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  ABSTRACT 

  Lameness causes decreased animal welfare and leads 
to higher production costs. This study explored data 
from an automatic milking system (AMS) to model 
on-farm gait scoring from a commercial farm. A total 
of 88 cows were gait scored once per week, for 2 5-wk 
periods. Eighty variables retrieved from AMS were 
summarized week-wise and used to predict 2 defined 
classes: nonlame and clinically lame cows. Variables 
were represented with 2 transformations of the week 
summarized variables, using 2-wk data blocks before 
gait scoring, totaling 320 variables (2 × 2 × 80). The 
reference gait scoring error was estimated in the first 
week of the study and was, on average, 15%. Two par-
tial least squares discriminant analysis models were 
fitted to parity 1 and parity 2 groups, respectively, to 
assign the lameness class according to the predicted 
probability of being lame (score 3 or 4/4) or not lame 
(score 1/4). Both models achieved sensitivity and 
specificity values around 80%, both in calibration and 
cross-validation. At the optimum values in the receiver 
operating characteristic curve, the false-positive rate 
was 28% in the parity 1 model, whereas in the parity 
2 model it was about half (16%), which makes it more 
suitable for practical application; the model error rates 
were, 23 and 19%, respectively. Based on data regis-
tered automatically from one AMS farm, we were able 
to discriminate nonlame and lame cows, where partial 
least squares discriminant analysis achieved similar 
performance to the reference method. 
  Key words:    lameness detection in automatic milk-
ing system ,  animal welfare ,  pattern recognition ,  partial 
least squares discriminant analysis 

  INTRODUCTION 

  Automatic milking systems (AMS), also called 
robotic milking, were implemented in the 1990s to 

reduce labor costs in dairy herds. By 2010, almost 
10,000 farms had adopted AMS worldwide (de Koning, 
2011); more than 2,000 are located in the Netherlands, 
whereas Denmark, Norway, and Sweden have around 
1,000 farms each (Bisaglia et al., 2012; Landin and Gyl-
lenswärd, 2012). However, increasing numbers are fore-
seen in northwest Europe (Steeneveld et al., 2012). The 
frequency of the cows’ voluntary visits to the AMS is a 
major determinant of production efficiency (Ketelaar-
de Lauwere et al., 1996; Borderas et al., 2008; Lyons et 
al., 2013). Thus, an alarm from the AMS is generated 
when the cows’ milking parameters deviate markedly 
from the expected pattern. 

  Recurrent evidence exists that painful conditions in 
the claws will reduce AMS visits (Klaas et al., 2003; 
Bach et al., 2007; Jacobs and Siegford, 2012). In the 
case of subtle pain though, the cow may merely reduce 
the number of AMS visits sporadically and she may eat 
less, leading to decreased milk production and compro-
mised health and fertility. 

  Detecting even subtle painful conditions could be 
important for the herd manager interested in early and 
accurate intervention. Pain in the claws is difficult to 
assess under field conditions. Usually, the cows will 
avoid pain by changing their walking behavior (i.e., 
become lame). Signs of lameness have been associated 
with substantial financial losses (Sprecher et al., 1997; 
Blowey, 1998; Green, 2009) and constitute important in-
dicators of reduced cow welfare (von Keyserlingk et al., 
2009). In the traditional milking parlor, the personnel 
can detect behavioral changes visually when collecting 
cows for milking or when cows are leaving the parlor at 
least twice per day. In AMS, individual daily inspection 
is needed to detect subtle signs of lameness and this 
will be time consuming and, thus, costly. Therefore, 
it is highly relevant to develop automated systems to 
identify cows experiencing lameness. 

  Automatic milking systems generate large amounts of 
data on milking, feeding, and physical activity param-
eters. Disease treatments may be recorded and more 
constant cow characteristics, such as breed, age, and 
stage of lactation, are updated automatically (Jacobs 
and Siegford, 2012). These data are often the basis for 
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the alarm lists, which should be addressed daily by the 
herd manager. However, lameness detection systems 
currently available seem far from being implemented 
worldwide on commercial farms, as studies on these 
systems often rely on relatively small sample sizes and a 
limited number of farms (Rutten et al., 2013). Logistic 
regression and linear discriminant analysis have been 
applied in animal and veterinary science for classifica-
tion of animals, as diseased versus nondiseased, based on 
potential predictors (Greiner and Gardner, 2000; Heald 
et al., 2000; Nielsen et al., 2012). The AMS provides a 
series of potential predictors often larger in number than 
the cows available in most farms. Traditional approach-
es, such as the abovementioned logistic regression and 
discriminant analysis, may be inefficient or biased due 
to multicollinearity and overfitting (Ye and Zhao, 2010; 
Serrano-Cinca and Gutiérrez-Nieto, 2013). Multivariate 
methods (e.g., principal component analysis) have also 
been used for analysis in the animal science field (Bro et 
al., 2002; Dumas et al., 2005; Miekley et al., 2013), often 
focusing on data reduction (Sloth et al., 2003; Gorzecka 
et al., 2011). Based on automated data collection in 
dairy herds, pattern recognition has been the objective 
in several studies using principal component analysis, 
neural networks, or classification trees (Nielen et al., 
1995; Klaas et al., 2004; Cavero et al., 2008; Ghotoorlar 
et al., 2012; Piwczy ski et al., 2013).

