How about sequential designs in the statistical setting? Remarkably,
there is not much on this subject in the statistical literature. It is, however,
known that non-sequential designs are asymptotically optimal for nonpara-
metric regression; see Golubev (1992).

This discussion may lead us to the conjecture that, for convex and symmet-
ric classes, nothing can be gained from using sequential designs in the
statistical setting. However, the opposite is true. More precisely, we provide
a simple and natural example which reveals the following two important
and rather surprising things:

● Sequential designs can be exponentially better than non-sequential
designs in the statistical setting for convex and symmetric classes.

● One can sometimes obtain much better estimators using noisy rather
than exact data. Even more, the curse of dimensionality occurring for exact
data can be broken for noisy data.

These results hold because adaption in the statistical setting makes Monte
Carlo simulation possible, and for many problems the error of the Monte
Carlo (randomized) method is much smaller than the error of any non-
randomized method.

We now comment on the result that noisy data may lead to smaller errors
than exact data. For noisy data, the error is defined by taking an average
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with respect to noise. For exact data, the average over noise disappears
and we are back in the worst case setting. Hence noisy and exact data
really correspond to different definitions of error and this makes the re-
sult possible.

A problem for which sequential designs are significantly better than non-
sequential designs in the statistical setting is multivariate integration of
Lipschitz functions. However, from the proof it will be clear that similar
results hold for other problems for which randomized algorithms are better
than non-randomized ones. It would be interesting to verify whether this
is the only reason why adaption helps in the statistical setting. In other
words, can sequential designs help in the statistical setting for problems
for which randomization does not help? The answer is unknown.

2. NON-SEQUENTIAL AND SEQUENTIAL DESIGNS

Let F be a linear space of real functions defined on a domain D, and let
F be a subclass of F. We assume that F is convex and symmetric (with
respect to zero). Suppose that for an (unknown) f [ F we observe data
y 5 [y1 , . . . , yn] [ Rn,

yi 5 f(ti) 1 xi , 1 # i # n, (1)

where ti [ D and x 5 [x1 , . . . , xn] is the white noise vector, i.e., xi piid

N (0, s 2). We stress that we also allow s 2 5 0 which corresponds to the
exact (non-noisy) data. Our aim is to estimate the value S( f ), where S is
a linear functional over F. An estimator is of the form Sn( f, x) 5 w(y), i.e.,
it uses only the data y.

In the statistical setting, the error of Sn is given as

Rstat(Sn , Tn , s) 5 sup
f[F

(Ex(S( f ) 2 Sn( f, x))2)1/2,

where Ex denotes the expectation over x. Here Tn 5 htijn
i51 is the design.

This definition of error is commonly used in the statistical literature,
see e.g., Sacks and Ylvisaker (1978), Speckman (1979), Ibragimov and
Hasminski (1984), Nussbaum (1985), Donoho (1994), Donoho et al. (1995).

In (1) we assume that the design points Tn are given in advance. One
natural generalization is to assume that the successive observations are
performed for points which are adaptively chosen depending on the results
of previous observations. That is, we now have

yi 5 f(ti(y1 , . . . , yi21)) 1 xi , 1 # i # n, (2)
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where xi piid N (0, s 2) and the ti : Ri21 R D are measurable mappings.
Such a design will be called sequential.

Remark 1. Throughout this paper we assume, for simplicity, that the
number n of observations in any sequential design is fixed. One can also
consider sequential designs with n depending on the yi’s; see also Remark 3.

Our aim is to compare the power of sequential and non-sequential de-
signs. Define

R stat
non(n, s) 5 infhRstat(Sn , Tn , s) : Sn arbitrary, Tn non-sequentialj

as the minimal error that can be achieved for n nonadaptive observa-
tions, and

R stat
seq(n, s) 5 infhRstat(Sn , Tn , s) : Sn arbitrary, Tn sequentialj

as the corresponding minimal error for n adaptive observations. Obviously,

R stat
seq(n, s) # R stat

non(n, s).

3. SEQUENTIAL DESIGNS IN DIFFERENT SETTINGS

Sequential designs have been studied in the worst and average case
settings. The following sample results are typical and important.

3.1. Worst Case Setting

Suppose that the noise in (1) and (2) is deterministic rather than random,
and we know that x is bounded in a norm, i.e., ixi # d. Define the error
of an estimator Sn as the worst case error.

R wor(Sn , Tn , d) 5 sup
f[F

sup
ixi#d

uS( f ) 2 Sn( f, x)u.

