The Structure of Barley α-Amylase Isozyme 1 Reveals a Novel Role of Domain C in Substrate Recognition and Binding: A Pair of Sugar Tongs

Xavier Robert,1 Richard Haser,1,* Tine E. Gottschalk,2 Fabien Ratajczak,3 Hugues Driguez,2 Birte Svensson,2 and Nushin Aghajari1

1Laboratoire de BioCristallographie Institut de Biologie et Chimie des Protéines UMR 5086-CNRS/UCBL1 7 Passage du Vercors F-69367 Lyon cedex 07 France
2Department of Chemistry Carlsberg Laboratory Gamle Carlsberg Vej 10 DK-2500 Copenhagen Valby Denmark
3Centre de Recherche sur les Macromolécules Végétales CNRS (affiliated with Université Joseph Fourier) BP 53 F-38041 Grenoble France

*Correspondence: r.haser@ibcp.fr

Summary

Though the three-dimensional structures of barley α-amylase isozymes AMY1 and AMY2 are very similar, they differ remarkably from each other in their affinity for Ca2+ and when interacting with substrate analogs. A surface site recognizing maltoligosaccharides, not earlier reported for other α-amylases and probably associated with the different activity of AMY1 and AMY2 toward starch granules, has been identified. It is located in the C-terminal part of the enzyme and, thus, highlights a potential role of domain C. In order to scrutinize the possible biological significance of this domain in α-amylases, a thorough comparison of their three-dimensional structures was conducted. An additional role for an earlier-identified starch granule binding surface site is proposed, and a new calcium ion is reported.

Introduction

α-amylases (1,4-α-D-glucan glucanohydrolase; EC 3.2.1.1) are monomeric enzymes widely occurring in animals, plants, and microorganisms. They catalyse the hydrolysis of internal α-D-(1,4)-glucosidic linkages in starch (amylose and amylopectin), glycogen, and related oligo- and polysaccharides to produce maltodextrins, malto-oligosaccharides, and glucose. Seed germination is triggered by an increase in temperature and humidity and causes the embryo to synthesize the phytohormone gibberellic acid, which induces de novo synthesis of α-amylase and an array of other hydrodases (Jones and Jacobsen, 1991). The progressive release of sugars from the storage starch provides energy to the growing plantlet.

In germinating barley seeds, different α-amylase isozymes, encoded by two multigene families and referred to as AMY1 and AMY2, are distinguished (Jones and Jacobsen, 1991; Rogers, 1985b; Rogers and Milliman, 1983). Whereas the two isozymes, which contain 414 and 403 amino acid residues, respectively, display 80% sequence identity, they are very distantly related to α-amylases from microorganisms and animals (Rogers, 1985a). Indeed α-amylases from different sources have only nine identical residues (MacGregor et al., 2001).

Despite the high sequence identity, AMY1 and AMY2 show distinctly different physicochemical and biochemical properties. AMY1 is known as the low-pI (pI = 4.9) isozyme, and AMY2 is known as the high-pI (pI = 5.9) isozyme (Jones and Jacobsen, 1991). AMY1 has highest affinity for calcium ions (Bertof et al., 1984; Bush et al., 1989; Rodenburg et al., 1994), is the most stable at acidic pH (Rodenburg et al., 1994), and is the least stable at elevated temperature (Bertof et al., 1984). Moreover, AMY1 has the highest affinity and activity toward starch granules (MacGregor and Ballance, 1980; MacGregor and Morgan, 1986; Søgaard and Svensson, 1990), whereas, on soluble substrates (Ajandouz et al., 1992; MacGregor et al., 1994; Søgaard and Svensson, 1990), AMY1 still has the highest affinity, but AMY2 has the highest turnover rate. Finally, a most remarkable difference is the unique capacity of AMY2 in binding the endogenous bifunctional inhibitor BASI (barley α-amylase/subtilisin inhibitor) (Abe et al., 1993; Leah and Mundy, 1989; Mundy et al., 1983; Sidenius et al., 1995; Svendsen et al., 1986).

It has been shown earlier, by UV difference spectroscopy, differential labeling, site-directed mutagenesis, and crystallography (Gibson and Svensson, 1987; Kadziola et al., 1998; Søgaard and Svensson, 1993), that AMY1 contains a separate surface binding area on the basis of two contiguous tryptophans, Trp278 and 279 (Trp276 and 277 in AMY2). This site has low affinity for acarbose (Kd = 5 mM) and binds β-cyclodextrin in competition with starch granules, and the Trp279Ala mutant has ten- and three-fold-reduced affinity for starch granules and β-cyclodextrin, respectively (Søgaard et al., 1993). No mutant was obtained at Trp278, which is invariant in cereal α-amylases (Søgaard et al., 1993). Sequence comparison suggests that this starch binding site is unique to α-amylases from higher plants, whereas other surface binding sites are reported in certain microbial or mammalian enzymes (Brzozowski et al., 2000; Larson et al., 1994; Qian et al., 1995).

