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Outdoor aerosol particles were characterized in industrial area of Samalut city (El-minia/Egypt)

using low pressure Berner cascade impactor as an aerosol sampler. The impactor operates at

1.7 m3/h flow rate. Seven elements were investigated including Ca, Ba, Fe, K, Cu, Mn and

Pb using atomic absorption technique. The mean mass concentrations of the elements ranged

from 0.42 ng/m3 (for Ba) to 89.62 ng/m3 (for Fe). The mass size distributions of the investigated

elements were bi-modal log normal distribution corresponding to the accumulation and coarse

modes. The enrichment factors of elements indicate that Ca, Ba, Fe, K, Cu and Mn are mainly

emitted into the atmosphere from soil sources while Pb is mostly due to anthropogenic sources.

ª 2014 Production and hosting by Elsevier B.V. on behalf of Cairo University.
Introduction

In the recent years, aerosols have received increasing attention
due to the roles they play in many climate and environmental
processes. Size and chemical composition of atmospheric par-

ticles are important parameters in several processes occurring
in the atmosphere [1], for instance, visibility reduction, cloud
and fog formation, particle growth and gas–particle interac-

tions [2]. Particles also have adverse health effects depending
strongly on their size, specific surface area, number and chem-
ical composition that regulate the toxicity of any specific
element. In addition to the environmental and health effects

of aerosol particles they also can cause corrosion and damage
to materials and works of architecture and arts.

Metals are commonly found in atmospheric particles.

While they can be present in almost all sizes of atmospheric
particulate, in general, fine particulate carries higher
concentrations of metals than coarse particulate [3,4]. Metals
associated with respirable particles have been shown to

increase numerous diseases [5,6]. Metals in the urban
atmosphere are frequently associated with specific pollutant
sources, and these are often used as tracers in order to identify

the source of atmospheric particulate [7–11].
Knowledge of the size distribution of atmospheric particles

within which trace elements and metals reside is not only vital

in understanding particulate matter effects on human health,
but also controls the extent to which metals may be dispersed
via atmospheric transport and hence is a prerequisite for the

determination of rates of deposition of metals to the Earth’s
surface [12].
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Fig. 1 Sampling site on EL-Minia governorate map.
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The dispersion and accumulation of particulate matter in
any location is mainly affected by the existing sources, meteo-
rological conditions and local topography [11]. Atmospheric

aerosol dispersion in industrial zones has received little atten-
tion. Therefore, the objectives of this study were to investigate
the mass concentration and mass size distribution of elements

in the aerosols at industrial area of Samalut in El-minia
governorate (upper Egypt).

Methodology

In the present work a low pressure Berner cascade impactor was
used as an aerosol sampler. The impactor contains eight size

fractionating stages and operates at a flow rate of 1.7 m3 h�1.
The cut-off diameters of the impactor stages are 82, 157, 270,
650, 1110, 2350, 4250 and 5960 nm. Cut-off diameter is defined

as the particle size that gives 50%of the collection efficiency. An
accurate method of the impactor was calibrated in the isotope
laboratory Gottingen University, Germany [13]. Measurements
were taken from August 2012 to January 2013. Three or four

runs were conducted in each month. The sampling time of each
run is 6 h. Samples were collected at iron and steel Quarry closed
to the cement factory in Samalut/El-minia (latitude:

N 28� 18 n 30 n n, longitudeE 30� 42 n 28 n n). This site repre-
sents an industrial area surrounded from the east by mountains.
These mountains are formed with limestone rocks and have ele-

vation of about 20 m (Fig. 1).
The samples collected by low pressure Berner cascade

impactor were analyzed by atomic absorption spectroscopy
for seven elements including Lead (Pb), Manganese (Mn), Iron

(Fe), Copper (Cu), Potassium (K), Calcium (Ca) and Barium
(Ba). The sample was prepared for elemental analysis by cutting
substrate into small pieces and then 5 mL diluted HCl (1 + 1)

was added to the sample and gently heated on hotplate till
complete dissolution. Few drops of HNO3 are added to the
solution. The solution is transferred to auto sampler cup and

completed to 10 mL deionized water. This elemental analysis
was performed at National Institute for Standards, NIS-Egypt.