Then, for the respective nth minimal errors, we have

Rwor
seq (n, d) 5 R wor

non(n, s),

see, e.g., Bakhvalov (1971), Gal and Micchelli (1980), Traub and Woźnia-
kowski (1980), and Traub et al. (1983).
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3.2. Average Case Setting

Assume that data are again of the form (1) or (2), but the function f is
now the realization of a zero-mean Gaussian stochastic process on D. The
error of Sn is defined as the expected (average) error over both f and the
noise x, i.e.,

R avg(Sn , Tn , s) 5 (EfEx(S( f ) 2 Sn( f, x))2)1/2.

Assuming additionally that the functional S is continuous, we have

R avg
seq(n, s) 5 R avg

non(n, s),

see, e.g., Kadane et al. (1988) and Plaskota (1996).
Thus sequential designs do not help in either the worst case or the average

case setting.

Remark 2. For S a linear operator, sequential designs still do not (essen-
tially) help. We have

R wor
seq (n, d) $

1
2

R wor
non(n, d) and R avg

seq(n, s) 5 R avg
non(n, s).

Remark 3. In the average case setting, it is reasonable to consider
sequential designs with varying n. Such designs usually do not help for
linear S, see, e.g., Wasilkowski (1986) and Plaskota (1996). However,
examples where the opposite is true are also known, see Plaskota
(1993).

3.3. Statistical Setting

As already mentioned in the introduction, adaptive selection of observa-
tions does not help in the statistical setting for nonparametric regression.
The result is as follows; see Golubev (1992).

Let F be the Sobolev class of functions f : [0, 1] R R of regularity r such that

Or

k50
E1

0
( f (k)(u))2 du # 1.

Suppose that instead of a functional, we want to estimate the function
f in the L2-norm. That is, the error of an estimator fn(u, x) is now given
as
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R stat(Sn , Tn , s) 5 sup
f[F

SEx E1

0
( f(u) 2 fn(u, x))2 duD1/2

.

Then

R stat
seq(n, s) P R stat

non(n, s), as n R 1y.

(Here, an P bn means that limnRy an/bn 5 1.) Moreover, the optimal design
is given by equidistant points.

4. SEQUENTIAL DESIGNS MAY HELP IN THE STATISTICAL SETTING

We now present a problem of multivariate integration for which sequen-
tial designs are exponentially better than non-sequential designs in the
statistical setting.

Let D 5 [0, 1]d with d $ 2. Let F be the class of 1-Lipschitz functions, i.e.,

u f(u1) 2 f(u2)u # iu1 2 u2iy , ;u1 , u2 [ D.

Obviously, F is convex and symmetric. Suppose we want to estimate the
integral of f,

S( f ) 5 E
D

f(u) du,

using data (1) or (2). Then we have the following result. (Below an )(

bn means that there exist constants 0 , a # b , 1y such that, for all n,
we have a # an/bn # b.)

MAIN THEOREM. For estimating the integral of a real 1-Lipschitz function
defined on the d-dimensional unit cube we have

R stat
non(n, s) )( n21/d

and

R stat
seq(n, s) )( Hn21/d

n21/2

for s 5 0

for s . 0

as n R 1y.
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Hence, for non-sequential designs, the minimal error is of order n21/d

which strongly depends on the dimension d. We have the curse of dimension-
ality, since we have to perform exponentially (in d) many observations to
reduce the error to a desired level. Note that the behavior of R stat

non(n, s) is
the same for exact and noisy data.

However, the situation changes drastically if we allow adaptive observa-
tions. For exact data the error is still proportional to n21/d, but for noisy
data the minimal error drops to n21/2 and is independent of d. The curse
of dimensionality vanishes, and for large d it is much better to deal with
noisy than exact data.

Why is this possible? The idea is very simple. Assume that we have noisy
data, i.e., s 2 . 0. If we make two observations at the same point and
subtract their results, we obtain a Gaussian random variable with known
distribution. Hence the statistical setting with noise provides us with an
additional tool which is a random number generator. This, together with
adaption, allows us to implement randomized algorithms and, in particular,
the classical Monte Carlo. For multivariate integration the expected error
of Monte Carlo is much smaller than that of non-randomized methods.

The formal proof of the theorem follows.

5. PROOF

The case of exact data, s 2 5 0, corresponds to the worst case setting
with exact data (d 5 0). Hence, using well known results from the worst
case, see, e.g., Novak (1988), we obtain

R stat
non(n, 0) 5 R stat

seq(n, 0) )( n21/d.