Partial least squares discriminant analysis (PLS-
DA) is a common tool used in classification in cases 
where multicollinearity is an issue (Vong et al., 1988; 
Wold et al., 2001; Chong and Jun, 2005). It allows 
investigation of hundreds or thousands of variables 
by using visualization tools to screen and understand 
complex data. Traditional applications of univariate 
analyses aim at detecting single or few predictors (e.g., 
logistic regression). Instead, PLS-DA comes as an at-
tractive approach to finding latent patterns in a truly 
multivariate phenomenon, where many variables are 
correlated with each other but none is a good lameness 
indicator alone.

The aim of this investigation was to explore robotic 
milking-related variables potentially associated with 
clinical lameness. The objectives of this feasibility 
study were to (1) explore the usefulness of PLS-DA for 
lameness detection based on automated recordings of 
cow activity and milking process from an AMS herd 
and (2) suggest relations between these patterns and 
signs of lameness.

MATERIALS AND METHODS

Farm

We selected a commercial Danish dairy farm with 
150 milking cows, free cow traffic, and 2 robotic milk-

ing units [voluntary milking system (VMS); DeLaval 
International AB, Tumba, Sweden] corresponding to 2 
groups. There was a separate section with deep bedding 
(straw) for fresh cows and another one for dry cows. 
Only cows in the 2 freestall groups (robots) were lame-
ness scored to ensure scoring under the same conditions. 
The farm had freestalls with mattresses and shavings, 
and a slatted floor maintained by a cleaning robot 8 
times per day. The milking cows were automatically fed 
a TMR 7 times per day at 0200, 0600, 1000, 1200, 1400, 
1800, and 2200h. On average, 67 cows were assigned 
to each robot. The cow breeds were Danish Holstein 
(13%), Danish Red (21%), and crossbred (66%). The 
cows were trimmed by a hoof trimmer every 4 mo and 
also by the staff at drying-off. At the beginning of the 
study, lactation number ranged from 1 to 7, 40% were 
first parity, and cows were milked on average 2.3 times 
per day, with a 9.2-h median milking interval (inter-
quartile range: 5.4 h) and producing a median of 11.0 
kg of milk per milking (interquartile range: 5.6 kg). 
Cows were, on average, at 153 DIM (range: 2 to 632 
DIM).

Data Collection

Gait scoring of all milking cows was done by the first 
author weekly for 5 wk in autumn 2012 and for 5 wk 
in spring 2013 inside the freestalls by gently encour-
aging each cow to walk along the alleys. Asymmetric 
gait was assessed using a 4-point scale adapted from 
DairyCo (Kenilworth, UK; Reader et al., 2011): score 
1 = even, long, and fluid strides (nonlame); score 2 = 
uneven steps, but the limbs favored were not obvious 
(nonlame); score 3 = 1 or more limbs favored obviously 
(lame); and score 4 = very reluctant to put weight on 
1 or more limbs (severely lame). The first and the sec-
ond author did an agreement study in the first week 
of the trial, whereas all gait scores used in the mod-
els were from the first author. The first author had 
limited experience in lameness scoring and the second 
author had several years of experience, although with 
a 5-point scoring system. The overall error rate of both 
intra- and interobserver agreement (between the first 
and second author) was around 15 to 20% when using 
a dichotomized classification of lame versus nonlame 
(detailed information presented in the Results section). 
We calculated the kappa statistic as an index of ob-
server agreement with linear weighting and unweighted, 
respectively, for the 4- and binary-category results (Sim 
and Wright, 2005). Daily data obtained from the farm 
database (VMS Client 2009, v. 8.40; DeLaval Interna-
tional AB) was summarized week-wise, where the week 
was defined as d 1 to 7, with the gait scoring done on 
d 7. For the milking data, in every week (day 1 to 7), 
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variance and median was calculated for each original 
variable, or variance and sum for some original vari-
ables (see Figure 1 for detailed variable description). 
The same was done to the activity data (variance and 
median), but each hour (0000 to 2300 h) was consid-
ered a different variable. Other summary measures 
have been considered (e.g., mean, interquartile range, 
and week difference), but the above approach achieved 
models with lower error rates. A DeLaval activity tag 
(DeLaval International AB) attached to the collar neck 
of the cow registered activity data every hour (24 h per 
day) using a radio link. The activity index is a sum of 
the binary registrations (0/1) done every 14.11 s, which 
means it could range between 0 and 255 each hour 
(Larsson, 2007). We assumed that high activity during 
estrus could mask a lameness condition. Then, all cows 
with heat alarms and insemination were flagged and 
the activity data from these days were excluded from 
the data summaries described above (e.g., for a cow in 
heat for 3 d, we still keep activity data for 4 d in a given 
week). After data management, 1,373 weekly observa-
tions were available for all milking cows. After inspec-
tion of raw data, observations with missing data on the 
gait scoring were deleted, as well as some observations 
that had consecutive zero values in the activity data 
(indicating activity sensor malfunctioning), resulting in 
1,112 observations. Only the gait scores 1, 3, and 4 
were included to identify which variables could be the 
strongest predictors. Cows with gait score 2 were not 
included in the models, because they comprised both 

