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This work deals with fracture of elastomers by cavitation. So, tension tests were achieved on specific vol-
umetric specimens, the shape of which should induce void nucleation in the bulk of the material. Mac-
roscopic behaviour of this material was related to the cavitation phenomenon. It was particularly
proved that the slope break of the stress–strain curves coincides with the apparition of voids. Then, all
experimental tests were numerically modelled using Finite Element Method (FEM) and results were ana-
lysed. Numerical study highlighted, among others, effects of specimen shape factor and those of filler vol-
ume fraction on the nucleation and growth of cavities.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Because rubbers are quasi-incompressible materials, micro-
voids can nucleate in their bulk under certain loading conditions.
This cavitation phenomenon was early observed by Busse (1938),
Yerzley (1939). They observed cavities in the centre of so-called
‘‘pancake’’ specimens under tension loading. These specimens con-
sist of thin rubber discs adhered to metal plates. Later, many
authors investigated this phenomenon both experimentally and
theoretically. Thus, Gent and Lindley (1959) analysed cavities
nucleation in carbon-black-filled natural rubber (NR) using ‘‘poker
chip’’ tests consisting in submitting pancake specimens to exten-
sion in the direction of the principal axis perpendicular to their lar-
ger surface. They showed that the initiation of cavities, due to a
high stress triaxiality in the material, leads to a slope break of
load–displacement curves. Using acoustic emission, Kakavas and
Chang (1991, 1992) have also pointed out the nucleation of cavities
in pancake samples submitted to traction loading.

Assuming a pure hydrostatic loading, the pioneering theoretical
analysis of Ball (1982) led to a mathematical expression allowing
the prediction of the cavity nucleation in a material. According to
this theoretical approach, some authors also expressed such pre-
diction with strain energy density functions (Stuart, 1985;
Chou-Wang and Horgan, 1989; Horgan and Pence, 1989; Polignone
and Horgan, 1993a; Polignone and Horgan, 1993b; Horgan and
Polignone, 1995). Comparing the experimental results obtained
ll rights reserved.
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by Gent and Lindley (1959), and by Oberth and Bruenner (1965)
with those issued from finite element method (FEM), Stringfellow
and Abeyaratne (1989) confirmed that the theoretical criterion ob-
tained by Ball (1982) provides a good estimation of the cavitation
stress under a pure hydrostatic loading. A few years later, consid-
ering a neo–Hookean material, Hou and Abeyaratne (1992) ex-
tended for any 3D loading the cavity nucleation criterion
proposed by Ball (1982). In fact, they drew in the three-dimen-
sional principal stresses space a threshold surface delimiting the
domain of the material safety. The pertinence of this approach
was validated, on the one hand, by Chang et al. (1993) via FEM
and, on the other hand, by Ganghoffer and Schultz (1995) using
an asymptotic method. Diani (1999) completed this study by intro-
ducing a procedure allowing the description of the evolution of a
pre-existing cavity during the loading.

When incompressibility of the material is not ensured, it is gen-
erally quite difficult to determine analytical solutions giving
parameters governing the cavity nucleation. Nevertheless many
authors showed that, beyond a certain critical value of the defor-
mation, the cavitation solution is more stable (Ball, 1982; Horgan,
1992; Horgan, 1995; Murphy and Biwa, 1997; Xin-Chun and
Chang-Jun, 2001). Recently, Kakavas (2002) studied the effect of
the micro-voids volume fraction on the stress–strain fields of com-
pressible materials under monotonic loading.

Damage of rubber-like materials by cavitation was also ana-
lysed under cyclic loading (fatigue) by Dorfmann and Burtscher
(2000), Dorfmann et al. (2002), Legorju-jago and Bathias (2002).

Moreover, void nucleation in rubber particles dispersed in a
PMMA matrix was studied by Lazzeri and Bucknall (1993), Fond
et al. (1996).
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The cavitation phenomenon in elastomers is an interesting but
a complex problem because it requires advanced and up-to-date
experimental facilities to detect the nucleation and to quantita-
tively measure the cavity growth. From an analytical point of view,
it requires strong background to treat all the difficulties such as,
among others, finite strains, incompressibility/compressibility
and bifurcation of solutions.

