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1. Introduction

Perturbation series is one of few explicit methods to construct new semigroups and it is widely used in many areas
of mathematics and physics. In this paper we study the perturbation series in the context of gradient perturbations of
transition densities on R

d , d ∈ N+ . A function p : R × R
d × R × R

d → [0,∞) is called a transition density if for all −∞ <

s < t < ∞ and x, y ∈ R
d it satisfies the Chapman–Kolmogorov equation,∫

Rd

p(s, x, u, z)p(u, z, t, y)dz = p(s, x, t, y), s < u < t. (1)

The function p may describe the distribution of particles evolving in space and time. We are interested in adding a drift to
the picture. Let b = (bi)

d
i=1 : R × R

d → R
d (the drift function). The perturbation series is

p̃(s, x, t, y) =
∞∑

n=0

pn(s, x, t, y), (2)

where p0(s, x, t, y) = p(s, x, t, y) and for n = 1,2, . . . ,

pn(s, x, t, y) =
t∫

s

∫
Rd

pn−1(s, x, u, z)b(u, z) · ∇z p(u, z, t, y)dz du. (3)

We will focus on the convergence and estimates of the perturbation series. The series (2) is motivated by the perturbation
theory of operator semigroups. Namely, if we denote by L the generator of the time-inhomogeneous semigroup with the
integral density p, then, heuristically, p̃ stands for the density of the evolution generated by L + b · ∇ . This observation and
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the series (2) were used in the study of gradient perturbations of elliptic operators (e.g. [13,11]) and the fractional Laplacian
[5,10]. In such approach the convergence of (2) is delicate and therefore suitable conditions on b need to be assumed. The
general philosophy is to state the conditions in terms of the density p in such a way that they fit the iteration procedure (3).
This lead to the relative Kato conditions for Schrödinger perturbations in [3] and [9]. We note that there exist probabilistic
methods to study Schrödinger perturbations based on multiplicative functionals and Khasminski’s lemma (strengthened in
[3]). However gradient perturbations are more delicate and probabilistic methods (e.g. Girsanov transform) are applicable in
special situations.

In the present paper we will consider natural conditions (5) and (6) analogous to those used in the case of Schrödinger
perturbations in [3] and [9].

Definition 1. Let η � 0 and Q : R × R → [0,∞) satisfy

Q (r, u) + Q (u, v) � Q (r, v), r < u < v. (4)

We say that b ∈ N (η, Q , p) if for all −∞ < s < t < ∞ and x, y ∈ R
d ,

t∫
s

∫
Rd

p(s, x, u, z)
∣∣b(u, z)

∣∣∣∣∇z p(u, z, t, y)
∣∣dz du �

[
η + Q (s, t)

]
p(s, x, t, y). (5)

Definition 2. Let η > 0. We will say that b ∈ P (η, p) if there exists h > 0 such that for all t − s < h and x, y ∈ R
d ,

t∫
s

∫
Rd

p(s, x, u, z)
∣∣b(u, z)

∣∣∣∣∇z p(u, z, t, y)
∣∣dz du � ηp(s, x, t, y). (6)

If η or Q are not specified, by writing b ∈ N (η, Q , p) we mean that (5) is satisfied for some η and Q .
As a part of Definitions 1 and 2 we will always make the following assumption on the gradient of p: for all x, y ∈ R

d

and s < u < t ,

∇x p(s, x, t, y) exists, and

∇x p(s, x, t, y) =
∫
Rd

∇x p(s, x, u, z)p(u, z, t, y)dz, (7)

where the integral is absolutely convergent.

Remark 3. If b ∈ P (η, p), then b ∈ N (η,β(t − s), p) with β = η
h , where h is taken from Definition 2 (see [3,10]). We will

generally state our results for the larger class N , but occasionally more specific results will be given for P .

The main results of the paper are the following two theorems.