Moreover, the equispaced design T*n 5 ht*i j and the arithmetic mean

S*n ( f, x) 5
1
n O

n

i51
( f(t*i ) 1 xi)

have error proportional to n21/d.
Let s 2 . 0. Consider first a non-sequential design Tn 5 htijn

i51 and a
linear estimator

Sn( f, x) 5 On
i51

wi( f(ti) 1 xi),

where the wi’s are some reals. Then
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R stat(Sn , Tn , s) 5 SR stat(Sn , Tn , 0)2 1 s 2 On
i51

w2
iD1/2

$ R stat
non(n, 0).

On the other hand, we have

R stat(S*n , T*n , s) 5 (R stat(S*n , T*n , 0)2 1 s 2/n)1/2 )( n21/d

as n R 1y. To complete the proof of the nonadaptive case, it suffices to
show that the error of order n21/d cannot be reduced by using nonlinear esti-
mators.

Indeed, let c . 0 be such that R stat
non(n, 0) . cn21/d, ;n. Then we can select

hn [ F satisfying hn(ti) 5 0, 1 # i # n, and S(hn) . cn21/d. It is clear that
the error will not increase if the set F is replaced by the interval [2hn , hn].
For such a ‘‘reduced’’ problem the data consist of pure noise, yi 5 xi , ;i,
and such data are known to be useless. Zero is the best estimator among
all nonlinear estimators, and the error is at least S(hn) which is larger than
cn21/d, as claimed.

We now construct a sequential design and an estimator with error propor-
tional to n21/2. Assume without loss of generality that n 5 k(2d 1 1). Let

c(x) 5
1

2Ïfs 2
Ex

2y
exph2u2/(2s 2)j du.

The sequential design T**n 5 htijn
i51 , with ti 5 (t1

i , . . . , td
i ) [ Rd, is given

as follows. Let s 5 2kd. We set ti 5 (0, . . . , 0) for 1 # i # s, and

t j
s1i 5 c(y2d(i21)12j 2 y2d(i21)12j21)

for 1 # i # k, 1 # j # d. As the estimator we take

S**n ( f, x) 5
1
k O

k

i51
( f (ts1i) 1 xs1i).

We claim that R stat(S**n , T**n , s) )( n21/2. Indeed, for any 1 # i # s
and for 1 # j # d the difference x j

i 5 y2d(i21)12j 2 y2d(i21)12j21 is normally
distributed with mean zero and variance 2s 2. Hence t j

i 5 c(x j
i ) is uniformly

distributed on the unit interval, and the design points ts11 , . . . , tn are
uniformly distributed on the cube D. Our estimator is then nothing but
the classical Monte Carlo, see, e.g., Novak (1988), applied to noisy data.
Then, for any f [ F,
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Ex(S( f ) 2 S**n ( f, x))2 5 Ex SE
D

f(u) du 2
1
k O

k

i51
( f(ts1i) 1 xs1i)D2

5
1
k SED

f 2(u) du 2 SE
D

f(u) duD2D1
s 2

k

5
a( f ) 1 s 2

k
,

where

0 # a( f ) # sup HE
D

f 2(u) du : f [ F, E
D

f(u) 5 0J, 1.

Since k 5 n/(2d 1 1), the error R stat(S**n , T**n , s) is proportional to
n21/2, as claimed.

The lower bound for R stat(n, s) is provided by the following argument.
Consider the simpler problem of estimating the integral of a 0-Lipschitz
(constant) function. This is equivalent to estimating a real parameter from
n noisy observations with variance s 2. It is well known that the minimal
error is just sn21/2.

The proof is complete.

Remark 4. The method S**n , T**n constructed in the proof uses the
‘‘continuous’’ version of the Monte Carlo, i.e., the points are randomly
selected from the unit cube. The same error bounds can be obtained by
using a ‘‘discrete’’ Monte Carlo, where selection is made from a grid of
cardinality at least proportional to nd.

Remark 5. We showed that

R stat(S**n , T**n , s) # cn21/2,

where c 5 c(s, d) 5 ((s 2 1 1)(2d 1 1))1/2. One can get rid of the dependence
on d by generating all random sample points from only one random number
y0 5 y1 2 y2 , yi 5 f(0) 1 xi , i 5 1, 2, i.e., using only 2 instead of 2kd
‘‘preliminary’’ observations. In the latter case, the constant c is roughly
(s 2 1 1)1/2.

Moreover, we will have a similar upper bound if those two observations
are made at different points, but sufficiently close to each other. Hence,
the main result also holds in the case when repeated observations are
not allowed.
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