The purpose of this work is to analyse the fracture of elastomers
by cavitation process. More precisely, we first achieved specific
experimental tests inducing voids nucleation in the bulk of the
material and the obtained results have been analysed. These tests
are then numerically modelled by FEM, and the effects of specimen
shape factor and those of filler volume fraction on the cavitation
are highlighted.
2. Theoretical background: analytical modelling of the
cavitation phenomenon in rubbers

Many investigations dealing with the mechanical modelling of
nucleation and/or growth of voids in rubbers were developed, by
analysing the strain and stress fields on a Representative Volume
Element (RVE) subjected to a certain loading. Depending on
whether incompressibility is assumed or not, different approaches
were proposed. In this section, only the analytical model developed
by Ball (1982) and used in this study is presented.

Ball (1982) considered a spherical RVE of an incompressible,
isotropic and hyperelastic material, with initial radius b0, subjected
to a uniform radial pressure p on its external surface as illustrated
by Fig. 1. In this figure, a and b represent the radii of the nucleated
cavity and the RVE in the deformed state, respectively.

Considering a neo–Hookean mechanical behaviour, the analysis
of the strain–stress field led Ball (1982) to the following expression
of the critical hydrostatic pressure pc, at the onset of cavity nucle-
ation, in the center of the RVE:

pc ¼
r1 þ r2 þ r3

3
¼ 5l

2
; ð1Þ

where r1, r2 and r3 are the Cauchy stresses in the principal direc-
tions 1, 2 and 3, respectively, and l is the material shear modulus.

Under incompressibility state, the Young’s modulus E is related
to the shear modulus l by E = 3l. Thus, the critical hydrostatic
pressure pc given by Eq. (1) can be rewritten as follows:

pc ¼
r1 þ r2 þ r3

3
¼ 5E

6
; ð2Þ

which is in agreement with results found by Gent and Lindley
(1959), Oberth and Bruenner (1965), Oberth (1967). Cho and Gent
(1988) developed original experimental tests on a transparent
silicone and found a critical pressure value in agreement with that
b0 

p

b

p

a

(a) (b)
Fig. 1. Schematic representation of cavity nucleation with spherical model: (a)
initial and (b) deformed configurations.
given by Eq. (2). Stringfellow and Abeyaratne (1989) also confirmed
this result using FEM.

One of the most important restrictions of the Ball’s model is the
assumption of a uniform external radial pressure on a spherical
RVE while the loading is generally not purely hydrostatic.

Some authors tackled, either experimentally or numerically by
using FEM, the cavity growth process (Williams and Schapery,
1965; Lindsey, 1967; Gent and Tompkins, 1969; Gent, 1990; Gent
and Wang, 1991; Diani, 1999, 2001; Chang and Pan, 2001). More-
over, several authors analytically analysed the cavitation phenom-
enon in the case of compressible materials (Ertan, 1988; Horgan,
1992, 1995; Biwa, 1995; Murphy and Biwa, 1997; Xin-Chun and
Chang-Jun, 2001). They mainly concluded that it is quite difficult
to get pertinent solutions describing nucleation and/or growth of
cavitations.
3. Experimental study

Hydrostatic depression tests were carried out on a carbon-
black-filled styrene-butadiene rubber (SBR) vulcanizate. They
consist in pulling out thin discs of this material in the direction
perpendicular to their larger surface. Specimens were obtained
by directly bonding, via a specific process developed and widely
used in the rubber industry, the elastomer component to metal
plates during the vulcanisation. These specimens were tested right
after their elaboration. Because of the particular shape of these so-
called pancake specimens, dimensions of which are summarised in
Table 1, high stress triaxiality (hydrostatic stress state) is gener-
ated in the bulk of the material, increasing the hydrostatic pres-
sure, which therefore favours the nucleation of cavities. In fact,
Busse (1938) already observed voids nucleation in the centre of
similar specimens of rubber loaded in tension. These observations
were also confirmed by Yerzley (1939) on a neoprene synthetic
elastomer, Gent and Lindley (1959) on NR vulcanizate and Pond
(1993) on filled NR.

