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Summary

Background: Broadly expressed transcriptions factors (TFs)
control tissue-specific programs of gene expression through
interactions with local TF networks. A prime example is the
circadian clock: although the conserved TFs CLOCK (CLK)
and CYCLE (CYC) control a transcriptional circuit throughout
animal bodies, rhythms in behavior and physiology are gener-
ated tissue specifically. Yet, how CLK and CYC determine tis-
sue-specific clock programs has remained unclear.
Results: Here, we use a functional genomics approach to
determine thecis-regulatory requirements for clock specificity.
We first determine CLK andCYC genome-wide binding targets
in heads and bodies by ChIP-seq and show that they have
distinct DNA targets in the two tissue contexts. Computational
dissection of CLK/CYC context-specific binding sites reveals
sequencemotifs for putative partner factors, which are predic-
tive for individual binding sites. Among them, we show that the
opa and GATA motifs, differentially enriched in head and body
binding sites respectively, can be bound by OPA and SER-
PENT (SRP). They act synergistically with CLK/CYC in the
Drosophila feedback loop, suggesting that they help to deter-
mine their direct targets and therefore orchestrate tissue-spe-
cific clock outputs. In addition, using in vivo transgenic assays,
we validate that GATA motifs are required for proper tissue-
specific gene expression in the adult fat body, midgut, and
Malpighian tubules, revealing a cis-regulatory signature for en-
hancers of the peripheral circadian clock.
Conclusions: Our results reveal how universal clock circuits
can regulate tissue-specific rhythms and, more generally,
provide insights into the mechanism by which universal TFs
can be modulated to drive tissue-specific programs of gene
expression.
Introduction

The basis for multicellular life is the ability to create functional
specialization and distinct cell types through differentially
controlled gene expression. This is achieved by gene regula-
tory networks controlled by transcription factors (TFs) [1].
TFs are regulatory proteins that bind to specific DNA cis-
regulatory sequences (motifs) within enhancers of target
genes and activate and repress expression. Typically,
enhancer activity is determined by defined sets of TFs, and
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different TF combinations modulate the activity of individual
factors that often function more broadly [2–11].
The circadian clock is an important example of a transcrip-

tional circuit that functions broadly in animals but ismodulated
in a cell type-specific fashion [12]. Eukaryotic circadian clocks
are governed by transcriptional negative feedback loops that
control daily rhythms in gene expression, ultimately leading
to cyclic output of behavior, metabolism, and physiology
[13, 14]. In Drosophila melanogaster, circadian rhythms are
controlled by transcriptional negative feedback loops inter-
connected by the TFs CLOCK (CLK) and CYCLE (CYC)
[13, 15–17]. These form a heterodimer (CLK/CYC) that binds
to E box sequences (CACGTG) upstream of the period (per)
and timeless (tim) genes. PER and TIM dimerize and feed
back on their own regulation by inhibiting CLK/CYC activity
[17, 18]. Besides generating the pacemaker, this core is linked
to downstream outputs in part by the CLK/CYC-mediated in-
duction of downstream genes [19–23].
Interestingly, CLK and CYC are present almost ubiquitously

in Drosophila [24, 25], yet they produce cell type-specific
molecular and physiological outputs [26]. For example, the
clock controls rhythms in locomotor activity behavior in the
brain [27–29], odor receptivity in antennae [30, 31], and expres-
sion of metabolic enzymes in the fat body [32, 33]. Further-
more, circadian gene expression in fly heads versus bodies
was found to be largely nonoverlapping [21]. Similarly, in
mammals, only a small overlap exists between genes that
cycle in the suprachiasmatic nucleus (SCN, the central clock
in the brain), liver, and heart [14, 34–36]. Since circadian phys-
iology is tissue specific and in part controlled by CLK/CYC-
mediated gene expression, local TFs must modulate CLK/
CYC and their targets in a context-specific manner. However,
putative partner TFs involved in circadian clock tissue specifi-
cation have remained unclear.
To identify sequence motifs and the corresponding TFs that

define CLK/CYC context-specific binding and function, we
epitope tagged the Clk and cyc genes in Drosophila by homol-
ogous recombination and identifiedCLKandCYCbinding sites
in fly heads and bodies by chromatin immunoprecipitation fol-
lowed by massive parallel sequencing (ChIP-seq). Although
CLK and CYC shared most binding sites, the sites differed
between heads and bodies, consistent with tissue-specific
functions. We identified motifs that were predictive for head-
and body-specific CLK/CYC binding, including the motifs for
the TFs odd paired (opa) and serpent (srp), respectively. We
validated that both motifs were able to synergistically enhance
transcription with CLK/CYC, and that SRP’s GATA motif was
required for enhancer activity in vivo. Our results suggest that
tissue-specific circadian gene expression is achieved by the
specific redirection of CLK/CYC to context-specific targets
by motifs of partner TFs such as OPA and SRP.