Here we report the first crystal structures of native AMY1 and AMY1 in complex with the substrate analog, methyl 4′,4‴-trithiomaltotetraose, henceforth referred to as thio-DP4. These structures are compared to those of native AMY2 and AMY2 in complex with the pseudotetrasaccharide inhibitor acarbose (Kadziola et al., 1994, 1998), which is a well known transition-state analog for α-amylases and numerous other α-glucosidase hydrodases and transferases (Truscheit et al., 1981). The
structural analysis carried out here will focus on calcium ion and oligosaccharide binding.

Results and Discussion

Overall Structure

Barley α-amylase 1 (AMY1) displays the overall form of an ellipsoid, with dimensions of approximately 68 Å × 53 Å × 36 Å. The three-dimensional truncated structure consisting of 404 amino acid residues is very similar to that of AMY2 (Kadziola et al., 1994) (rmsd for main chain atoms is 0.63 Å) and has all side chains clearly defined. A few loops differ slightly in spatial localization (Robert et al., 2002b). Because of the high-resolution data, sixteen residues displaying double conformations have been identified. Among these, Met53, Arg183, and Met298 have been reported as being important in substrate binding at the active site cleft (André et al., 1999; Kadziola et al., 1998; Matsui and Svensson, 1997; Mori et al., 2001, 2002). A truncated form (AMY1Δ9) in which residues 406–414 were eliminated to obtain a C terminus matching that of AMY2 was used for crystallization and structure determination (Robert et al., 2002a). As severe difficulties in crystallizing both wild-type (Svensson et al., 1987) and recombinant full-length AMY1 (Robert et al., 2002a) were overcome with AMY1Δ9, the C-terminal segment in AMY1 appears to be very flexible or highly disordered. The C-terminal Asn405 in AMY1Δ9 was not included in the structure because of lacking 2Fo – Fc and Fo – Fc electron density.

In the refined 1.5 Å resolution AMY1 structure, nine molecules of ethylene glycol (used as cryoprotectant) and 809 water molecules are present. Finally, the crystal structure of full-length AMY1 has also been solved, but its refinement was not completed because of medium quality data to 2.5 Å resolution (Robert et al., 2002a). The three-dimensional structure of full-length AMY1 is the same as that of AMY1Δ9, with the exception of a few residues that were not defined in the electron density map, as reflected by the rmsd on main chain atoms of 0.53 Å. Hereafter, we only deal with the recombinant truncated form, which will be referred to as AMY1.

AMY1, as do the vast majority of known α-amylase structures, contains three domains, including a major central domain with a parallel (β/α)8 barrel super-secondary structure (domain A) (Robert et al., 2002b). As in AMY2, domain A differs from the classical TIM barrel (Barker et al., 1975), by having three additional α helices, A-α26α, A-α27α, and A-α28α, extending from β strands A-β6, A-β7, and A-β8, respectively (Figure 1). An irregular loop of 65 residues (domain B) bulges from the (β/α)8 barrel between β6 and α5 and forms an antiparallel twisted β sheet with the protruding domain A loop A-β5-β6, which is considered as an integral part of domain B. Although AMY1 has a higher affinity for calcium ions than does AMY2 (Bush et al., 1989), domain B in both isozymes binds three Ca2+ ions (Ca90, Ca91, and Ca92), which have been proposed to be critical for folding and conformational stability and, hence, for the enzyme activity (Bertoft et al., 1984; Bush et al., 1989). The overlay of AMY1 and AMY2 structures shows that the only difference between these Ca2+ binding sites is the presence of an additional water molecule (Wat788) as a ligand for Ca92 in AMY1 (Robert et al., 2002b). This may very well be explained by the lower-resolution data of AMY2, since a water molecule with low occupancy was reported, but not included in the three-dimensional structure of AMY2 (Kadziola et al., 1994). Finally, the 61-residue-long C-terminal domain (domain C) is organized as a five-stranded antiparallel β sheet. The connection between β strands C-β3 and C-β4 is ensured by a long transverse loop protruding from the plane of the β sheet as in AMY2. Hereof results a topology where β strands C-β1, C-β3, and C-β4 are parallel and run antiparallel to C-β2 and C-β5. The overall 3D structure of the AMY1/thio-DP4 complex is highly similar to that of the free enzyme but contains an extra Ca2+ ion located in the active site, as described later.

