β-Delayed proton-decay study of 20Mg and its implications for the 19Ne(p, γ)20Na breakout reaction in X-ray bursts

J.P. Wallace a, P.J. Woods a, G. Lotay a, A. Alharbi b, A. Banu b, H.M. David a, T. Davinson a, M. McCleskey b, B.T. Roeder b, E. Simmons b, A. Spiridon b, L. Trache b, R.E. Tribble b

a University of Edinburgh, Edinburgh, EH9 3JZ, United Kingdom
b Cyclotron Institute, Texas A&M University, College Station, TX, USA

A R T I C L E I N F O

Article history:
Received 24 November 2011
Received in revised form 20 April 2012
Accepted 20 April 2012
Available online 23 April 2012

Editor: D.F. Geesaman

Keywords:
Explosive nuclear astrophysics
Nuclear structure
X-ray bursts
Hot CNO breakout
β-p decay of 20Mg

A B S T R A C T

Under astrophysical conditions of high temperature and density, such as for example found in X-ray bursts, breakout can occur from the hot CNO cycles into the rapid proton capture process. A key breakout route is via the sequence 15O(α, γ)19Ne(p, γ)20Na. The 19Ne(p, γ)20Na reaction rate is expected to be dominated by a single resonance at 457(3) keV. The identity of the resonance has been under discussion for a long time, with $J^π = 1^+$ and 3^+ assignments suggested. In this study of the β-delayed proton decay of 20Mg we report a new, significantly more stringent, upper limit on the resonance strength of 16 meV, tantalizingly close for states with a large 2s1π$^-$ component, and is only satisfied by the 3$^+$ level at an energy of 2966 keV in 20F [12]. Similarly, a study of the 20Ne(p, n)20Na reaction made a 3$^+$ assignment highly unlikely and favours a 3$^+$ assignment for which no branch is expected to be observed. The 3$^+$ state is predicted to have a significantly higher resonance strength, and to produce a proportionately higher 19Ne(p, γ)20Na reaction rate in X-ray burst conditions.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In explosive astrophysical phenomena in which temperatures in excess of 0.5 GK are achieved, such as X-ray bursts, it is possible to breakout from the β-limited hot CNO cycles into the rp process, a series of rapid proton capture reactions synthesizing proton-rich nuclei potentially up to the Sb–Te mass region [1,2]. It is expected that the reaction sequence 15O(α, γ)19Ne(p, γ)20Na provides the main link between the two processes, with its strength determining the conditions for ignition of the X-ray burst and the recurrence rate [3,4]. As such, extensive efforts have been made to determine both the 15O(α, γ)19Ne and 19Ne(p, γ)20Na astrophysical reaction rates (see Ref. [4] for a recent discussion of the former reaction). Under X-ray burst conditions, the 19Ne(p, γ)20Na reaction is thought to be dominated by the contribution of a single low-energy resonance ∼450 keV above the proton-emission threshold energy of 2190.1(11) keV in 20Na [5]. The identity of this resonance, and hence its inferred strength, has remained a matter of intense debate for over two decades. Direct measurements of the strength have been attempted using radioactive beams of 19Ne [6–10], but so far only an upper limit of 15 meV with a 90% confidence level has been determined [10].

Lamm et al. [11] studied the 20Ne(3He, t)20Na charge exchange reaction, and from a DWBA analysis made a 1$^+$ (spin and parity, Jπ) resonance assignment for the state at an excitation energy ∼2650 keV in 20Na, pairing it with a 1$^+$ level at an energy of 3173 keV in 20F. However, Clarke et al. [12] studied both the 20Ne(3He, t)20Na and 20Ne(3He, t)16F charge exchange reactions and found the angular distributions to be incompatible with these being analogue states. Rather, they noted a good agreement could be obtained with a known 3$^+$ level at 2966 keV in 20F [12]. Similarly, a study of the 20Ne(p, n)20Na reaction made a 3$^+$ assignment for the ∼2650 keV state in 19Na [13]. Arguing from a shell model perspective, Fortune et al. [14] pointed out that a large Coulomb energy shift is required for the ∼2650 keV level which can only be achieved for states with a large 2s1π$^-$ component, and is only satisfied by the 3$^+$ level in this excitation energy region of 20F. The 1$^+$ state at 3173 keV in 20F is suggested as having a (sd)6p$^-$ configuration which would not exhibit a significant Coulomb energy shift, whereas the known 1$^+$ state at 3488 keV is considered to have much too large a shift relative to the ∼2650 keV level in 20Na [15]. For a 3$^+$ assignment, Fortune et al. derived a lower limit on the resonance strength of 16 meV [14], tantalizingly close to the experimental upper limit of 15 meV [10]. In contrast, taking a 1$^+$ assignment, a value for the strength of 6 meV has been estimated [9], which is more clearly compatible with the upper limit.
found in direct measurements of the reaction. A key aspect in this debate has been the absence of the observation of an allowed Gamow–Teller β-delayed proton branch from the decay of 20Mg that would be expected for a 1^+ resonance assignment [16,17]. The most sensitive limit for feeding of the key resonance (0.1%, corresponding to a log f_I lower limit of 6.24, with no confidence level quoted) was set in the study of Piechaczyk et al. [17] measured by implanting 20Mg ions inside a 300 μm thick silicon detector. However, this sensitivity was limited by a high positron background in the energy region of interest. Consequently this still left open the possibility of a weak branch compatible with a 1^+ assignment for a hindered transition [17]. In contrast, a 3^+ transition would be strongly forbidden and would not be expected to be observed.

