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Abstract

It has been noticed that confinement effects can be described by the additiq?&—)ng Faiv term in the Lagrangian
density. We now study the combined effect of such “confinement term” and that of a mass term. The surprising result is that
the interplay between these two terms gives rise to a Coulomb interaction. Our picture has a certain correspondence with the
quasiconfinement picture described by Giles, Jaffe and de Rujula for QCD with symmetry breaking.
00 2004 Elsevier B.V. Open access under CCBY license.
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1. Introduction type[2]

1 1
_ L= Zw?—Zw [-F4 Faw, 1)
It is well known that one of the long standing 4 2

probl_ems in ph_yS|cs is L_lnderstandlng the conflneme;nt where F¢, = 9, A% — 9,A% + gfabcAﬁA‘c), andw is
physics from first principles. Hence the challenge is ot 4 fundamental field but rather is a function of 4-
to develop analytical approaches which provide valu- ;,4ex field strength, that is,

able insight and theoretl guidance. According to

this viewpoint, an effective theory in which confining = gwaﬂauAmﬁ‘ (2)
potentials are obtained as a consequence of sponta- . .

neous symmetry breaking of scale invariance has beenTheAves €quation of motion leads to

developed1l]. In particular, it was shown that a such wap 5
. . . . a
theory relies on a scale-invariant Lagrangian of the €*"*ds(w — /= FysFe7®) =0, 3)
which is then integrated to
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Itis easy to verify that thel!, equation of motion leads Here we want to show that even if s.s.b. of gauge
usto symmetry is not in question and that there is indeed a
Fany mass term induced in the action, then the dynamics

v, (Fa/w +M ) -0 (5) of a theory which is governed by a confining term
/_F(fﬂpbaﬁ (explained in the previous section) and a mass term

presents highly unexpected features.
It is worth stressing at this stage that the above equa-  Let us study an effective action of the form

tion can be obtained from the effective Lagrangian 5

1 M
1 M Lo == Fi F" + = = Ft Py — %A;’LA”“,
Eeﬁz—ZFSVFaHV‘F?‘/—FﬂVFaHV. (6) (7)
Spherically symmetric solutions d&q. (5) display, and let us study for simplicity the Abelian case. Then,
even in the Abelian case, a Coulomb piece and a equation for the spherically symmetric case is

confining part. Also, the quantum theory calculation M . 5
of the static energy between two charges displays the V - (E + ﬁf> =—u¢. (8)
same behavidd]. It is well known that the square root ) ) )
Within this framework the aim of the present Letter thatis,E =—V¢, we find thatEq. (8)becomes
is to extend further the previous analysis by consider- 2 M
ing the effect of a mass term. To this end we will com- ———(¢) — —=— — wlp =0, 9)
rdr J2r

pute the static potential of this theory. In fact, we will
show that the static potential for the new theory gives which for 2 = 0, has as solutiofi]
rise to an effective Coulominteraction. We recall in

. - . M
passing that the static potential between a heavy quark¢ = — + —r, (20)
and antiquark is a tool of considerable theoretical in- rooV2

terest which is expected to provide the foundation displaying a confinementM) part and a Coulomb

for understanding confinement. According to our ap- part. Notice that fop? # 0 the nature of the solutions

proach, the interaction pantial between two charges is totally different, being of the form

is obtained once a suitable identification of the physi- —ur

. . e M 1

cal degrees of freedom is made. This methodology has¢ = C - ( ) - (11)

been used previously in many examples for studying r Veu?)r

features of screening and confinement in gauge theo-From Eq. (11)we can appreciate the interesting phe-

ries[6,7]. nomenon of the appearance of an effective Coulomb
term, which depends on both the confining term
(M dependence) and on the screening or mass term

2. Theinterplay between confinement and mass (u? dependence). The confining termHu. (10)has

terms disappeared and is being replaced by a Coulomb term,
even forp arbitrarily small. Asu? — 0 instead of

Some time ago, Giles et 48] proposed thatinthe  confinement one has an arbitrarily strong Coulomb

presence of spontaneous breaking of gauge symmetryterm. These general arguments can be put in a more

confinement in QCD may become an approximate solid ground by the use of the full quantum mechani-

effect and there could be in this case high mass statescal gauge-invariant variables formalism.

of unconfined quarks and gluons. Their analysis was

done in the context of the MIT bag mod®l.