cows coping with the slippery floor and cows devel-
oping lameness or being slightly affected. Given that 
only 9 observations had gait score 1 among parity 3 
or higher (all other 191 observations scored as lame), 
the models were built exclusively based on parity 1 (50 
cows) and parity 2 (38 cows), in total using 332 weekly 
observations from 88 cows.

Preprocessing

Milk and activity variables for the current week are 
defined as the Xweek j matrix, with j being the jth week 
from 1 to 5 in each year. Additionally, a new matrix 
of data was appended column-wise with the same 
variables (milk and activity) but with data from the 
previous week (Xweek j – 1). Concatenating Xweek j and 
Xweek j – 1 we get Xnew.

Each original variable was represented in 2 different 
ways in the final data matrix. To avoid data with zero 
values, an offset of 1 was added to each element of the 
data (Xnew), and the natural logarithm was calculated 
to reduce positive skewness and to improve linearity be-
tween variables (Dallal, 2012), which defined the Xlog 
matrix as follows:

 Xlog = log (1 + Xnew).  [1]

Second, the Xnew matrix was appended column-wise to 
the previous matrix: 

 Xc = concatenate [Xlog, Xnew].  [2]

Figure 1. Data matrix Xweek j list of variables retrieved and structure of the data, according to cow and week. Days in milk and lactation 
number were not included in the models. The rows are structured from the first to the ith cow and from the first to the jth week. The DeLaval 
indices are from DeLaval International AB (Tumba, Sweden).
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Finally, the combined matrix Xc was then autoscaled 
separately in each variable to define the final matrix 
Xfinal as follows:

 Xfinal = autoscale (Xc),  [3]

where the autoscale function subtracts the mean of each 
column (variable) to the observed value and divides it 
by the standard deviation, a standard procedure when 
variables have different units and offsets (Ballabio and 
Consonni, 2013).

The final matrix Xfinal was analyzed containing 2 
submatrices with transformed data Xlog and original 
data Xnew (in total, 320 variables), as DIM and lacta-
tion number were not used as inputs to the models (32 
milk variables, 24 activity variance variables, 24 activ-
ity median variables) × 2 wk (current and previous) × 
2 preprocessing methods = 320 variables).

Analytical Strategy

Classification models were developed with PLS-DA 
(PLS-DA), which is a method that models the varia-
tion of several variables using fewer, so-called latent 
variables. These latent variables are weighted averages 
of the original variables and have the property that 
they are well suited for both describing the variation in 
the data and for classification (Ballabio and Consonni, 
2013). The classification is obtained by prediction of 
a dependent variable, which in this case is simply a 
dummy matrix defining 2 classes: lame (gait scores 3 
and 4) and nonlame (gait score 1). The PLS-DA model 
is composed by a score (of a given sample) and a load-
ing vector for each latent variable. For nomenclature 
purposes, we use the term “score” (alone) to refer to 
the PLS-DA models, whereas we use “gait score” when 
referring to lameness assessment. The loadings rep-
resent the relationship between the original variables 
and the latent variables, and the scores represent the 
coordinates of the samples; that is, its position in the 
multidimensional space with respect to the latent vari-
able space. This modeling approach does not assume 
any causal relationships but finds a combination of 
events or pattern that happens to be present when the 
cow is lame (e.g., low activity, milk yield, and number 
of AMS visits).