Theorem 1. Let p be a function satisfying (1) and (7) and b ∈ N (η, Q , p) with η < 1
2 . Then the perturbation series (2) converges

absolutely, there exists a constant C > 1 such that for all −∞ < s < t < ∞ and x, y ∈ R
d,

p(s, x, t, y)

C1+Q (s,t)
� p̃(s, x, t, y) � p(s, x, t, y)

{( 1
1−2η

)1+ Q (s,t)
η , if 0 < η < 1

2 ,

eQ (s,t), if η = 0,

(8)

and the Chapman–Kolmogorov equation holds for p̃,

p̃(s, x, t, y) =
∫
Rd

p̃(s, x, u, z)p̃(u, z, t, y)dz, u ∈ (s, t). (9)

Similar results were first obtained in [10] for the density p of the isotropic α-stable process (1 < α < 2). The authors
considered drift functions b satisfying the following condition (see also [13]),

t∫
s

∫
d

(
p(s, x, u, z)

(u − s)1/α
+ p(u, z, t, y)

(t − u)1/α

)∣∣b(u, z)
∣∣dz du � η + Q (s, t), (10)
R
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where η � 0, and Q satisfies (4). We note that the condition (5) is more natural and general than (10), e.g. it allows the
drift |b(u, z)| = p(0,0, u, z)(α−1)/d (see [10, Remark 7, Example 5]).

In this paper we propose a new general method which may be applied to various functions p. As an example in Section 3
we consider the density p of the semigroup generated by L = �α/2 + aβ�β/2 (1 < β < α < 2, a � 0), and prove that the
resulting p̃ is the density of the semigroup corresponding to L + b · ∇ . This result is stated in the following theorem (see
Section 3 for detailed definitions).

Theorem 2. Let 1 < β < α < 2 and pa(s, x, t, y) be the density of the semigroup generated by �α/2 + aβ�β/2 . If b ∈ N (η, Q , pa)

with η < 1/2, then there exists a transition density p̃a satisfying (8) and such that

∞∫
s

∫
Rd

p̃a(s, x, u, z)
[
∂uφ(u, z) + (

�
α/2
z + aβ�

β/2
z

)
φ(u, z) + b(u, z) · ∇zφ(u, z)

]
dz du = −φ(s, x),

where s ∈ R, x ∈ R
d and φ ∈ C∞

c (R × R
d).

2. Proofs

Throughout this section we assume that η � 0 and Q is a function satisfying (4). The following lemma is taken from
[10] (see also [3]).

Lemma 4. Let b ∈ N (η, Q , p). For all s < u < t, x, y ∈ R
d and n = 0,1,2, . . . , we have

n∑
m=0

∫
Rd

pm(s, x, u, z)pn−m(u, z, t, y)dz = pn(s, x, t, y). (11)

Lemma 5 is crucial in our consideration. It will allow us to sum the series (2) regardless of the smallness of Q (s, t).

Lemma 5. Let s < t, k ∈ N+ , θ > 0, and s = t0 < t1 < · · · < tk = t, be such that for all i = 0,1, . . . ,k − 1 and x, y ∈ R
d,

ti+1∫
ti

∫
Rd

p(ti, x, u, z)
∣∣b(u, z)

∣∣∣∣∇z p(u, z, ti+1, y)
∣∣dz du � θ p(ti, x, ti+1, y). (12)

Then for all x, y ∈ R
d,∣∣pn(s, x, t, y)
∣∣ �

(
n + k − 1

k − 1

)
θn p(s, x, t, y).

Proof. For k = 1 the inequality is true for every n by the definition of pn and induction in n. If k > 1 and the statement is
true for k − 1 and all n, then for every n ∈ N, by Lemma 4 we obtain∣∣pn(s, x, t, y)

∣∣ �
n∑

m=0

∫
Rd

∣∣pm(s, x, t1, z)
∣∣∣∣pn−m(t1, z, t, y)

∣∣dz

�
n∑

m=0

∫
Rd

θm p(s, x, t1, z)

(
n − m + k − 2

k − 2

)
θn−m p(t1, z, t, y)dz

�
n∑

m=0

(
n − m + k − 2

k − 2

)
θn p(s, x, t, y)

=
(

n + k − 1

k − 1

)
θn p(s, x, t, y). �

We note that the function Q may be discontinuous. If limt→t+0
Q (s, t) − limt→t−0

Q (s, t) > θ for some t0 > s, (12) may

not hold for any partition of the interval (s, t). We will overcome this problem by replacing Q (s, t) in (5) by limh→0 Q (s0,

t − h) − Q (s0, s + h) for some s0 � s. We will write, as usual,

F
(
t−) = lim

u↑t
F (u), F

(
s+) = lim

u↓s
F (u).
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Lemma 6. Let b ∈ N (η, Q , p) and s0 ∈ R. Define F (u) = Q (s0, u) if u > s0 and F (u) = 0 if u � s0 . Then for all s0 � s < t < ∞ and
x, y ∈ R

d,

t∫
s

∫
Rd

p(s, x, u, z)
∣∣b(u, z)

∣∣∣∣∇z p(u, z, t, y)
∣∣dz du �

(
η + F

(
t−) − F

(
s+))

p(s, x, t, y).