Experimental data were recorded up to total breaking of the
specimen and results are reported in Fig. 2 in terms of load as func-
tion of applied displacement. All curves exhibit linear evolution for
small displacement range. Beyond a critical displacement, the
material stiffness decreases and the curves show a non-linear evo-
lution until total rupture of the specimen. The macroscopic slope
change may be seen as an indicator of voids nucleation, which vol-
ume reaches a sufficient critical value allowing the modification in
the global behaviour of the material. This is confirmed by the frac-
ture surfaces shown in Fig. 3 exhibiting void footprint suggesting
that the total rupture of the specimen happened by the process
of nucleation and growth of cavities. Fracture surfaces also reveal
that mechanisms of voids nucleation seem to depend on the spec-
imen shape factor defined in this work as the loaded area to un-
loaded one (Gent and Lindley, 1959), i.e. s ¼ pR2=2pRh ¼ D=4h ¼
R=2h where R and h are the radius and the height of the specimen,
respectively. It must be noted that this aspect ratio is sometimes
defined in the literature as the unloaded area to loaded one, i.e.
s = 2pRh/pR2 = 4h/D = 2h/R. However, our choice does not affect
at all the analyses and the understanding of results reported in
the present paper.

Note that the shape factor plays an important role in the nucle-
ation and growth of voids. In fact, as shown in Fig. 3, the highest
the shape factor, the highest the density of voids and the smallest
Table 1
Dimensions of pancake specimens.

Diameter (mm) Height (mm)

100 2.5, 5, 10, 20, 25, 50
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Fig. 2. Load–displacement curves of pancake specimens: (a) until total breaking (b)
zoom at small strains.
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their size. Below a certain value of the shape factor (here when
h P 25 mm), the fracture process is not controlled by nucleation
and growth of cavities but by initiation and propagation of a crack.
That may explain why the load–displacement curves reported in
Fig. 2, show that for high shape factor values, the slope change is
well marked. However, for small values of s, this threshold is much
less visible. Similar results were already found by Gent and Lindley
(1959), Pond (1993) who reported that the slope break is fre-
quently accompanied by an audible sound that is more magnified
when increasing the sample shape factor. This is probably a conse-
quence of the stress state increasingly close to a pure hydrostatic
state as s increases. Fig. 2 also shows that the applied loads and
displacements at the slope break depend on the specimen shape
h = 2.5mm h = 5mm

Fig. 3. Fracture surfaces o
factor s. In fact, the critical load increases and the critical displace-
ment decreases with s, but they both remain quite smaller com-
pared to the total breaking values.

To put experimentally in evidence the coincidence of the slope
change in the load–displacement curves with critical nucleation of
internal flaws, Gent and Lindley (1959) and, then, Lindsey (1967)
used a direct observation on a transparent rubber. Recently,
Kakavas and Chang (1991, 1992) used an acoustic emission tech-
nique to analyse cavity nucleation in bonded unfilled nitrile rubber
discs.

In the present work, to verify if the decrease of the apparent
sample stiffness is due to the voids nucleation, the material volume
variations were measured during extension of pancake specimens.
A sudden change of material volume could be a signature of cavity
nucleation in this material. The tests consist in extending such
specimen in a sealed chamber filled with a quasi-incompressible li-
quid (Fig. 4). The void volume fraction appeared in the bulk of the
tested elastomer could correspond to the liquid volume variation
measured via calibrated vertical capillary tube.

Fig. 5 shows an example of obtained results in terms of load and
volume variations as a function of imposed displacements for a
specimen of 10 mm height. This figure clearly shows that, for small
deformations, the material volume remains constant with some
fluctuations related to the lack of accuracy of the experimental
set-up. Then, it suddenly increases beyond a critical displacement,
continuously and linearly as a function of the displacement up to
total fracture of the specimen. The threshold point is located in
the zone of slope break of load–displacement curves. Viscosity
should maybe enhance the peak of this slope break. Similar obser-
vations were made for all specimens with height less than 25 mm.
For specimens with h P 25 mm, no sudden volume change was
noted confirming that below a certain value of the shape factor,
the fracture process is not based upon cavitation because the stress
state in the centre of the specimen moves away from a pure hydro-
static loading. As a consequence, one can conclude that a sudden
change of material volume is a signature of voids nucleation.
Therefore, the stiffness change observed in the load–displacement
curves corresponds to a damage process induced by initiation of
micro-voids that grow when increasing the loading up to total rup-
ture of the specimen by coalescence of these voids.
4. Numerical modelling

The aim of this FE study is to verify the pertinence of the above
experimental results interpretations and to further analyse the
damage of rubbers by cavitation. Even a complete study requires
investigating void growth process and damage accumulation, we
only focus in this work on the void nucleation prediction in rub-
bers. So, pancake specimens experimentally tested were numeri-
cally simulated under tension loading, using the FE program
‘‘Marc’’. Cylindrical RVE containing a rigid inclusion was also
modelled.
h = 10mm h = 25mm

f pancake specimens.