Results

Clktag and cyctag Flies
To enable the identification of CLK and CYC binding sites by
ChIP, we added a peptide tag including a V5 epitope to the
30 terminus of the Clk and cyc coding sequences at their
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Figure 1. Genome-wide DNA Binding Profile of CLK and CYC

(A) UCSC Genome Browser screenshot with CLK and CYC fragment densities for head and body samples at known clock targets (gray shadings indicate

known enhancers [44]).

(B) Genomic distribution of CLK peaks in heads (see Figure S2 for other samples).

(C) The three 6-mers most enriched in CLK head peaks are E boxes (see Figure S2 for other samples; gray shows the random occurrence of each motif).

(D) Distribution of E box motif instances across a 1.8 kb window (x axis) centered on the ChIP-seq peak summits for all CLK/CYC binding sites in heads or

bodies.
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endogenous genomic loci by ends-out homologous recombi-
nation [37–39] (see Figure S1 available online). This ensures
that the tagged TFs are expressed at physiological levels,
which is important, as increased Clk expression has been
shown to shorten the locomotor period [40]. Additionally, it
allows ChIP under identical conditions and facilitates compar-
isons (although tag accessibility might differ between pro-
teins). We isolated one knockin line for each locus (Clktag

and cyctag), for which we confirmed the correct integration
by Southern blot and PCR analyses (Figures S1A and S1B)
and the function of the circadian clock machinery by behav-
ioral monitoring of the flies’ locomotor activity rhythms
(Figure S1C).

Genome-wide DNA Binding Profile of CLK and CYC
We performed ChIP-seq using a V5 antibody from heads and
bodies of decapitated homozygous Clktag and cyctag flies at
zeitgeber time (ZT) 13, at which CLK binding is close to its
maximum [41] (ZT0 = lights-on; ZT12 = lights-off). We
sequenced ChIP and input samples, as well as mock controls
(V5-ChIP from wild-type flies without the V5 tag), for two
independent biological replicates each. The replicates from
independent fly collections were highly similar, with Pearson
correlation coefficients (PCCs) between 0.83 and 0.88 (Table
S1). We identified binding sites (peaks) using peakzilla [42]
with stringent thresholds and required that both biological
replicates concurred (as in [43]). This yielded 2,059 and 436
candidate peaks for CLK and CYC in heads versus 431 and
484 in bodies, respectively. In contrast, themockChIP resulted
in only 62 versus 7 candidates, respectively, indicating false
discovery rates (FDRs) between at most 1% and 14%. To
exclude that antibody cross-reactivity influenced our results,
we corrected the candidate peaks based on the mock results,
yielding 1,959 final binding sites for CLK in heads, 369 for CYC
in heads, 425 for CLK in bodies, and 481 for CYC in bodies.
Among the CLK binding sites reported previously [41],

58.2% and 59.1% overlapped with peaks in heads for CLK
and CYC, respectively. We found multiple peaks near the
core clock components per, tim, vri, cwo, and Pdp1, where
they often coincided with previously described E boxes [44]
(Figure 1A; Figure S2A). CLK and CYC had strong overlapping
signals in both heads and bodies, in agreement with their role
as heterodimers in the clock pacemaker [17, 45]. As expected,
CLK andCYC peaks for head and body sampleswere enriched
in 50 UTRs, promoters, and introns, while they were depleted in
coding sequences (Figure 1B; Figure S2B).
Themost enriched 6-mer motifs in the CLK and CYC binding

sites corresponded to the established CLK/CYC E box motif,
but two variants were also found to be frequent (Figure 1C;
Figure S2C). Collectively, these E boxes were found in more
than 88% of all binding sites and showed a distinct enrichment
at the ChIP peak summit (Figure 1D; Figure S2C). Taken
together, these results suggest that we identified CLK and
CYC binding sites at potential regulatory regions in heads
and bodies genome-wide.