Proof. For all s0 � s < t < ∞ and x, y ∈ R
d we have

t∫
s

∫
Rd

p(s, x, u, z)
∣∣b(u, z)

∣∣∣∣∇z p(u, z, t, y)
∣∣dz du

= lim
h→0+

t−h∫
s+h

∫
Rd

p(s, x, u, z)
∣∣b(u, z)

∣∣∣∣∇z p(u, z, t, y)
∣∣dz du

� lim sup
h→0+

∫
Rd

∫
Rd

p(s, x, s + h, w2)

t−h∫
s+h

∫
Rd

p(s + h, w2, u, z)
∣∣b(u, z)

∣∣
× ∣∣∇z p(u, z, t − h, w2)

∣∣dz du p(t − h, w1, t, y)dw1 dw2

� lim
h→0+

[
η + Q (s + h, t − h)

]
p(s, x, t, y)

� lim
h→0+

[
η + F (t − h) − F (s + h)

]
p(s, x, t, y)

= [
η + F

(
t−) − F

(
s+)]

p(s, x, t, y),

because Q (s + h, t − h) � Q (s0, t − h) − Q (s0, s + h). �
Lemma 7. Let F : R → [0,∞) be non-decreasing. Let θ > 0, s < t and k ∈ N+ be such that F (t−) − F (s+) � kθ . Then there are
m ∈ N+ , m � k, s = t0 < t1 < · · · < tm = t such that F (t−

i+1) − F (t+
i ) � θ for i = 0, . . . ,m − 1.

Proof. Let l ∈ N+ be the smallest number such that F (t−) − F (s+) � lθ . If l = 1 we take t0 = s, t1 = t . Otherwise, we define
r0 = s, rl = t and ri = sup{u ∈ (s, t): F (u) − F (s+) � iθ} for i = 1, . . . , l − 1. We note that F (r−

i+1) − F (s+) � (i + 1)θ and
F (r+

i ) − F (s+) � iθ for i = 0, . . . , l − 1, hence

F
(
r−

i+1

) − F
(
r+

i

) = (
F
(
r−

i+1

) − F
(
s+)) − (

F
(
r+

i

) − F
(
s+))

� (i + 1)θ − iθ = θ.

Now let m + 1 be the number of the elements of the set R = {r0, . . . , rl}. We put t0 = r0 and tk = min{ri ∈ R: ri > tk−1}, for
t = 1, . . . ,m. �

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let s < t and s0 = s. Let F (u) = Q (s0, u) if u > s0, and F (u) = 0 if u � s0.
We will prove the upper bound of (8) first.
Let ε > 0 and k ∈ N+ be such that (k − 1)ε � F (t−)− F (s+) � kε. By Lemma 7 there are m ∈ N+ , m � k and s = t0 < t1 <

· · · < tm = t such that F (t−
i+1) − F (t+

i ) � ε for i = 0, . . . ,m − 1. By Lemma 6 and Lemma 5 with θ = η + ε, for all x, y ∈ R
d

we obtain

p̃(s, x, t, y) �
∞∑

n=0

∣∣pn(s, x, t, y)
∣∣ �

∞∑
n=0

(
n + m − 1

m − 1

)
(η + ε)n p(s, x, t, y)

=
(

1

1 − (η + ε)

)m

p(s, x, t, y) �
(

1

1 − (η + ε)

)k

p(s, x, t, y)

�
(

1

1 − (η + ε)

)1+ F (t−)−F (s+)
ε

p(s, x, t, y).