Model Building and Validation

Parity was an important confounder (results not 
shown), and the prevalence of lameness increased with 
increasing parity and stage of lactation. To evaluate 
the predictive power of all other variables within par-
ity group, we built separate models for parity 1 and 2, 

and stage of lactation was left out of the initial models. 
The effect of stage of lactation on the model error and 
performance was tested in the final models. The data 
excluded for representing a transition lameness degree 
(score 2), was used to generate predictions to evaluate 
how many alarms could be expected on this group of 
cows using the respective models (parity 1 or 2). As the 
number of observations was insufficient for dividing the 
data into calibration and validation sets, cross-valida-
tion (CVAL) was done instead, predicting the available 
weekly gait scores of each cow at a time (leave-one-cow-
out, all the weeks), so that the model predicting the 
cow left out did not include any observation from this 
cow. In other words, several models equal to the number 
of cows available were built, each time leaving one of 
the cows out. Finally, the CVAL classification error and 
model output parameters were calculated.

Model control was based on the diagnostics Q residu-
als and Hotelling’s T2 (Ballabio and Consonni, 2013). 
The Q residuals measure the unexplained variance 
(error), whereas Hotelling’s T2 measures the variation 
within the model and is the distance from the center 
(origin) of the model. Outlier detection was done by 
visual inspection of Q residuals versus Hotelling’s T2 
plot. We modeled the Y response from 0 (nonlame) to 1 
(lame) using the default threshold of 0.5. That is, cows 
with a predicted value ≥0.5 are considered a lameness 
alarm. Then, varying the threshold, model performance 
can be evaluated by visual inspection of receiver op-
erating characteristic (ROC) curves, comparing the 
calibration with the CVAL ROC curves (Ballabio and 
Consonni, 2013). The calibration ROC curve shows the 
fitted model (regression), which is expected to be too 
optimistic due to overfitting. Thus, the CVAL ROC 
curve is considered more reliable, because its results 
come from n cross-validation models predicting un-
known samples from a given cow (where n is equal to 
the number of cows). This means each cow’s predic-
tions, which can be true or false, are combined for all 
the cows from these n models to generate the CVAL 
confusion matrix. The classification error rate, sensi-
tivity, and false-positive rate were also assessed and 
compared between parity groups, and also within each 
model by comparing calibration and CVAL results. The 
closer the 2 ROC curves are (calibration and CVAL), 
the more robust the model is expected to be on future 
unknown samples.

Partial least squares discriminant analysis aims at 
identifying patterns distinguishing the 2 classes, lame 
and nonlame. After the first latent variable is mod-
eled, the residuals will be modeled by the second latent 
variable and so on. The number of latent variables was 
chosen based on minimal CVAL classification error. As 
the registered AMS data are noisy and might contain 
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irrelevant variables, it is useful to perform variable 
selection to exclude variables that might weaken the 
gait score prediction. Variable influence on projection 
(VIP) is a summary of the importance of one variable 
both in X- and Y-variation (Wold et al., 2001). Starting 
from a full PLS-DA model with all the variables, visual 
inspection of loadings and VIP was done to perform 
backward variable selection, removing iteratively the 
variables that had the lowest loadings and VIP (Chong 
and Jun, 2005). At the final stage of variable selection, 
variables responsible for high residuals were removed. 
The analysis was done with PLS_Toolbox software 
(v.7.0.2; Eigenvector Research Inc., Wenatchee, WA) 
using the MATLAB programming language (v.7.14; 
The MathWorks Inc., Natick, MA).

RESULTS

The weekly lameness prevalence varied between 24 
and 41% for all gait scored cows in 2012. At wk 1 of 
2012, parity 1 and 2 had a lameness prevalence of 10 
and 16%, respectively, whereas the weekly prevalence 
in 2013 varied between 15 and 27% and 19 and 37%, re-
spectively. With 4 gait categories, the first and second 
author agreed on the same gait score in 53% of the 135 
cows scoring independently. The weighted kappa was 
then 0.43 (95% CI: 0.32 to 0.55), indicating moderate 
agreement (Sim and Wright, 2005). Correspondingly, 
the intraobserver agreement was 52% (first author) and 
54% (second author) when scoring 85 cows twice in the 
same day, and the respective weighted kappa values 
were 0.39 (95% CI: 0.23 to 0.54) and 0.30 (95% CI: 0.12 
to 0.48), indicating fair agreement (Sim and Wright, 
2005). If the weighted kappa statistic was calculated 
excluding gait score 2 category, the agreement was 
then moderate to substantial (Sim and Wright, 2005), 
achieving 0.76 (95% CI: 0.62 to 0.90), 0.51 (95% CI: 
0.23 to 0.78), and 0.50 (95%: 0.23 to 0.76), respectively, 
for interobserver agreement and repeatability of the 
first and second author. Merging the 4 categories into 
a binary assessment (lame vs. non-lame) and excluding 
gait score 2, the interobserver agreement would return 
a kappa of 0.81 (95% CI: 0.67 to 0.96), corresponding 
to almost perfect agreement (Sim and Wright, 2005). 
Hence, with an agreement on 91, 85, and 78% of the 
cases (lame vs. not lame, excluding gait score 2), re-
spectively, for interobserver agreement and repeatabil-
ity of the first and second author, we can alternatively 
estimate that the average error of the reference method 
was around 15%.