Meteorological parameters (temperature and relative

humidity) were recorded by Hi 8564 thermo hygrometer dur-
ing the sampling. The temperature varied between 30 to
39 �C with mean value 36 �C while relative humidity varied
between 18 to 42% with mean value 32%. Samples collected

under abnormal weather conditions were canceled. Gravimet-
ric analysis of the samples was conducted by Mettler analytical
AE240 Dual Range Balance to get the collected mass of the

aerosol particles on the substrates.
Knowing the mass of the collected particles, the flow rate of

the impactor and the sampling time, mass concentrations of

aerosol particles were calculated as follows:

m ¼ m

Q � t . . . lg=m3

where m is the specific mass concentration, m is the total depos-

ited aerosol mass on the impactor stages (lg), Q is the impac-
tor flow rate (m3/h) and t is the sampling time (h).

The parameters of the mass size distribution, mass median

aerodynamic diameter (MMAD) and geometric standard devi-
ation (GSD) were given by the following equations [14].

lnMMAD ¼
P

ni ln diP
ni
lnðGSDÞ ¼
P

niðln di � lnMMADÞ2P
ni

" #1
2

where MMAD is the Mass Median Diameter, ni is the fraction
in stage i, di is the cutoff diameter of the stage i and GSD is the
geometric standard deviation. MMAD is defined as the diam-
eter at 50% cumulative fractions. GSD of the size distribution

is defined as the diameter at 84% cumulative mass divided by
the diameter obtained at 50%.

Results and discussion

Elemental mass size distribution of aerosols

Mass size distributions of individual elements are presented in
Figs. 2–5a. The distributions of the investigated elements [Pb,

Mn, Fe, Cu, K, Ca and Ba] are bi-modal log normal distribu-
tion corresponding to the accumulation and coarse modes.
Accumulation mode, consisting of long-lived particles of sizes

of a few tenths of a micrometer (100 nm < particle diameter,
Dp < 2000 nm). Particles in this mode are forming by gas to
particle conversion, chemical reactions, condensation and
coagulation, while the particles in the coarse mode

(Dp > 2000 nm) are generated by mechanical processes such
as sea spray, erosion, and resuspension and are removed by
sedimentation and washout. This mode contains windblown

dust, sea salt spray, and plant materials. The coarse particles
are characterized by a high deposition velocity and they have
short residence times. The residence time of aerosols depends

on their size, chemistry and height in the atmosphere. The
modal size and composition of aerosols are varied, depending
on the nature of the surface cover and atmospheric condition.
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Fig. 2 Mass size distribution of Pb and Fe at industrial area of

Samalut.
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Fig. 3 Mass size distribution of Cu and Ca at industrial area of

Samalut.
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Table 1 illustrates the distribution parameters. The lowest
mass median aerodynamic diameter of the accumulation

mode, MMADA (330 nm) is found for Mn with a geometric
standard deviation, GSDA of 2.25 while Pb has the highest
MMADA (780 nm) with a GSDA of 1.75. Cu has the lowest
mass median aerodynamic diameter in the coarse mode,

MMADC (2422.2 nm) with a GSDC of 1.1 while Fe has the
highest MMADC (3830.9 nm) with a GSDC of 1.4. The bimo-
dal nature of elements size distribution has been reported for

different industrial sites [11,15].
The mass size distribution of Pb is mostly concentrated in

the accumulation mode (650–1100 nm) and coarse mode

(2350 nm). Mn distribution shifts to lower size in the accumu-
lation mode (157–650 nm) and it is concentrated at the same
size (2350 nm) of coarse mode.

The mass size distributions of Fe and Cu are mostly con-
centrated in the accumulation mode (157–1100 nm) and coarse
mode (2350–4250 nm) for Fe and shifts to higher size at
5960 nm for Cu.