We put ε = η when η > 0 and we let ε → 0 when η = 0. The above calculation justifies the last inequality in the statement
in the theorem, as well as the change of the order of the integration and the use of Cauchy product in what follows. By
Lemma 4,
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∫
Rd

p̃(s, x, u, z)p̃(u, z, t, y)dz =
∫
Rd

∞∑
n=0

n∑
m=0

pm(s, x, u, z)pn−m(u, z, t, y)dz

=
∞∑

n=0

n∑
m=0

∫
Rd

pm(s, x, u, z)pn−m(u, z, t, y)dz

=
∞∑

n=0

pn(s, x, t, y) = p̃(s, x, t, y).

We now prove the lower bound. Let δ ∈ (0, 1
2 − η).

If F (t−) − F (s+) � 1
2 − η − δ, then by Lemma 6 and induction∣∣pn(s, x, t, y)

∣∣ �
(
η + F

(
t−) − F

(
s+))n

p(s, x, t, y) �
(

1

2
− δ

)n

p(s, x, t, y),

and we get

p̃(s, x, t, y) � p(s, x, t, y) −
∞∑

n=1

∣∣pn(s, x, t, y)
∣∣ �

(
1 −

∞∑
n=1

(
1

2
− δ

)n
)

p(s, x, t, y)

=
(

1 −
1
2 − δ

1 − 1
2 + δ

)
p(s, x, t, y) =

(
4δ

1 + 2δ

)
p(s, x, t, y). (13)

Now in general, we set k ∈ N+ such that (k − 1)( 1
2 − η − δ) � F (t−) − F (s+) � k( 1

2 − η − δ). By Lemma 7 there are m ∈ N+ ,
m � k and s = t0 < t1 < · · · < tm = t such that F (t−

i+1) − F (t+
i ) � 1

2 − η − δ. By (13) and (9) for all x, y ∈ R
d ,

p̃(s, x, t, y) �
(

4δ

1 + 2δ

)m

p(s, x, t, y) �
(

4δ

1 + 2δ

)k

p(s, x, t, y)

�
(

4δ

1 + 2δ

)1+ F (t−)−F (s+)
1
2 −η−δ

p(s, x, t, y).

The assertion is true with C = (4δ/(1 + 2δ))
− 1

1
2 −η−δ . �

If b ∈ P (η, p), then the proof is simpler and the estimates are better.

Theorem 3. Let p(s, x, t, y) be a function satisfying (1) and (7) and b ∈ P (η, p) with η < 1
2 . Then for all −∞ < s < t < ∞, x, y ∈ R

d,(
1 − η

1 − 2η

)−1− β(t−s)
η

p(s, x, t, y) � p̃(s, x, t, y) �
(

1

1 − η

)1+ β(t−s)
η

p(s, x, t, y) (14)

and the Chapman–Kolmogorov equation (9) holds.

Proof. We have (9) by Theorem 1 and Remark 3. For the proof of (14) we let s < t and k ∈ N+ be such that (k − 1)h �
t − s < kh. By Lemma 5 with ti = s + t−s

k i and θ = η,

p̃(s, x, t, y) �
∞∑

n=0

∣∣pn(s, x, t, y)
∣∣ �

∞∑
n=0

(
n + k − 1

k − 1

)
ηn p(s, x, t, y)

=
(

1

1 − η

)k

p(s, x, t, y) �
(

1

1 − η

)1+ β(t−s)
η

p(s, x, t, y),

where β = η
h .

Also, if t − s � h, then

p̃(s, x, t, y) � p(s, x, t, y) −
∞∑

n=1

∣∣pn(s, x, t, y)
∣∣

�
(

1 −
∞∑

ηn

)
p(s, x, t, y) =

(
1 − 2η

1 − η

)
p(s, x, t, y). (15)
n=1
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Now, for any s < t and k ∈ N+ such that (k − 1)h � t − s < kh, by (15) and (9) we obtain

p̃(s, x, t, y) �
(

1 − 2η

1 − η

)k

p(s, x, t, y) �
(

1 − 2η

1 − η

)1+ β(t−s)
η

p(s, x, t, y). �
3. The case of the mixed fractional Laplacian

As an example we consider the transition density of the Brownian motion subordinated by the sum of two independent
stable subordinators. Such processes were recently studied in [6]. Let a � 0, 0 < β < α < 2. Denote pa(s, x, t, y) = pa(t −
s, y − x), where −∞ < s < t < ∞, x, y ∈ R

d , and

pa(t, x) = 1

(2π)d

∫
Rd

e−t(|ξ |α+aβ |ξ |β )e−ix·ξ dξ, x ∈ R
d, t > 0.