Parity 1 PLS-DA Model

A model with 4 latent variables explained 47% of the 
predictor variation and 45% of the lameness variation, 

using 17 out of the original 320 variables. The cross-
validated sensitivity and specificity were, respectively, 
79 and 77% (calibration: 84 and 82%), as shown in the 
ROC curves in Figure 2a. In CVAL, the model generated 
73 true positives, 87 true negatives, 28 false positives, 
and 20 false negatives, which corresponded to a classifi-
cation error of 23%, compared with 17% in calibration 
where overfitting is usually expected. No measurements 
were considered outliers. Inclusion of DIM in the final 
model did not change the results (cross-validated model 
error: 23%). The samples and variables are presented 
respectively in Figure 3a1 and 3b1, with the variables 
being shaded or colored according to VIP.

The reference gait scoring has an error around 15%, 
and the given model error is 23%. These 23% represent 
the actual error and the reference error. Even if the 
model were perfect, it would show an error of 15% due 
to the reference error. Hence, the real error of the 
model is approximately 23 15 172 2− = , which is as 
good as the reference method (DiFoggio, 1995). With 
respect to being lame, the following variables had the 
highest positive values for regression coefficients, be-
tween 0.2 and 0.3: activity index median at 2200 h in 
the last week, performance index variance, and activity 
index variance at 0600 h in the last week and at 1100 h 
in the current week. If we observe the score plot of the 
2 most important latent variables in Figure 3a1, a 
separation between lame and nonlame cows could be 
noted from the upper left to the lower right quadrant. 
In Figure 3b1, the corresponding loadings identify the 
variables that are causing this grouping in the direction 
of these 2 cow clusters. The interpretation could be 
that, compared with their nonlame herd mates, lame 
cows generally had more unstable milking performance 
and activity (higher variance) while being more active 
in the evening. Further detailed interpretation of other 
variables could be done (also at higher dimensions or 
latent variables), with the corresponding scores and 
loading plots, but the 2 first latent variables show the 
best separation between the 2 classes while explaining 
39% of the lameness variation. Still, we see from the 
loadings plot (Figure 3b1) that performance index vari-
ance is negatively correlated with the feeding distrib-
uted in the robot with respect to the variation shown in 
these 2 latent variables, as they almost lie on an imagi-
nary straight line crossing the origin. We also see that 
activity index median at 1100 and 1200 h are correlated 
because they lie very close in the projection space, at 
least in latent variable 1 versus 2, and so on.

Parity 2 PLS-DA Model

The parity 2 model was more complex, using 28 out 
of the original 320 variables (Figure 3b2). A model 
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with 6 latent variables explained 52% of the predictor 
variation and 58% of the lameness variation, having 
cross-validated sensitivity and specificity, respectively, 
of 79 and 83% (calibration: 85 and 88%), as shown in 
the ROC curves in Figure 2b. In CVAL, the model 
generated 53 true positives, 47 true negatives, 10 false 
positives, and 14 false negatives, which corresponded 
to a classification error of 19 versus 14% in calibration. 

No outliers were removed. Inclusion of DIM in the final 
model did not change the results considerably (cross-
validated model error: 21%). The samples and variables 
can be assessed in Figure 3a2 and 3b2, respectively, 
with the variables colored according to VIP.

Similarly, if we correct for the reference error, the 
actual model error could be considered negligible 
compared with the reference. As for being lame, the 
following variables had the highest positive values for 
regression coefficients, between 0.2 and 0.3: activity 
index median at 0500 h (both weeks), activity index 
variance at 1300 h in the last week and at 1600 h in the 
current week, and average milk flow variance in the last 
week. In Figure 3a2, a separation between lame and 
nonlame cows could also be distinguished in the score 
plot from the upper right to the lower left quadrant, 
whereas in Figure 3b2, the loadings show how the vari-
ables contribute to the samples positioning. The inter-
pretation could be that, compared with their nonlame 
herd mates, lame cows generally had higher activity 
in early morning, a more unstable activity pattern in 
the daytime (higher variance), and a poorer milking 
performance (low performance index median and high 
variance of performance index and average milk flow) 
for the most informative latent variables 1 and 2, which 
explain 51% of the lameness variation. Again, only the 
most important variables are highlighted, but it can 
be derived that in latent variable 1 versus 2 (Figure 
3b2) a negative correlation is found between average 
milk flow median and milking interval median, activity 
index median at 1200 h in the last week and activity 
index median at 0400 h, activity index median at 0600 
h and activity index median at 1500 h, and so on.