The mass size distributions of Ca and Ba are mostly con-
centrated in the accumulation mode (650–1100 nm) and coarse
mode (2350–4250 nm). K is mostly concentrated at the coarse

mode (2350 nm).
These distributions suggesting that the natural crustal

sources i.e. dust mountains contribute the industrial sources

for the emission of the elements [16]. It can be seen that the
elements in the accumulation mode are more distributed
(2.25 P GSDA P 1.4) than the elements in the coarse mode
(1.14 P GSDC P 1.41). This could be attributed to the differ-

ence in aerosols origins and the variation of their residence
time in the atmosphere.

The enrichment factor (EF) was calculated to differentiate
elemental concentrations from various sources. EF was

determined to show the degree of enrichment of a given ele-
ment in the atmosphere compared to the relative abundance
of that element in reference material. Usually, Si, or Al or

Fe is used as the reference crustal element. In this study Fe
was used as a reference element relative to the crustal material.
The EF of an element E in an aerosol sample is defined as [1]:

EF ¼
E
R

� �
air

E
R

� �
crust

where R is the reference element and E
R

� �
air is the concentra-

tion ratio of E to R in aerosol sample and E
R

� �
crust is the con-

centration ratio of E to R in the crust. If EF is less than 10,
crustal soils are most likely the predominant source of element
E, the elements with an EF value close to unity show strong

influence of a natural component and if EF is higher than
10, the elements would have a significant contribution from
non crustal sources. The investigated elements (K, Cu, Mn,

Ca and Ba) have EF less than 10 suggesting that they are
attributed to soil and dust sources. Fe has a unity EF which
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Fig. 4 Mass size distribution of K and Mn at industrial area of

Samalut.
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Fig. 5a Mass size distribution of Ba at industrial area of

Samalut.

Table 1 Average mass size distribution parameters of ele-

ments at industrial area of Samalut (El-Minia).

Accumulation Coarse

Element MMADA (nm) GSDA MMADC (nm) GSDC

Pb 780 1.75 3059.5 1.40

Mn 330 2.25 3053.3 1.41

Fe 380.6 2.3 3830.9 1.40

Cu 654.8 1.4 2422.2 1.10

K 370.5 2.3 3136.1 1.30

Ca 598.5 2.1 3456.8 1.40

Ba 630 1.9 3312.3 1.40
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Fig. 5b Average mass size distribution of particulate matter

(PM) at industrial area of Samalut.

830 M. Moustafa et al.
reveals a strong impact of a natural component. Anthropo-

genic activities is indirectly contributing the re-suspension of
these elements in the air even so their natural origin [16]. Pb
showed an EF higher than 10 suggesting that Pb is emitted

mainly from anthropogenic sources.
The average mass size distribution of particulate matter
(PM) at industrial area of Samalot is shown in Fig. 5b. The
obtained mass size distributions are found as bi-modal log nor-

mal distribution which is corresponding to accumulation and
coarse mode. The mean value of the mass median aerodynamic
diameter for accumulation mode, MMADA is 392.8 nm varied
between 343.5 nm (in November 2012) to 471.7 nm (in January

2013) with mean geometric standard deviation (GSDA) 2.43
ranged from 2.29 (in January 2013) to 2.6 (in December
2012). Mass median aerodynamic diameter for coarse mode,

MMADC varied between 3271 nm (in January 2013) to
3895.8 nm (in October 2012) with mean value 3676.2 nm which
has GSDC varied between 1.43 (in December 2012) to 1.48 (in

September 2012) with mean value 1.46.
The particles in the accumulation mode are more distrib-

uted (2.6 P GSDA P 2.3) than the particles in the coarse
mode (1.5 P GSDC P 1.4). This can be attributed to the dif-

ference in aerosols origins and their residence time. The accu-
mulation mode is formed by gas to particle conversion through
chemical reactions. This process is affected strongly by the

concentration of some impurities in the atmosphere such as
sulfur and nitrogen oxide. The particles of this type grow faster
than particles in the coarse mode. On the other hand the resi-

dence time of the particles in coarse mode is short (high depo-
sition velocity), where there is no chance for these particles to
grow by coagulation to produce abroad size distribution.
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Fig. 6b Variation of particle mass concentration, temperature

and relative humidity at industrial area of Samalut.
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Elemental mass concentration of aerosols