2. Experiment and results

In the present experiment, the β-delayed proton decay of 20Mg was studied at the Cyclotron Institute at Texas A&M University. A primary beam of 20Ne ions of energy 25 MeV/u was used to bombard a cryogenic 3He target in order to produce 20Mg nuclei through the fusion evaporation reaction 20Ne(3He,3n)20Mg. The 20Mg recoil ions, produced with an energy ~ 380 MeV, were separated from other more intensely produced reaction products using the Momentum Achromat Recoil Spectrometer (MARS) [18]. Typically ~ 30 20Mg ions s$^{-1}$ were transmitted through the slits at the focal plane of MARS, which were set to a narrow range to limit the number of other analyzed reaction products. The analyzed beam consisted of 89% 10C ions, 10% 20Mg ions and 0.5% 17Ne ions, all fully stripped. The analyzed beam was degraded at the focal plane of MARS (details of this procedure are described in Ref. [19]), in order to implant 20Mg ions with a straggling range of ~ 18 μm, into the center of a thin (45 μm) double-sided silicon strip detector (DSSD) oriented at an angle of 45° to the beam. The DSSD was segmented into 24 horizontal strips, and 24 vertical strips, of 1 mm pitch. The small thickness and high segmentation of the DSSD minimized the sensitivity to positrons, which have a longer range in silicon (typically a few mm) compared for example to the ~ 450 keV protons (range ~ 7 μm) emitted from the main resonance of interest. The DSSD was sandwiched between two thicker silicon detectors, 140 μm and 1 mm, also oriented at 45°, which were used to detect positrons and escape protons from higher-energy proton unbound states in 20Na produced in the β-decay of 20Mg ($t_{1/2} \sim 90$ ms). The longer range contaminant 10C and 17Ne ions, were transmitted through the thin DSSD and stopped inside the 1 mm thick silicon detector. The beam was pulsed, with 200 ms of beam on, and 200 ms beam off, with decay data being taken during the beam off period. A total of 3×10^6 20Mg ions were implanted into the DSSD.

Fig. 1 shows the energy spectrum for the β-delayed proton decay of 20Mg, requiring a multiplicity of one signal above the electronic discriminator threshold (~ 300 keV) within both the X and Y strips, and that these signals have \approx equal energy (within $+/-40$ keV). These requirements have the effect of vetoing general noise, and background associated with longer range particles, primarily positrons, moving across adjacent strip regions. As can be seen from this spectrum, there is negligible background from positrons in the low-energy region, and almost negligible β-energy summing on the main proton-decay lines, compared for example to Figs. 4 and 3, respectively, in Ref. [17] (note: the main contaminant reaction product implanted in the 1 mm thick silicon detector, 10C, β-decays to the stable nucleus 10B and the β's do not get through the cuts applied to the data, making it a negligible source of background). Instead, the main source of background arises from higher-energy protons associated with the β-decay of 20Mg depositing energy in the DSSD as they escape. To reduce this background from escaped protons, an anti-coincidence for high-energy protons between the DSSD and the two thicker silicon detectors was implemented. On an event-by-event basis it is impossible to completely distinguish between the signals from positrons and protons by a ΔE–E analysis as the direction of particle emission, and the length of path travelled by the particle, in the DSSD is unknown. However, escape protons typically deposit significantly higher energies in the thicker silicon detectors than the positrons. In particular, the escape protons with the highest kinetic energies on average deposit the lowest energies in the DSSD, which is the region critical for the present work. By exploring coincidence events in detail, it was found that an optimal upper-energy