Subsequently, this research was criticized by Georgi 3. Interaction energy

[10], who argued that the confinement properties of

QCD will present an obstacle for the s.s.b. of gauge  As already mentioned, our immediate objective is

symmetry. to compute explicitly the interaction energy between
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static pointlike sources for the mode under considera-
tion. The starting point ithe two-dimensional space—
time Lagrangian obtained fron7)in the Abelian case
and considering only, r dependence, a sort of mini-
superspace approafsi.

12

2

7 v FHY

22

2
L =4rr { e F*" — AMA“}

— AoJO, (12)

whereJ9 is the external current, andis the mass for
the gauge fields. Here, v =0, 1, wherex! = r = |x]
ande®1 = 1. We have used that in a two-dimensional
space(t, r),

e FHY

A% _FW}F/w: \/é

It is worthwhile sketching at this point the canonical
guantization of this theory from the Hamiltonian
analysis point of view. The canonical momenta read

" = —4nx2<FO“ + £80“>,
V2

which results in the usual primary constraiif = 0,
and

= —4nx2(F°" + ﬂe‘)").
NZ

The canonical Hamiltonian following from the above

Lagrangian is:
1 M

Ho= | dx{ma*A® — ——mmt — —07

0 /X{ 1 B2 1 ﬁg 1

+rxlM? + anZMZ(AoAO + AlAl)

+ AOJO}. (13)
Requiring the primary constrairip = 0 to be pre-
served in time vyields the following secondary con-
straint

I(x)= 0T — 4 x?u?A° — J0 =0. (14)

It is straightforward to see that both constraints are
second class. This result is not surprising, it explicitly

reflects the breaking of the gauge invariance of the
theory under consideration. Thus, special care has
to be exercised since it is the gauge invariance that
generally establish unitarity and renormalizability in

most quantum field theoretical models. To convert the
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second class system into first class we will adopt the
procedure described in Refd.1,12] In this way the
new system still has the basic features of the original
one and has reobtained the gauge symmetry. As was
explained in Refs[11,12] we enlarge the original
phase space by introducing a canonical pair of fields
0 andIly. Then a new set of first class constraints can
be defined in this extended space:

A1 =g+ 47 x%1%6 =0, (15)

Ay=T + Iy =0. (16)

It is easy to verify that the new constraints are first
class and in this way restore the gauge symmetry of the
theory under consideration. It is worthwhile remarking
at this point that thé fields only enlarge the unphys-
ical sector of the total Hilbert space, not affecting the
structure of the physical subspdadéd]. Therefore, the
new effective Lagrangian after integrating out the
fields reads

M

c—an?l tp 1+“2 P
= T _—— _ —
2 L O 2\/?

v
e FH }

— Ao]o. (17)

We now restrict our attention to the Hamiltonian
framework of this theory. The canonical momentaread

2
M
m = —47'rx2|:(1 + “—) FO* 4 —80“].
O V2
This yields the usual primary constraifi® = 0, and

2
I = —47rx2|:<1+ M—)FO’ + —80’].
m] V2

Therefore, the canonical Hamiltonian takes the form
Hc = /dx{—Ao(Z)lHl —J9)
2\ —1

I 1

—IT I7

8mx? l( )
M
(2%

1+—
2\ -1
M ) 801171}
O
+fdx{nM2(

1

O
A=)
2\ —1
) xz}. (18)

1+5

O
Temporal conservation of the primary constraiig
leads to the secondary constraifif(x) = 97711 —
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JO = 0. It is straightforward to check that there are
no further constraints in the theory. The extended
Hamiltonian that generates translations in time then
reads

H = He + / dx (co(r) Mo(x) + c1 () 1)),

where co(x) and c1(x) are the Lagrange multipli-
ers. Moreover, it follows from this Hamiltonian that
Ao (x) =[Ao(x), H] = co(x), which is an arbitrary
function. Sincellp = 0, neitherA® nor 179 are of in-

terest in describing the system and may be discarded

from the theory. As a result, the Hamiltonian becomes

H:/dx —LH 1+,u_2
8rx2 * m]

M N\ o / 1,0

— 14+ — T1 oIl —J ,
ﬁ( +D> > o1+ ¢’ (1 )

(19)

1
nl

wherec’ (x) = c1(x) — Ag(x).