Excluded Data: Score 2 Sample Prediction

With the parity 1 model, the prediction of parity 
1 score 2 cows resulted in 159 alarms (55%), whereas 
129 events were predicted as nonlame. Predictions of 
parity 2 score 2 cows with the parity 2 model returned 
65 alarms (42%) and 88 nonlame events. The PLS-DA 
scores for these samples were scattered on all quadrants 
of the projection space (figure not shown); that is, we 
did not observe clustering with a specific group, either 
lame or nonlame samples.

DISCUSSION

The objective of this study was to extract relevant 
information from AMS data for lameness detection. 
Separate models were developed for parity 1 and parity 
2, achieving a non-error rate around 80% when dis-
criminating between nonlame (score 1 out of 4) and 
lame cows (score 3 or higher). The models relied ex-

Figure 2. Receiver operating characteristic (ROC) curves for par-
ity 1 (a) and parity 2 (b) models, respectively, with cross-validated 
(CVAL) sensitivity 79 and 79%, CVAL specificity 77 and 83%, and 
CVAL classification error 23 and 19%, respectively. Dashed line = 
calibration; solid line = cross-validation; circles = and optimal values.
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clusively on milking- or physical activity-related data. 
Thus, such results support our hypothesis of hidden 
behavioral and performance patterns useful to detect 
lame cows on AMS dairy farms.

Prior to model building, we were interested in esti-
mating the reference method error. Our raw intra- and 
interobserver agreement, as defined by kappa statistics, 
is within the range of previous studies. Intraobserver 
and interobserver kappa values range from 0.30 to 0.68 
and 0.15 to 0.59, respectively (Thomsen et al., 2008), 
or from 0.47 to 0.70 and 0.11 to 0.75, respectively 
(Schlageter-Tello et al., 2013). Surprisingly, we found 
a higher agreement in interobserver kappa values than 
in intraobserver values. The interobserver assessment 
was made at the same point in time, whereas the in-
traobserver assessment was made at 2 different time 
points; thus, cows might have shown variation in their 
walking behavior. Therefore, the error rate of the refer-
ence method includes observer error and cow variation, 
which is important to consider in model performance 
discussion.

The parity 1 group had the lowest weekly lame-
ness prevalence. Yet, the parity 1 model identified 73 
of 93 lame events, based only on 4 latent variables. 
Similarly, high specificity led to classification of 87 of 
115 nonlame events. The parity 2 group, on the other 
hand, which had higher weekly lameness prevalence, 
generated a model with higher sensitivity and specific-
ity than parity 1, detecting 53 of 67 lame events and 
47 of 57 nonlame events, while using 6 latent variables. 
In both models, the first 2 and most informative latent 
variables differed. In the parity 1 model, latent variable 
1 was mostly related to high activity, having the high-
est loadings in activity index median in daytime hours, 
whereas latent variable 2 was mostly related to milking 
information, consumed concentrate, activity variance, 
and activity in the evening. In contrast, latent variable 
1 from the parity 2 model had the highest loadings 
in milking-related variables, whereas latent variable 
2 had the highest loadings in activity data. In sum-
mary, activity data was more informative than milk 
data in parity 1 to classify lame cows, whereas in the 
parity 2 model it was the opposite. It could simply 
be the case that younger and, therefore, more playful 
cows (parity 1) generate richer information in activity 
data than older cows (Løvendahl and Chagunda, 2010). 
These differences between the 2 models support the hy-
pothesis that parity 1 and 2 cows differ in production, 
physiology, and behavior, exhibiting different patterns. 
As a result, future studies might benefit from modeling 
parity groups independently to identify the strongest 
variables for lameness detection. Nonetheless, the 2 
models showed common features: (1) higher activity 
median at specific time points, (2) lower performance 

index variance was associated with nonlame cows, and 
(3) higher performance index variance was associated 
with lame cows.

As we had several variables with similar values of 
regression coefficients, we can conclude that all are im-
portant to achieve the discrimination in this particular 
farm. In addition, median-based variables might be 
good descriptors of the nonlame class, whereas vari-
ance-based variables might best describe the lame class 
pattern, as activity median-based variables pulled the 
nonlame cows to one corner of the projection space and 
variance-based variables pulled the lame cows to the 
opposite corner. This finding held true both in parity 1 
and parity 2 models (Figure 3).