For t � 0 we put pa(t, x) = 0. The convolution semigroup pa(t, x) has �α/2 +aβ�β/2 as its infinitesimal generator [1,12,2,6].
In particular, for f ∈ C∞

c (Rd), and x ∈ R
d we have(

�α/2 + aβ�β/2) f (x) = lim
t→0+

1

t

∫
Rd

pa(t, y − x)
(

f (y) − f (x)
)

dy

= lim
ε→0+

∫
|y|>ε

(
Ad,−α

|y|d+α
+ aβ Ad,−β

|y|d+β

)[
f (x + y) − f (x)

]
dy,

where Ad,γ = Γ ((d −γ )/2)/(2γ πd/2|Γ (γ /2)|). Let ηa
t (u) be the density function of the sum of the α/2-stable subordinator

and a2 times the β/2-stable subordinator. Let gt(x) = (4πt)−d/2e−|x|/4t be the d-dimensional Gaussian kernel. Then pa(t, x)
can be expressed as

pa(t, x) =
∞∫

0

gu(x)ηa
t (u)du.

Differentiating we obtain

∇x pa(t, x) = −2πxpa
(d+2)(t, x̃), (16)

where x̃ ∈ R
d+2 is such that |x̃| = |x| and pa

(d+2)
stands for the function pa in dimension d + 2 (see also [5]). It is crucial

here to notice that pa(s, x, t, y) satisfies (1) and (7) for every a � 0.
In what follows we assume that 1 < β < α < 2. This restriction emerges naturally for gradient perturbations of stable

processes, although some of the results below (Lemma 9 and Remark 11) are true for any 0 < β < α < 2.
We first consider the case of a = 0. Then pa(t, x) = p0(t, x) simplifies to the transition density of the isotropic α-stable

Lévy process. Gradient, or drift, perturbations have been recently intensely studied for this process (see [5,8,7,10,4]). Theo-
rem 2 takes the following form

Proposition 8. Let b ∈ N (η, Q , p0). If η < 1/2, then there is a positive transition density p̃0 such that

∞∫
s

∫
Rd

p̃0(s, x, u, z)
[
∂uφ(u, z) + �α/2φ(u, z) + b(u, z) · ∇zφ(u, z)

]
dz du = −φ(s, x),

where s ∈ R, x ∈ R
d and φ ∈ C∞

c (R × R
d).

We note that this result extends Theorem 1 in [10] to the wider class of drift functions from N . We omit the proof as it
is similar to that of [10, Theorem 1]. We also remark that Theorem 1 in the present paper gives estimates for the gradient
perturbations p̃0, if b ∈ N .

Now let a > 0. By writing f (x) ≈ g(x) we mean that there is a number 0 < C < ∞ such that for every x we have
C−1 f (x) � g(x) � C f (x). It is known that (see [6])

pa(t, x) ≈ (
t−d/α ∧ (

aβt
)−d/β) ∧

(
t

|x|d+α
+ aβt

|x|d+β

)
(17)

on (0,∞) × R
d , and that the scaling property holds
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pa(t, x) = a
βd

α−β p1(a
αβ

α−β t,a
β

α−β x
)
. (18)

To simplify the notation we denote

p̂a(t, x) = (
t− 1

α ∧ (
aβt

)− 1
β
)

pa(t, x), t > 0, x ∈ R
d.

Lemma 9. There exists a constant C such that for all t > 0 and x ∈ R
d,∣∣∇x pa(t, x)

∣∣ � C p̂a(t, x).