![Figure 1](image-url)

Figure 1. (Black line) Energy spectrum measured in the DSSD for β-delayed particle decays from 20Mg, with proton-decay energy peaks labelled. The alpha peaks come from known transitions from the β-delayed alpha decay of 20Na produced as a daughter product of the β-decay of 20Mg [26]. (Purple line) Energy spectrum for events in anti-coincidence with high-energy protons from either the 140 μm or 1 mm thick silicon detectors. There is a significant reduction of low-energy signals corresponding to the escape of higher-energy protons from the β-delayed proton decay of 20Mg (see Section 2 for details). Proton transitions are listed in Table 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)

<table>
<thead>
<tr>
<th>Excitation energy in 20Na (keV)</th>
<th>Proton-decay energy (keV)</th>
<th>Final state(s) in 19Ne [17]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2647(3)</td>
<td>457(3)a</td>
<td>0</td>
</tr>
<tr>
<td>2987(2)</td>
<td>797(2)b</td>
<td>0</td>
</tr>
<tr>
<td>3075(15)</td>
<td>885(15)</td>
<td>0</td>
</tr>
<tr>
<td>3860(10)</td>
<td>1670(10)d</td>
<td>0</td>
</tr>
<tr>
<td>4093(5)</td>
<td>1903(5)</td>
<td>0</td>
</tr>
<tr>
<td>~ 4780</td>
<td>~ 2340</td>
<td>238 + 275</td>
</tr>
<tr>
<td>~ 6270</td>
<td>~ 1050</td>
<td>1508 + 1536</td>
</tr>
<tr>
<td>6522(16)</td>
<td>~ 4080</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>~ 4080</td>
<td>238 + 275</td>
</tr>
</tbody>
</table>

a Key astrophysical resonance energy derived here using a precise measurement of the energy difference of this state [23] with respect to the excited state at 2987(2) keV – see text for details.

b Precise resonance energy measurement taken from a 19Ne(p,p) resonant scattering study [6].

c Proton calibration energies taken from the work of Gorres et al. [16].

d This proton line consists of a dominant branch to the ground state and two weaker transitions from the 4093(5) keV excited state in 20Na to the 238 and 275 keV excited states in 19Ne as identified in the β-γ coincidence measurements of Ref. [17]. In the earlier work of Gorres et al. [16], only a single transition was assigned at 1670(16) keV with the other weaker components being unresolved. Therefore in our proton dispersion energy calibration procedure we also used a single centroid value for the peak structure shown in Fig. 1 at 1670 keV.
to large MARS so a greatly increased number of 17Ne ions were transmitted escaping from the 1 mm thick silicon detector and stopping in the from this product due to longer range higher-energy proton decays.

2647(3) keV. This compares with a value of 2645(6) keV from the in the low-energy region of interest around \sim450 keV, but no significant loss of efficiency in detecting the intense known low-energy proton-decay line associated with a 1$^+$ resonance of energy 797(2) keV [6]. The weakly produced contaminant reaction product 17Ne, implanted in the 1 mm thick silicon detector, is a known β-delayed proton emitter [20]. The possible effect of background from this product due to longer range higher-energy proton decays escaping from the 1 mm thick silicon detector and stopping in the DSSD, was explored by opening up the slits at the focal plane of MARS so a greatly increased number of 17Ne ions were transmitted as a fraction of the total analyzed beam (30%). A small number of low-energy events were observed in the raw DSSD data, but these were completely eliminated by applying the gating conditions described above.

The 797(2) keV resonance was measured directly in (p,p) scattering of 19Ne ions [6]. In determining the proton energy linear dispersion relative to this low-energy line, calibration energies from higher-energy proton lines at 1670(10) keV (note this line consists of more than one component – see Table 1) and 4332(16) keV were taken from the 20Mg β-p study of Gorres et al. [16], which were themselves calibrated with respect to precise, well-known, β-delayed proton-decay lines from 21Mg [21]. Gorres et al. used a thin silicon detector, and were able to neglect β-energy summing effects [16]. A new weak proton line is identified here for the first time at an energy of 885(15) keV. This would not have been observed in the study of Piechaczek et al. [17] due to large β-energy summing effects from the neighbouring intense 797 keV line. A Gaussian fitting procedure, using a third order polynomial fit to the background around the 797 keV line showed the need to introduce the second transition at 885(15) keV, with a resulting reduction in the χ^2 by a factor \sim2. The energy is in good agreement with that of the 0$^+$ resonance at 887(2) keV reported in Ref. [6] from 19Ne(p,p) scattering, and so we assign the new transition to this state. Note, taking the more precise proton energy value of Ref. [6] gives an excitation energy of 3077(2) keV in using the position and magnitude of the expected proton peak for a 457 keV resonance to the 19Ne ground state, corresponding to the upper limit set in [17]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)

A discrete proton transition is observed at 1903(5) keV which compares with previously reported transitions at energies of 1928(16) keV [17] and 1891 keV, in the latter case no errors are quoted [22].