Interestingly, nonlame cows had higher values on 
activity median variables at feeding times 1800 h in 
parity 1 and at 0600, 1200, and 2200 h in parity 2, 
where lame cows correspondingly had lower values. 
This suggests that lame cows might be choosing less 
crowded time periods to eat, as they might be less eager 
to compete for food due to painful conditions, which is 
in agreement with previous studies (Blackie et al., 2011; 
Yunta et al., 2012).

Inclusion of DIM in the final models did not cause 
any improvements. Thus, the information on DIM, even 
if useful to lameness detection, probably is correlated 
with information from other variables and, therefore, 
already captured in the model.

A common way to assess within-sample variation is 
simply to visually inspect the score plots, colored or 
numbered by the sample name, and check for subject 
clusters. Hence, 2 observations of the same subject 
should then lie close together in the projection space 
or, in extremis, on top of each other (e.g., pure replicate 
without instrumental error). In our case, even though 
some cow clusters were identified, the within-cow varia-
tion was not similar across different cows. Some cows 
clustered with the same gait score, indicating those ob-
servations were similar. However, a few cows clustered 
with different gait scores, and others did not cluster at 
all, being far away from each other, although having 
the same gait score. In some cases, a different stage 
of lactation could be the most obvious explanation for 
a longer distance within cow, but certainly cows not 
clustering and with the same gait score are most likely 
the ones contributing to the model error. Lame cows 
undetected by the model could have had a lameness 
episode of short duration, which might not influence 
the behavior and production data significantly, but 
still be easily detected with gait scoring. The models 
discriminated correctly individual gait score changes 
between lame and nonlame, meaning that a change was 
detected apart from the general lame/nonlame trend, 
even though we did not modeled cows individually.
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Our estimates of predictive values can be considered 
promising if compared with sensors developed spe-
cifically for lameness detection, which reported a range 
between 22 to 80% for sensitivity and specificity, with 
only 4 sensor systems reporting higher than 80% (Rut-
ten et al., 2013). Moreover, although a high specificity 
(>80%) could be achieved in some studies (Ito et al., 
2010; Miekley et al., 2012), this generally led to lower 
sensitivity.

A combination of high sensitivity and specificity has 
been achieved in few studies (Poursaberi et al., 2010; 
Maertens et al., 2011; de Mol et al., 2013; Van Hertem 
et al., 2013); these were based on data from 1 farm and 
a relatively small sample size, also true in our case, 
which means the application of models on unknown 
cows and farms will require further validation studies. 
In a Danish study, Jónsson (2011) achieved 76% sen-
sitivity and 74% specificity when combining feeding, 

Figure 3. Scores (a1 and a2) and loadings (b1 and b2) of the first 2 latent variables (LV) retained in the models parity 1 (a1 and b1) and 
parity 2 (a2 and b2), obtained with partial least squares discriminant analysis. Parity 1 had 4 latent variables with 47% explained variance and 
parity 2 had 6 latent variables with 52% explained variance. Variables from the second matrix (Xnew) are followed by (*), whereas all the oth-
ers are from the first matrix (Xlog). Variables referring to the last week’s data are followed by (a); otherwise, they refer to the current week’s 
data. The scores are shaded or colored according to the clinical scoring (reference method). The loadings are shaded or colored according to the 
variable influence on projection (VIP) shown in the color bar, which is a summary measure of importance for explaining the variation in the 
variables and in the lameness response. In the loadings plot, activity index is abbreviated as Activ. Color version available in the online PDF.
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activity, and visits to the robot data. In contrast to 
our study, Jónsson (2011) concluded that activity data 
did not add much predictive power using neck activity 
sensor data, but here it was a useful predictor for lame-
ness detection, especially in parity 1 cows. Two studies 
(de Mol et al., 2013; Van Hertem et al., 2013) indicated 
that milk and feeding data combined with sensor data 
improved lameness detection accuracy. Interestingly, de 
Mol et al. (2013) conducted a model validation, which 
achieved a similar model performance in the test set 
when compared with their calibration set. With a dif-
ferent setup, based on herd health records and assum-
ing strict veterinary monitoring and identification of 
lameness by the cow pusher, Van Hertem et al. (2013) 
reached 89% sensitivity and 85% specificity using a lo-
gistic regression model with milk, rumination, and neck 
sensor activity data as input. Even with a study design 
different from the 2 previous studies, we also benefited 
from transformations and variance scaling instead of 
using raw data. Direct comparison with these studies 
is not appropriate due to differences in study design 
(e.g., monthly lameness scoring) as well as the absence 
of reference method error estimates.