CLK and CYC Exhibit Context-Specific Binding
To study CLK/CYC in different tissues, we analyzed the over-
lap between their binding sites in heads versus bodies and
defined shared and differential peaks across the different
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Figure 2. Context Specificity of CLK and CYC

Binding Sites

(A–D) Scatterplot of fragment densities at

peak summits of CLK versus CYC in heads (A),

bodies (B), and heads versus bodies of CLK (C)

and CYC (D).

(E) Examples of head- and body-specific binding

sites (UCSC Genome Browser tracks).
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conditions. CLK and CYC binding profiles were highly similar
(Figures 2A and 2B), with PCCs above 0.88 (Table S1), sug-
gesting that they work primarily as heterodimers to activate
core clock components as well as downstream targets. In
contrast, the binding profiles between heads and bodies
differed substantially for both factors (Figures 2C–2E): more
than 30% of the peaks found in heads were specific to heads,
and more than 20% of peaks found in bodies were specific to
bodies (e.g., Figure 2E); PCCs confirmed this disparity (PCCs
between 0.38 and 0.72, below the PCC of the corresponding
inputs [0.89]). This striking difference suggests that tissue-
specific differences in circadian expression might be at least
partly caused by differential CLK/CYC binding.

To test this hypothesis, we defined stringent classes of CLK
and CYC binding sites that were shared, head-specific, or
body-specific (Figure 3A; Table S2; leaving a large ‘‘gray
zone’’ of sites not assigned to any class; see Supplemental
Experimental Procedures); assigned each peak to the closest
gene transcriptional start site (TSS); and assessed the genes’
functions according to gene ontology
(GO; [46]). Twenty-five percent of all
peaks were shared and showed high en-
richments for terms related to gene
regulation, such as ‘‘regulation of tran-
scription’’ and ‘‘transcription factor
activity,’’ suggesting that CLK/CYC are
at the top of a gene regulatory hierarchy
across tissues. Indeed, 19.8% of the
shared peaks lie close to TFs, a 5-fold
enrichment compared to all genes (p =
2.36 3 1029). In contrast, we observed
striking differences between the other
sets: head-specific peakswere enriched
in gene functions related to behavior
and vision, while body-specific peaks
were consistent with functions in meta-
bolism (Figure 3B; Figure S3 for full list).
To test whether these differences

were also reflected at the expression
level, we first compared the CLK/CYC
binding sites with gene expression
according to FlyAtlas [25]. While shared
CLK/CYC binding sites were close to
genes expressed in head and body
tissues, head- and body-specific peaks
were located close to genes expressed
either in heads or bodies (Figure S4).
Next, we compared CLK/CYC binding
sites with data sets of cycling mRNAs
[21]. We found genes close to head-spe-
cific peaks to be 3.4-fold enriched in
genes cycling in heads (p < 0.05), while
genes close to body-specific peaks
were 5.2-fold enriched in genes cycling in bodies (p = 0.057;
note that the total of only 12 genes that cycled in heads and
bodies precluded an analysis). Taken together, these results
show that, in addition to their role as master regulators in a
TF hierarchy, CLK/CYC also bind directly to downstream tar-
gets in a cell type-specific manner, suggesting that they drive
tissue-specific programs.

Differential Motif Content is Predictive of Context-Specific
CLK and CYC Binding

The presence of E boxes alone cannot explain how, in each
cell type, CLK/CYC are recruited to distinct targets. As
partner TFs can help to define context-specific binding [3, 5,
6, 10, 47], we searched for TF motifs that were differentially
enriched between head and body binding sites. We found
the ‘‘orphan’’ motif ME50 [48], opa, ME134/odd, and Adf1 to
be enriched in head-specific binding sites, while the motifs
bab1, TATA/Mef2, ME3, GATA, and Hox were enriched in
body-specific binding sites (Figure 4A).
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To test whether combinations of differentially distributed
motifs allow the discrimination of head versus body binding
sites, we compared these sequences using a predictive
binary classification framework [47]. Using sequence motif
content alone, head and body peaks could be accurately
distinguished using leave-one-out cross-validation (82% of
peaks correctly classified; area under the receiver operating
characteristic [ROC] curve [AUC] = 0.91; Figures 4B and
4C). This indicates that partner TF motifs surrounding CLK/
CYC binding sites carry information indicative of binding
and have the potential to determine context-specific clock
target genes and function. It further suggests that the corre-
sponding TFs could be novel tissue-specific CLK/CYC part-
ner factors.