Proof. By scaling we may assume that a = 1. By (16) and (17) we have∣∣∇x p1(t, x)
∣∣ ≈ |x|

(
t− d+2

α ∧ t− d+2
β ∧

(
t

|x|d+2+α
∨ t

|x|d+2+β

))
. (19)

We claim that the right-hand side of (19) equals

|x|
(

t− 2
α ∧ t− 2

β ∧ 1

|x|2
)(

t− d
α ∧ t− d

β ∧
(

t

|x|d+α
∨ t

|x|d+β

))
. (20)

Indeed, the inequality(
t

|x|d+α
∨ t

|x|d+β

)
�

(
t− d

α ∧ t− d
β
)
,

holds if and only if |x|α � t , |x|β � t , |x|β d+α
d+β � t and |x|α d+β

d+α � t . But β � β d+α
d+β

� α and β � α d+β
d+α � α, so these are

equivalent to |x|α � t and |x|β � t , regardless of the dimension d. This proves the claim.
We now notice that

|x|
(

t− 2
α ∧ t− 2

β ∧ 1

|x|2
)

�
(
t− 1

α ∧ t− 1
β
)
,

which ends the proof. �
Now we prove Theorem 2.

Proof of Theorem 2. We note that by Lemma 9 and (17) pa satisfies

∂

∂xi

∞∫
s

∫
Rd

pa(s, x, r, z)ψ(r, z)dz dr =
∞∫

s

∫
Rd

∂

∂xi
pa(s, x, r, z)ψ(r, z)dz dr,

for any ψ : R×R
d → R such that |ψ(s, x)| � cpa(s, x, t0, y0) for some c > 0, t0 ∈ R, y0 ∈ R

d and all (s, x) ∈ R×R
d . Moreover,

by (17) for any φ ∈ C∞
c (R × R

d) we can take ψ(s, x) = (�α/2 + aβ�β/2)φ(s, x). Thus, the proof may be carried out as the
proof of Theorem 1 in [10]. �

Next we will show some properties of the function pa(t, x) useful when dealing with conditions (6) or (5).

Lemma 10 (3P). There exists a constant C such that for all 0 < u, r < ∞ and x, y ∈ R
d we have

p̂a(u, x) ∧ p̂a(r, y) � C p̂a(u + r, x + y). (21)

Proof. By (18) it suffices to consider only a = 1. We first notice that(
u− d+1

α ∧ u− d+1
β

) ∧ (
r− d+1

α ∧ r− d+1
β

)
� c

(
(u + r)−

d+1
α ∧ (u + r)−

d+1
β

)
= c

(
(u + r)−

1
α ∧ (u + r)−

1
β
)(

(u + r)−
d
α ∧ (u + r)−

d
β
)
. (22)

Since (
u1− 1

α ∧ u1− 1
β
)
�

(
(u + r)1− 1

α ∧ (u + r)1− 1
β
)
,(

r1− 1
α ∧ r1− 1

β
)

�
(
(u + r)1− 1

α ∧ (u + r)1− 1
β
)
,
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we conclude that(
u1− 1

α ∧ u1− 1
β

|x|d+α
+ u1− 1

α ∧ u1− 1
β

|x|d+β

)
∧

(
r1− 1

α ∧ r1− 1
β

|y|d+α
+ r1− 1

α ∧ r1− 1
β

|y|d+β

)
�

(
(u + r)1− 1

α ∧ (u + r)1− 1
β
)((

1

|x|d+α
+ 1

|x|d+β

)
∧

(
1

|y|d+α
+ 1

|y|d+β

))
= (

(u + r)−
1
α ∧ (u + r)−

1
β
)((

u + r

|x|d+α
∧ u + r

|y|d+α

)
+

(
u + r

|x|d+β
∧ u + r

|y|d+β

))
� c

(
(u + r)−

1
α ∧ (u + r)−

1
β
)( u + r

|x + y|d+α
+ u + r

|x + y|d+β

)
. (23)

Finally, by (22) and (23),

p̂1(u, x) ∧ p̂1(r, y) ≈ (
u− d+1

α ∧ u− d+1
β

) ∧
(

u1− 1
α ∧ u1− 1

β

|x|d+α
+ u1− 1

α ∧ u1− 1
β

|x|d+β

)

∧ (
r− d+1

α ∧ r− d+1
β

) ∧
(

r1− 1
α ∧ r1− 1

β

|y|d+α
+ r1− 1

α ∧ r1− 1
β

|y|d+β

)
� c

(
(u + r)−

1
α ∧ (u + r)−

1
β
)((

(u + r)−
d
α ∧ (u + r)−

d
β
) ∧

(
u + r

|x + y|d+α
+ u + r

|x + y|d+β

))
≈ p̂1(u + r, x + y). �

We note that for a = 0, Lemma 10 reduces to Lemma 4 from [10].