In a high resolution study of the 20Ne(3He,t)20Na reaction performed by Smith et al. [23] using a magnetic spectrograph, a value of 340(2) keV was obtained for the energy difference between the key astrophysical resonance in 20F which compares with 19Ne(p,p) and 21Mg scattering, and so we assign the new transition to this state. Note, taking the more precise proton energy value of Ref. [6] gives an excitation energy of 3077(2) keV in using the new transition to this state. Note, taking the more precise proton energy value of Ref. [6] gives an excitation energy of 3077(2) keV in using the position and magnitude of the expected proton peak for a 457 keV resonance to the 19Ne ground state, corresponding to the upper limit set in [17]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)

A new weak proton line is identified here for the first time at an energy of 885(15) keV. This would not have been observed in the study of Piechaczek et al. [17] due to large β-energy summing effects from the neighbouring intense 797 keV line. A Gaussian fitting procedure, using a third order polynomial fit to the background around the 797 keV line showed the need to introduce the second transition at 885(15) keV, with a resulting reduction in the χ^2 by a factor \sim2. The energy is in good agreement with that of the 0$^+$ resonance at 887(2) keV reported in Ref. [6] from 19Ne(p,p) scattering, and so we assign the new transition to this state. Note, taking the more precise proton energy value of Ref. [6] gives an excitation energy of 3077(2) keV in using the position and magnitude of the expected proton peak for a 457 keV resonance to the 19Ne ground state, corresponding to the upper limit set in [17]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)

A discrete proton transition is observed at 1903(5) keV which compares with previously reported transitions at energies of 1928(16) keV [17] and 1891 keV, in the latter case no errors are quoted [22].

In a high resolution study of the 20Ne(3He,t)20Na reaction performed by Smith et al. [23] using a magnetic spectrograph, a value of 340(2) keV was obtained for the energy difference between the key astrophysical resonance in 20F, and the key astrophysical resonance at an excitation energy of 2647(3) keV in 20Na being paired with the 3$^+$ state at 2966 keV in 20F. The green curve represents a superposition of the background polynomial fit, with the position and magnitude of the expected proton peak for a 457 keV resonance in 20Na with a 0.1% β-delayed proton-decay branch to the 19Ne ground state, corresponding to the upper limit set in [17]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)

Fig. 2. Expanded energy spectrum showing the energy region of interest around the 457 keV resonance state. The purple curve represents a polynomial fit to the background excluding the energy region of the resonance itself. Inclusion of the resonance region does not produce any discernable change to this polynomial fit. The green curve represents a superposition of the background polynomial fit, with the position and magnitude of the expected proton peak for a 457 keV resonance in 20Na with a 0.1% β-delayed proton-decay branch to the 19Ne ground state, corresponding to the upper limit set in [17]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)

3. Summary

In summary, a new study of the β-delayed proton decay of 20Mg, optimized to detect low-energy protons, is reported, which has set significantly more stringent limits on the β-decay branch...
to the key astrophysical resonance in 20Na. The present results make it very unlikely the state can be a 1^+, and therefore strongly favour a 3^+ assignment. The 3^+ resonance is predicted to result in a significantly higher 19Ne(p, γ)20Na reaction rate under X-ray burst conditions than expected for a 1^+ state. The current experimental upper limit on the strength of the resonance of 15 meV from a direct measurement of the 19Ne(p, γ)20Na reaction [10] seems just incompatible with the most recent theoretical estimate of the lower limit of the resonance strength \sim16 meV assuming a 3^+ state [14]. A new direct measurement of the strength of the 457(3) keV resonance must now be considered a high priority in determining the 19Ne(p, γ)20Na reaction rate under explosive hydrogen burning conditions, as found in X-ray burst environments.

Acknowledgements

P.J.W., T.D., G.L., H.M.D. and J.P.W. wish to acknowledge support from STFC.

References