Identifying the cis-Regulatory Requirements of Individual

Binding Sites
To assess the importance of each particular TF motif for each
individual CLK/CYC binding site, we tested which one of them
would affect the classification of the site toward the head or
body classes after deleting them in silico [47]. Forty-four
percent of the sites in heads could no longer be confidentially
predicted after removal of opa motifs, whereas deletion of the
schlank and Adf1 motifs affected 32% and 26% of the peaks,
respectively (Figure 4D). For bodies, deletion of the GATA
motif impaired the predictions of all sites, consistent with its
enrichment at body peak summits (Figure 4E).

SRP and OPA Synergistically Activate CLK/CYC-Mediated
Expression

Many aspects of both fly and mammalian circadian biochem-
istry can be simulated in Drosophila Schneider 2 (S2) cells
[17, 49–54]. We therefore performed
transactivation luciferase assays in S2
cells to test whether the CLK/CYC
bound sequences can enhance tran-
scription when activated by CLK/CYC
and the predicted partner TFs.

We expected the GATA motif to be
recognized by GATA factors, a family
of TFs involved in different aspects of
animal development and physiology
[55, 56]. Indeed, a body-specific CLK/
CYC binding site in the first intron
of the CG34386 gene (hereafter
‘‘intCG34386’’; Figure 5A) was activated
by the GATA factor serpent (SRP) (Fig-
ure 5B). A second site showed similar re-
sults, while a third was negative for all
tested GATA factors (Figures S5A–
S5D). Interestingly, srp is indeed coex-
pressed with Clk and cyc in vivo in the
Drosophila adult fat body [25].
Because S2 cells express cyc, Clk transfection is sufficient
to activate E box-containing enhancers [17, 49, 52]. Cotrans-
fection of srp and Clk induced expression 11-fold (Figure 5C),
and this activation was reduced by 57% when we added per,
the primary inhibitor of CLK/CYC activity in the circadian
pacemaker in Drosophila [51]. Moreover, SRP-mediated
CLK/CYC activation depended on wild-type CLK function
and was not observed with the inactive CLKJrk mutant [15]
(Figure 5C). Finally, activation by CLK and SRP was also abol-
ished when either E box or GATA motifs were mutated (Fig-
ure 5D; Figures S5I and S5J).
We also tested three head-specific CLK/CYC binding sites

for OPA responsiveness, including a site in the intron of Slob
(Slowpoke binding protein), a putative regulator of the cal-
cium-sensitive potassium channel slowpoke that is involved
in the output of the molecular pacemaker in the brain [57].
This intronic site (hereafter ‘‘intSlob’’) showed a dose-depen-
dent response to CLK only when OPA was present (Figure 5F;
Figures S5E–S5H for the two other sites). As opa, Clk, and cyc
are coexpressed in the Drosophila brain [25], OPA might
indeed be a CLK/CYC partner for head-specific enhancers.

GATA-Containing CLK and CYC Body-Specific Binding

Sites Act as Body-Specific Enhancers In Vivo
To test the function of body-specific CLK/CYC binding sites
and the importance of the GATA motif in vivo, we selected
nine sites based on the importance of the GATA motif for their
correct classification toward bodies, but independent of
neighboring genes. We cloned them upstream of a transcrip-
tional reporter (Gal4), integrated the construct site specifically
into the Drosophila genome, and analyzed Gal4 expression by
crossing the transgenic fly lines to UAS-CD8:GFP flies. Eight
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(A) Heatmap showing motifs differentially enriched (p% 0.01) between head- and body-specific CLK/CYC binding sites (left) and the enrichment compared

to the genomic average (right).
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(C) Receiver operating characteristic (ROC) curves and area under the curve (AUC) for the predictions (black) and controls (gray).
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(E) Distribution of GATA motif instances relative to the CLK and CYC peak summits.
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out of the nine candidate cis-regulatorymodules (CRMs) drove
GFP expression in diverse tissues in the Drosophila body in
which the circadian clock is important [26] (Table 1; Figure 6G;
Figure S6A). Two lines were active in the fat body (CRMs 1
and 3), six in the midgut (CRMs 2, 4, 5, 6, 7 and 9), and two
in Malpighian tubules (CRMs 4 and 9). Only two CRMs (3 and
9) also drove expression in the head, confirming that body-
specific CLK/CYC binding sites predominantly correspond to
body-specific enhancers.