Remark 11. By exactly the same proof the inequality (21) is true for 1 � β < α < 2. For that range of α and β it implies
another 3P -type inequality: for all 0 < u, r < ∞ and x, y ∈ R

d

pa(u, x) ∧ pa(r, y) � Cpa(u + r, x + y). (24)

However, (24) holds for any 0 < β < α < 2 by a proof simpler than that of Lemma 10 (see [5, Theorem 4]). The details are
left to the reader.

Corollary 12. There exists a constant C such that for all 0 < u, r < ∞ and x, y ∈ R
d we have

pa(u, x)p̂a(r, y) � Cpa(u + r, x + y)
(

p̂a(u, x) + p̂a(r, y)
)
.

Proof. For any a,b � 0 we have ab = (a ∧ b)(a ∨ b) and (a ∨ b) � (a + b). We rewrite the right-hand side, use Lemma 10 and
apply the inequality 1

(u−1/α∧u−1/β )
((u + r)−1/α ∧ (u + r)−1/β) � 1,

1

(u−1/α ∧ u−1/β)
p̂a(u, x)p̂a(r, y) � C

(u−1/α ∧ u−1/β)
p̂a(u + r, x + y)

(
p̂a(u + r) + p̂a(u + r)

)
. �

Remark 13. Lemma 9 and Corollary 12 give the existence of a constant C , such that for all s < t and x, y ∈ R
d ,

t∫
s

∫
Rd

pa(s, x, t, y)
∣∣b(u, z)

∣∣∣∣∇z pa(u, z, t, y)
∣∣dz du

� C

( t∫
s

∫
Rd

(
p̂a(s, x, u, z) + p̂a(u, z, t, y)

)∣∣b(u, z)
∣∣dz du

)
pa(s, x, t, y), (25)

where p̂a(s, x, t, y) = p̂a(t − s, y − x), s < t , x, y ∈ R
d . The inequality (25) may be used for verifying that b ∈ N (η, Q , pa).

We complete this section with two examples.
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Example 1. Let γ > 1. Recall that b(u, z) = b(z) belongs to the Kato class Kγ −1
d if

lim
ε→0

sup
x∈Rd

∫
|z−x|<ε

∣∣b(z)
∣∣|z − x|γ −(d+1) dz = 0.

Note that Kβ−1
d ⊂ Kα−1

d . We have

p̂a(t, x) = (
t− 1

α ∧ (
aβt

)− 1
β
)

pa(t, x) � c
(
t− 1

α p0(t, x) + (
aβt

)− 1
β p(β)

(
aβt, x

))
,

where c is a constant independent of t > 0 and x ∈ R
d , p(β) is the density function of the isotropic β-stable Lévy process.

Thus, by Remark 13 and Example 1 in [10] we obtain that if b ∈ Kβ−1
d , then b ∈ P (η, pa) for any η > 0.

Next, we give an example of the function b from Kα−1
d \ Kβ−1

d , belonging to P (η, p1) for any η > 0. It seems that in fact

Kα−1
d ⊂ P (η, p1) but the proof calls for more delicate argument than the one given below.

Example 2. Let b(u, z) = b(z) be such that |b(z)| = |z|1−α+ε , for some 0 < ε < α − β . Then b ∈ Kα−1
d and b /∈ Kβ−1

d . By
integrating (17) we get

t∫
0

p̂1(u, x)du ≈
(

t2− 1
α ∧ t2− 1

β

|x|d+α
+ t2− 1

α ∧ t2− 1
β

|x|d+β

)
∧ (|x|α−(d+1) ∧ |x|β−(d+1)

)
� |x|α−(d+1). (26)

Let ε > 0 and 0 < δ < 1. We split the integral in (25) with a = 1 into two: over A = {z ∈ R
d: |z| < δ} and B = R

d\A. We
choose δ small enough that by (26) the integral over A is less than ε/2. When integrating over B , we use |z|1−α+ε � δ1−α+ε

and take h > 0 such that for t − s < h the integral does not exceed ε/2. We have just shown that b ∈ P (η, p1) for any η > 0.
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