Altogether, the models herein are robust and could 
fairly well classify all observations from 1 unknown cow, 
if the model were built based on all the others, because 
CVAL ROC curves were close to calibration.

Limitations

Our data may not be representative of the farm at 
another point in time or of another farm with data that 
behave differently due to local factors (e.g., manage-
ment, housing, and so on). Also, different robot brands, 
software, and activity sensors might be present when-
ever a study includes more than 1 farm. We assumed 
estrus behavior could mask lameness due to high activ-
ity, but this is difficult to test in practice. Therefore, 
we acknowledge that removing activity data respective 
to estrus period might introduce bias on the activity 
estimate of that particular week.

Farmers might not tolerate the false-alarm rate: on 
average, 2.8 cows would not be lame for every 10 cows 
on the alarm list in the parity 1 model. Conversely, 
with 1.6 false in every 10 alarms, the parity 2 model 
may be more suitable to practical application than the 
parity 1 model. The model threshold can be adjusted 
to achieve higher specificity as depicted in Figure 2, at 
the expense of sensitivity.

Exclusion of cows with gait score 2 might be the 
greatest limitation in our study. We noted that many 
cows gait scored as 2 were not motivated to walk or 
to walk fast enough to enable proper assessment. By 

excluding almost 50% of the observations, we cannot 
expect to have modeled all the variation in this farm, 
and then the direct application of such models in this 
farm could lead to higher error rates. Possibly, some 
cows are lame in all 4 feet, but they can hide it walking 
slowly, whereas some cows might just walk more slowly 
or more stiffly because they try to cope with slippery 
flooring. The prediction results of score 2 cows confirm 
this is not a homogeneous category, as they did not 
cluster in a specific region of the projection space. If 
score 2 samples lay between nonlame and lame samples, 
we could hypothesize that this was a well-defined class 
representing a gray area of lameness degree. This was 
not the case, and because intermediate gait score cat-
egories show the lowest kappa values (Schlageter-Tello 
et al. 2013), we need to assume that some score 2 cows 
could be lame or severely lame, and others were truly 
not lame. Therefore, including cows with an unnatural 
gait in the group of nonlame cows would disturb what 
could be considered as an ideal nonlame status or con-
trol group. Our novel findings should be interpreted 
cautiously due to the small data set of only 1 farm, but 
certainly deserve extended investigation.

Final Remarks

Both models had a cross-validated classification 
error (~20%) that might not be considered accurate 
enough by some herd managers. However, compared 
with the performance of mastitis alarms based on elec-
trical conductivity, with reported sensitivities of 55 to 
89% and specificities of 56 to 99%, which do not meet 
the International Organization for Standardization 
standard (Rutten et al., 2013), these results encourage 
further study of the relationships between lameness and 
AMS data. It is noteworthy that the results presented 
were based on data not measuring lameness directly, 
in contrast to data from force sensors, pain measure-
ments, accelerometer data, kinematics, or video im-
age analysis. Yet, with multivariate data analysis and 
simple data preprocessing, we achieved sensitivity and 
specificity values that could be valuable for screening 
obvious and severe lameness cases. A further advantage 
of the multivariate methods applied was the direct in-
terpretation by visual inspection of the samples and 
variable plots. To the best of our knowledge, this is the 
first study using PLS-DA to build a lameness detection 
model. In a previous work using another latent vari-
able method (principal component analysis), Miekley 
(2013) reported high error rates. Moreover, we did not 
find other studies in the literature reporting a corre-
lation between lameness and variance of the DeLaval 
performance index. Finally, PLS-DA seemed to be an 
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interesting tool to finding intricate data patterns of 
behavior and milking information that might not have 
been studied before.

CONCLUSIONS

The aim of this study was to explore robotic milking-
related variables associated with clinical lameness 
and build a model to discriminate nonlame and lame 
cows. Promising sensitivity and specificity values were 
achieved when performing calibration and cross-vali-
dation, using 2 separate models built for parity 1 and 
parity 2 of a commercial dairy farm. Activity data and 
milking-related information from AMS were useful for 
lameness classification. Multivariate data analysis was 
valuable to investigate AMS data by unveiling data pat-
terns of nonlame and lame cows that support previous 
research. Taking the error of the reference method into 
account, we achieved a low real model error. Reducing 
the reference method error rate and performing further 
model validation is recommended. In conclusion, the 
present findings support the hypothesis that AMS data 
could be useful for lameness detection, where PLS-DA 
seems an effective method to handle and interpret data 
from different sources.
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