To test whether the CRMs’ activity depended on E box and
GATA motifs as predicted, we also cloned variants with point
mutations that disrupted both types of motifs. For two
CRMs, one active in midgut (CRM5) and one in head and
abdominal fat body (CRM3), GFP signals were not substan-
tially different when E box motifs were mutated (probably
due to the stability of GFP) but GAL4 reporter transcript levels
were reduced as determined by quantitative PCR (Figures S6B
and S6C). The mutation of GATA motifs severely reduced
enhancer activity for both enhancers, even at the level of the
GFP signal (Figures S6B and S6C). We therefore analyzed
the requirement for GATA motifs in a tissue-specific manner
in vivo for all eight active CRMs. While the activity of CRM1
and CRM2 was completely abolished, GATA mutations had
more localized effects for CRMs active inmore than one tissue:
for CRM6 and CRM7, activity was impaired in midgut, but not
in accessory glands (CRM6) or ovaries (CRM7). Similarly, the
GATA mutant CRM4 was still active in midgut, but not in Mal-
pighian tubules. Finally, mutating the GATA motifs of CRM9
abolished activity exclusively in the midgut (Figure S6D).
These results suggest that the GATA motif is important for
enhancer activity in the midgut, fat body, and Malpighian
tubules and plays a fundamental role for tissue-specific
enhancer activity of CLK/CYC bound regions in vivo.

Discussion

Although frequently not restricted to single cell types, individ-
ual TFs can control tissue-specific programs of gene expres-
sion through interactions with local TF networks [7, 10]. But
despite substantial progress in identifying differential cell-
specific circadian expression programs [21, 23, 33, 58–60],
how CLK and CYC interact with local TF networks to generate
output rhythms tissue specifically is still elusive.
Here, we used an integrative genomics approach to shed

light on how the circadian clock drives tissue-specific gene
expression. While shared CLK/CYC binding sites could not
be explained by combinations of head- and body-specific
motifs (yet were slightly more enriched in E box motifs
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Figure 5. SRP and OPA Activate Transcription Synergistically with CLK/CYC

(A) UCSC Genome Browser screenshot for a CLK/CYC binding site in bodies (red bar indicates the tested region intCG34386).

(B) Normalized luciferase activity (Firefly versus Renilla, FF/FR) of extracts from S2 cells transiently transfected with 10 ng of intCG34386-LUC reporter gene

and 50 ng of expression vectors for the indicated TFs or empty vector (2). Error bars in (B), (C), (D), and (F) show standard deviations of three independent

transfections (B and F) or three independent experiments with three independent transfections each (C and D).

(C) Normalized activity for 10 ng of intCG34386-LUC with cotransfections of 2 ng of CLK or CLKJrk and 10 ng of SRP and/or PER vectors as indicated.

(D) Same as (C), but for E box or GATA mutant versions of intCG34386.

(E) Genome Browser screenshot for a CLK/CYC binding site in heads.

(F) Same as (C), but for 10 ng of intSlob-LUC reporter gene, 5 or 10 ng of CLK, 2.5 ng of OPA, or empty vector (2).

(G–I) UCSC Genome Browser screenshots for CLK/CYC-specific binding site in bodies (left; red bars indicate the tested regions CRM 3, 4, and 5). CRM

activity was assayed by GFP fluorescence with transgenic reporters in adult flies (right). Images show bright-field (top) and GFP signals (bottom) for the

fat body (CRM3), midgut and Malpighian tubules (CRM4), and midgut only (CRM5; see Figure S6 for all tested CRMs).
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Table 1. GFP Spatial Expression in Transgenic Adult Flies

Fly Line Genomic Coordinates

GFP Localization

Head Midgut Fat Body Malpighian Tubules MRT FRT

CRM1 chr3L:4099109–4099771 2 2 + 2 2 2

CRM2 chr3R:14914965–14915499 2 + 2 2 2 2

CRM3 chrX:14843135–14843666 +a 2 + 2 2 2

CRM4 chr2L:12022549–12023056 2 + 2 + 2 2

CRM5 chr2R:13976794–13977305 2 + 2 2 2 2

CRM6 chrX:19134232–19134636 2 + 2 2 + 2

CRM7 chrX:16988629–16989153 2 + 2 2 2 +

CRM8 chr2R:19555521–19556095 2 2 2 2 2 2

CRM9 chr2R:16138228–16138731 +b + 2 + + +

MRT, male reproductive tract; FRT, female reproductive tract.
aHead fat body expression.
bAntennae, labellum, and some parts of the brain.