Fig. 4. Experimental set-up allowing the evaluation of elastomer volume variations.
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4.1. Effects of specimen shape factor on the cavitation

Poker chip tests were modelled using axisymmetric 2D-model
and considering a neo–Hookean constitutive law given by the fol-
lowing equation:

W ¼ C01ðI1 � 3Þ; ð3Þ
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Fig. 5. Example of loads and specimen volume variations as a function of the
imposed displacements (h=10 mm): (a) until total breaking (b) zoom at small
strains.
where W is the strain energy density, C01 is the material constant
and I1 is the first invariant of the right Cauchy-Green strain tensor.
The bulk factor or the incompressibility factor K of the material was
measured via oedometric test and found equal to 2200 MPa, sug-
gesting that the incompressibility assumption is reasonable. In this
case, the constant C01 is directly related to the Young’s modulus E by
C01 = E/6. The value of E was provided by dynamical tests achieved
on a DMA machine under small deformation range and it was found
equal to 5 MPa. Metal plates on which rubber specimens were
bonded were assumed to be infinitely rigid. Only the elastomeric
specimen was modelled and it was meshed using four nodes quad-
rilateral elements. The meshing was refined in the vicinity of the
central zone of the specimen, where the hydrostatic pressure gradi-
ent is expected to be important. The FE calculation was achieved by
gradually increasing the displacements applied to the nodes located
at the top of the sample. Stress and strain fields were evaluated on
the whole specimen and the hydrostatic pressure was therefore
available. Fig. 6 shows the distribution of the hydrostatic pressure
in the samples for the different values of the shape factor and for
displacements close to the expected cavity initiation threshold cor-
responding to the sudden volume change of the material (Fig. 5).
Fig. 6 clearly highlights that the shape factor influence is predomi-
nant in the distribution. In fact, for high values of this parameter,
the hydrostatic pressure is greatest in the central region of the spec-
imen, while, when s decreases, the maximum pressure moves to-
wards the interface.

Finally, the critical global strain ec corresponding to the onset of
void nucleation was evaluated and it appeared strongly dependent
on the specimen shape factor s, as clearly pointed out in Fig. 7. In
fact, ec decreases when increasing the factor s, suggesting that
the more confined the specimen, the smaller the strain is at
breaking.

Another interesting aspect that deserves consideration is the ef-
fect of filler volume fraction on cavitation phenomenon in rubbers.
So, we focused a part of our study on this aspect that is not largely
tackled in the literature. The obtained results are presented and
analysed in the next section.
4.2. Effects of filler volume fraction on the cavitation

To highlight the cavitation phenomenon in rubbers, some
authors carried out experimental tests on cylindrical samples of
transparent elastomer in which a rigid spherical particle made of
glass or steel is embedded (Oberth and Bruenner, 1965; Gent and
Park, 1984). These specimens are then submitted to a uniaxial
loading. The effects of the elastomer matrix Young’s modulus were
investigated by varying, for a given material, the rate of cross-linking
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during the vulcanisation process. They showed that cavities first
nucleate at the pole of the inclusion suggesting that higher stress
triaxiality is involved in this region.

In this study, we modelled by FEM, using ‘‘Marc’’ software, a
cylindrical RVE containing a rigid spherical particle in its centre
and submitted to uniaxial tension in the direction of its long axis.
This specimen is 30 mm long and its diameter is 12 mm. Several
values of reinforcing particle radius were considered,
r(mm) = {0.5,1,2,3,4,4.5}, corresponding to the filler volume frac-
tions f (filler volume/composite volume � 100) = {0.015,0.12,
1,3.5,7.5,10}. This particle was supposed infinitely rigid and
perfectly adhered to the matrix. A 2D axisymmetric model was
selected and the matrix behaviour is assumed to obey to a neo–
Hookean law (Eq. (3)) with Young’s modulus E = 5 MPa. The mate-
rial is again supposed to be incompressible since its bulk factor K,
experimentally measured via oedometric tests, was found equal to
2200 MPa. Because of symmetries, only a quarter of the specimen
was analysed.