According to the usual procedure we introduce a
supplementary condition on the vector potential such
that the full set of constints becomes second class.
A convenient choice is found to §#,6,7]

1

Fz(x)z/dz“Av(z)E/dxxlAl(xx)=o, (20)

Cex 0

wherei (0 < A < 1) is the parameter describing the
spacelike straight path! = £X 4+ A (x — £)1, andé is

a fixed point (reference point). There is no essential
loss of generality if we restrict our considerations to
£1=0. In this case, the only nontrivial Dirac bracket
is

(A1), ()}
1
=5Dx—y)— 8f/dkx18(l)(kx - y).
0

(21)

We are now equipped to compute the interaction
energy between pointlike sources in the model under
consideration, where a feram is localized at the ori-
gin 0 and an antifermion at. In order to accomplish
this purpose, we will calculate the expectation value of
the energy operatadi in the physical statgd). From
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our above discussion, we see thAt) ¢ reads

=(@| | dx| ———=I |1+ — 1
o= |/ \ " 8ra2 1(+D>
2

~1
(1+“—> e°1n01>|¢>>. 22)

(H)

M

V2

Since the fermions are taken to be infinitely massive
(static), we can substitute by —812 in Eq. (22) Here
—812 refers to the radial part of the spherical Laplacian.
In such a case we write
2\ —1
,u_) NIk

1
———_m(1-
( 8rx2 1( 812
M M2>_1 01
—(1-—= I || P). 23
ﬁ( 72 e ||®) (23)

Next, as was first established by Dirdt3], the
physical state can be written as

@) =¥ (y)¥(0)

g

(H)a>=(¢|/dx

y

/ dziA,-<z>>x/f<0>|0>,
0

where|0) is the physical vacuum state and the line
integral appearing in the above expression is along a
spacelike path starting & and endingy, on a fixed
time slice. From this we see that the fermion fields are
now dressed by a cloud of gauge fields.

Taking into account the above Hamiltonian struc-
ture, we observe that

M(0)|¥ (»)¥(0))

=y (y) exp(z‘e (24)

= U (MY (O)T1(x)|0) — e | dz18D(z1 — x)|D).

Inserting this back int¢23), we get

e? e~ Me 1

C4n L J2.47u2L°
where (H)o = (0|H|0) and with |y| = L. Since the
potential is given by the term of the energy which
depends on the separation of the two fermions, from
the expressiof26) we obtain

e? e~ Me

1
T 47 L \/2.471“22'

(25)

nL

(H)o =(H (26)

)o

nL

(27)
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In this way the static interaction between fermions the fully not truncated version of the theory. This,

arises only because of the requirement that| the ) however, is a separate question and we do not intend

states be gauge invariant. to address it in this Letter. We expect to report on
progress along these lines elsewhere.

4. Final remarks
Acknowledgements

From our final expression for the heavy interquark
potential we see that:

(a) For u2 = 0 the theory describes an exactly
confining phase.

(b) For 12 + 0 but 42 very small, we observe that
the linear potential is now replaced by a Coulomb
potential which is, however, a very strong one. In this
limit, states will be indeed bound, that is, confined
due to the very strong Coulomb potential unless
they correspond to very high excitations. Indeed, the
“ijonization energy” of this system goes to infinity [ P- Gaete, E.I. Guendelman, hep-th/0308025;

2 S P. Gaete, E.l. Guendelman, hep-th/0401018.
as u- — 0. However, the Coulomb potential is not [2] E.I. Guendelman, hep-th/0306162.
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