Figure 6. Model of Context-Specific CLK/CYC Binding and Tissue-Specific

Transcriptional Programs

Schematic representation of the proposed model. CLK and CYC co-occupy

the genome in heads and bodies, but CLK/CYC-specific binding in the head

and body is determined with the help of OPA and SRP, respectively. Addi-

tional partner factors are likely also involved, and similar mechanisms likely

apply to other broadly expressed TFs (not shown).
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[1.4-fold; p < 0.004] and—similar to highly occupied target
(HOT) regions [61]—in Trithorax-like motifs [Trl/GAGA; 2-fold;
p < 1.8 3 10210]), a substantial number of CLK and CYC bind-
ing sites were specific to either heads or bodies and next to
genes with different functional GO categories (Figure 3B; Fig-
ure S3). These binding sites differed substantially in their motif
content, and this motif signature was predictive of context-
specific CLK/CYC binding (Figure 4), suggesting that tissue-
specific clock targets are determined by the binding site
sequences.

GATA motifs were enriched in CLK/CYC binding sites in
bodies and required for enhancer activity in the fat body,
midgut, and Malpighian tubules. This suggests that GATA
factors might play a key role for CLK/CYC-bound enhancers
in bodies, potentially by helping to establish the chromatin
landscape in tissues where they are specifically expressed
(e.g., srp in the fat body and GATAe in the gut [25]). Interest-
ingly, GATA motifs are also overrepresented in promoter
regions of circadian genes in rodents [62], suggesting a
conserved role for GATA factors in the circadian clock.

Here, we found that theGATA factor SRP could act synergis-
tically with CLK, suggesting that it is an important determinant
of clock function in peripheral tissues (Figures 5E and 5F). SRP
has multiple functions in Drosophila, including the control of
endodermal development and hematopoiesis in the embryo
and the induction of immune response in the larval fat body
[63–67]. Interestingly, srp is coexpressed with CLK and CYC
in the fat body [25, 68], a tissue with roles in metabolic activity,
innate immunity response, and detoxification [69–71]—all
known to be controlled in a circadian manner [32, 72–74].
CLK body-specific peaks were 4.17-fold enriched (p <
0.00001) close to cycling fat body genes [1, 33], suggesting
that srp might help determine the physiological outputs
controlled by the fat body pacemaker (Figure 6). Interestingly,
srp is also required for hormone-induced expression of the
Fbp1 TF during fat body development, supporting the idea
that it might be important for temporal or inducible regulation
more generally [75].

Similarly, OPA, which belongs to the Zic family of mamma-
lian TFs with conserved roles in head formation in flies and
mammals [76, 77], is coexpressed with Clk and cyc in the adult
brain [25]. In addition, an enhancer of Slob, an output gene of
the clock pacemaker involved in the generation of locomotor
activity rhythms [57, 78], responded to CLK and CYC in an
OPA-dependent manner (Figure 5F), suggesting that OPA
might be involved in the recruitment of CLK/CYC to regulate
genes controlling fly behavior. Further studies on OPA and
additional predicted partner TFs might provide new insights
into the Drosophila clock in the head.
It is likely that different cofactors with functions equivalent

to srp or opa exist in different cell types, which redirect CLK/
CYC to tissue-specific binding sites and allow tissue-specific
gene regulation. Indeed, we have identified several other
motifs that are tissue-specifically enriched. This is reminiscent
of studies showing that TFs downstream of signaling path-
ways are redirected in a tissue-specific manner by cell-
specific master regulators [2–8, 10, 11, 79]. Our results might
thus constitute an important example of how partner TFs
adapt broadly active transcriptional regulators to achieve
tissue-specific gene expression and function, contributing to
a better understanding of gene regulatory networks more
generally.
Our data on CLK/CYC binding in different contexts not only

provide novel insights into clock regulatory networks and
enhancer structure but also exemplify a new strategy to un-
cover cofactors of the circadian clock via their cis-regulatory
motifs. Our approach is complementary to forward and
reverse genetics or biochemistry, which have traditionally
been used to reveal clock factors. It can also be applied
more generally to identify factors that recruit broadly ex-
pressed TFs in different cell types or tissues. In addition, the
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tagging of endogenous loci allows the study of TFs under
physiological conditions in their endogenous expression
domains, which is crucial especially for TFs that have large
and complex regulatory regions and/or for which physio-
logical expression levels are of fundamental importance. In
summary, our results in the Drosophila circadian clock
reveal how universal TF circuits can be modulated to generate
transcriptional tissue-specific outputs and demonstrate a
novel approach to determine regulatory partners more
generally.
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