Selected grid work contains exclusively four node quadrilateral
elements and it is refined in the vicinity of the reinforcing particle.
As for pancake specimens (Section 4.1), the FE calculation was
achieved by gradually incrementing the displacements applied to
the nodes situated on an extremity side of the cylinder. The
quantity 00p � 5E/600 corresponding to the gap between the actual
pressure and the critical pressure value according to the Ball’s
criterion, was evaluated on the whole sample. Fig. 8 shows, as an
example for particles of radius r(mm) = {0.5,2,4.5}, a map of the
distribution of this quantity in the specimen for a given
displacement. Positive values indicate that the pressure given by
the Ball’s criterion has been exceeded, while negative values corre-
spond to region where the criterion is not yet reached. According to
the Ball’s criterion, it is clearly pointed out that void nucleation is
located at the filler poles which is in agreement with the experi-
mental observations of Oberth and Bruenner (1965), Gent and Park
(1984).

However, it must be noted that it is more complicated to model
the phenomenon of cavitation when considering, as it is the case in
practice, several particles in the matrix, because it is indispensable
to take interaction effects between fillers into account. Homogeni-
sation methods or, generally, multiscale approaches should be
strong alternative techniques that could bring out some interesting
responses in such case.

To further analyse numerical results, hydrostatic pressure val-
ues corresponding to the onset of cavity nucleation, according to
the Ball’s model (Eq. (2)), are plotted in Fig. 9 against distance mea-
sured from the particle pole to specimen edge were increment dis-
placement is applied. As expected, independently from the particle
size, this pressure is maximal near the reinforcing particle pole.
Furthermore, it quickly decreases as one moves slightly away from
this pole and then tends to reach a horizontal asymptotic value.
One can also note that the smaller the particle size, the more
accentuated this decrease. These results confirm experimental
observations reported by Oberth and Bruenner (1965), Gent and
Park (1984), assuming that a critical hydrostatic pressure governs
the cavity nucleation.

Although results are only shown for three volume fractions, the
same trends were observed for all the studied cases.
5. Conclusion

In this work, the fracture of rubber-like materials by the cavita-
tion phenomenon has been experimentally and numerically
analysed.

Specific disc-shaped samples, called pancake specimens, were
experimentally tested under uniaxial tension. Because of the par-
ticular geometry of such specimens, high stress triaxiality seems
to be generated in the bulk of the material, increasing the hydro-
static stress and, therefore, leading to the cavity nucleation. In fact,
fracture surfaces exhibit void footprint suggesting that the total
rupture of the specimen happened by the nucleation and growth
of cavities. The volume fraction and size of the observed voids de-
pend on the specimen shape factor. In fact, increasing the shape
factor of the specimen allows the occurrence of small cavities uni-
formly distributed through the fracture section. However, when
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this factor decreases, the density of voids decreases while their size
increases. Moreover, it has been proved, by measuring the speci-
men volume variation, that the apparition of a critical fraction of
cavities is accompanied by a slope break of load–displacement
curves. This slope break is very marked for high shape factor
values.

The FE study allowed the backing up of the experimental results
analysis. It also permitted to further understand the fracture of
elastomers by cavitation process. In fact, it highlighted effects of
specimen shape factor and those of filler volume fraction on cavi-
tation in such materials. In short, FE analyses mainly showed that
voids initiate at the specimen central zone. The size, number and
the distribution of these voids dependent on the specimen shape
factor. Moreover, FE analyses proved that, in reinforced elastomers,
higher triaxiality is involved at the pole of the inclusion suggesting
that cavities first nucleate in this region.

Most of our results are in conformity with experimental obser-
vations reported in the literature.

In the future, improvements in the detection of the void nucle-
ation will be very helpful. It will be also interesting to develop
methodologies allowing analysis of cavitation in elastomers by
taking interaction effects between fillers into account. Such meth-
odologies could be based on homogenisation methods or on mi-
cro–macro approaches. Furthermore, the approaches based upon
fracture mechanics concepts may be useful when dealing with
the irreversible growth of a pre-existing cavity. So, if such a crite-
rion is combined with a void nucleation one, it should perhaps be
possible to describe as well as the void nucleation phase and its
stable but irreversible growth. A void-growth constitutive model
for rubber-like materials will be presented in a forthcoming paper
using the theoretical methodology given in (Zaı̈ri et al., 2008, 2011)
and the fruitful experimental results of this study. The strong effect
of the surface tension on the void growth requires to be taken into
account especially in the beginning of growth process, i.e. when
the voids are small (Fond, 2001; Zaı̈ri et al., 2005). Therefore, an
accurate estimation of this property is needed.
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