Average mass concentrations of the elements are shown in
Fig. 6a. The mean concentration ranged from 0.42 ng/m3 to

89.62 ng/m3. Aerosol concentrations varied depending on local
sources and meteorological conditions. The highest concentra-
tion is obtained for Fe (89.62 ng/m3) followed by K (25.65 ng/

m3), Cu (2.99 ng/m3), Mn (2.09 ng/m3), Pb (1.68 ng/m3) fol-
lowed by Ca (0.52 ng/m3) and the lowest is Ba (0.42 ng/m3).
The high concentration of Fe is probable due to re-suspension

of mountains local dust [1] where sampling area is character-
ized by an industrial nature as it is surrounded by the quarries
and the cement plant. The low concentration of Ba is due the
absence of the main source responsible for the emission of Ba

in the sampling area as the main source of barium in aerosols is
the painting works of motor vehicles [17].

In general, Fe, Mn and Pb were associated with natural and

industrial-related elements suggesting both origins. The possi-
ble industrial sources of Fe and Mn are ferromanganese pro-
duction plants, steel and cement industries [18,19]. Another

possible source of Fe is motor vehicle emissions, Re-suspended
soil, traffic and Heavy oil combustion [20,21].

Correlation analyses have been conducted and they are pre-
sented in Table 2. The correlations indicate a potential com-

mon origin, especially for Cu/Fe, Cu/Pb and Fe/Pb having
correlation coefficient values higher than 0.9. A strong positive
correlation between two elements indicates that the character-

istics and origin of emission for both elements may be similar.
Fig. 6b shows the variation of mass concentration of aero-

sol particles with average metrological observations of ambient

temperature and relative humidity from August 2012 to
Table 2 Matrix of correlation coefficients among different element

Ba Ca K

Ba 1

Ca �0.72118 1

K �0.65456 0.238743 1

Cu 0.033387 0.658145 �0.23821
Fe 0.010859 0.661361 �0.50729
Mn �0.90521 0.358443 0.731935

Pb 0.01526 0.661321 �0.49965
January 2013 at industrial area of Samalot (El-Minia). In the
size range of Berner impactor the mean mass concentration
of aerosols is ranged from 215 ± 14.6 lg/m3 (in August

2012) up to 550 ± 24 lg/m3 (in December 2012) with mean
value 315 ± 17.4 lg/m3. This value is nearly close to the
results obtained by EL-Saied [16]; 275 lg/m3 (in Cairo) and
288 lg/m3(in Tanta).

The mass concentrations are nearly changed inversely to
the air temperature. At high temperature, especially when the
weather is calm, air stratus near the surface of the earth move

upward convection currents, and then the dust will distribute
vertically at large area. The humidity plays an important role
in the particle growth that affects on the particle deposition.

Conclusions

In this study, characteristics of aerosol particles were reported

in industrial area of Samalut city (El-minia/Egypt) using low
s.

Cu Fe Mn Pb

1

0.907677 1

�0.44964 �0.41891 1

0.91531 0.999822 �0.42491 1
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pressure Berner cascade impactor as an aerosol sampler. Seven
elements were investigated including Ca, Ba, Fe, K, Cu, Mn
and Pb using atomic absorption technique. The mean mass

concentrations of the elements ranged from 0.42 ng/m3 to
89.62 ng/m3. The highest concentration is obtained for Fe
(89.62 ng/m3) followed by K (25.65 ng/m3), Cu (2.99 ng/m3),

Mn (2.09 ng/m3), Pb (1.68 ng/m3) followed by Ca (0.52 ng/
m3) and the lowest is Ba (0.42 ng/m3). The mass size distribu-
tions of the investigated elements were bi-modal log normal

distribution corresponding to the accumulation and coarse
modes.

The enrichment factors indicate the influence of the signif-
icant sources in the investigated area. The investigated ele-

ments (K, Cu, Mn, Ca and Ba) have EF less than 10
suggesting that they are attributed to soil and dust sources.
Fe has a unity EF which reveals a strong impact of a natural

component. Pb showed an EF higher than 10 suggesting that
Pb is emitted mainly from anthropogenic sources.
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