Analysis of the Catalytic Site Reveals a Fourth Ca2+ Ion in AMY1/Thio-DP4

The three catalytic residues in AMY1, Asp180, Glu205, and Asp291, are perfectly superimposable with their homologs in AMY2 (Figures 2A and 2B). Analysis of the active site was focused on residues for which counterparts bind acarbose in the complex with AMY2 (Kadziola et al., 1998): Tyr51, His92, Arg177, Asp179 (catalytic), Lys182, Glu204 (catalytic), Trp206, Ser208, His288, and Asp289 (catalytic). These residues are conserved in AMY1, with the exception of Lys182AMY1 and Ser208AMY2 being replaced by Arg183AMY1 and Asn209AMY1, respectively. In AMY1 the side chains of Arg183 and Asn209 are oriented in the same direction, while the corresponding AMY2 side chains, Lys182 and Ser208, point in opposite directions (Figure 2B). A total of 15 hydrogen bond contacts were established between enzyme and the inhibitor in the active site cleft of AMY2/acarbose (Kadziola et al., 1998). Whereas only water molecules are present in the catalytic site in native AMY1, examination of the electron density in the active site of the AMY1/thio-DP4 complex surprisingly revealed no trace of the thio-DP4 sugar but did reveal a Ca2+ ion (Ca503). This Ca2+ site has been confirmed in AMY1/thio-DP4 by an anomalous difference Patterson map, which clearly showed peaks for Ca500, Ca501, and Ca502 as a good internal reference. The lack of sugar binding is in agreement with the thio-DP4 showing no inhibition of the AMY1-catalyzed hydrolysis (M.T. Jensen and B.S., unpublished data). It is worth mentioning that Ca503, though it is not directly superimposable, is located at the level of the interglycosidic nitrogen in the complex AMY2/acarbose (Kadziola et al., 1998), i.e., between subsites –1 and +1 (Figure 2B). Furthermore, it is at exactly the same position as the fully hydrated Ca2+ ion present at the protein interface in AMY2/BASI (Vallée et al., 1998). One distinct difference between Ca503 and its counterpart in AMY2/BASI is the spatial organization of the surrounding water molecules. In AMY1/thio-DP4, the five water molecules are organized as a regular pentagon, with Ca503 at the center (Figure 2A). The sixth water molecule is located above Ca503, the ensemble thus defining a pyramid with a pentagonal base. This difference in the organization of water molecules in the two structures may be due to the water molecules being forced to adopt another ar-
Sugar and Calcium Binding Sites in α-Amylases

Figure 1. Sequence Alignment of AMY1 and AMY2

Secondary structures of the two isozymes are indicated above the alignment and colored as a function of domains: domain A, blue; domain B, green; domain C, red. β strands, arrows; α helices, helices. Catalytic residues are highlighted in blue. Residues in double conformation in the 3D structure of AMY1, gray stars. Ligands to calcium ions are indicated below the sequence by an asterisk, whereas ligands to ethylene glycol molecules in the native structure are indicated with the caret (^) symbol. For both types of ligand, distances shorter than 3.2 Å are indicated in red, and distances between 3.2 and 4.0 Å are indicated in black.

rangement in the absence of BASI, to fill the space around Ca503 and maximize the contact with the neighboring amino acid side chains. Surprisingly, no electron density corresponding to a Ca2+ ion was observed in the native AMY1 structure, and the water molecules were organized quite differently than those in the AMY1/thio-DP4 complex. At present, Ca503 in this complex cannot be explained by a local structure rearrangement compared to the native AMY1 structure or by a difference in crystallization conditions. It should be mentioned that the AMY1 stock solution contains 100 mM CaCl2, leading to a concentration of 40 mM in the drop (Robert et al., 2002a), which was higher than the CaCl2 concentration in the thio-DP4 soaking experiment. Thus, whether this active site calcium has a role of a modulator or is related to a local pH variation remains to be clarified. Ca2+ was demonstrated to exert an isozyme-specific effect on the activity of AMY1 and AMY2 toward starch (Rodenburg et al., 1994, 2000; Juge et al., 1995). While AMY1 has the highest affinity for Ca2+ of the two isozymes (Bush et al., 1989), it also shows variation in the absence of BASI, to fill the space or is related to a local pH variation remains to be clarified. Ca2+ was demonstrated to exert an isozyme-specific effect on the activity of AMY1 and AMY2 toward starch (Rodenburg et al., 1994, 2000; Juge et al., 1995). While AMY1 has the highest affinity for Ca2+ of the two isozymes (Bush et al., 1989), it also shows variation in activity, the maximum activity being in the range of 0.02–1.0 mM CaCl2. AMY2, in contrast, has highest activity at 10–15 mM CaCl2. At these higher concentrations the activity of AMY1 declines, and, eventually, at 50 mM, very low residual activity is shown for both isozymes.

The AMY1 structure contains a water-filled pocket formed by a chain of water molecules (Wat603, Wat605, Wat625, Wat755, Wat626, and Wat607), running from the active site toward the interior of the protein. Com-
Figure 2. Active Site Views
(A) Interactions between Ca503 and the catalytic residues in AMY1. Calcium ion, green sphere; water molecules, red spheres; hydrogen bonds, dashed blue lines; coordination bonds, plain cyan lines. Distances are in angstroms.
(B) Superimposition of active sites of the AMY1/thio-DP4 and AMY2/acarbose complexes. AMY1, purple; AMY2, blue. The acarbose fragment bound to AMY2 is shown in ball and stick with standard color-coding. Ca503, green sphere. Labels correspond to AMY2 numbering.

pared to AMY2, which also displays this water pocket (Kadziola et al., 1998), an additional water molecule (Wat 755) was located. In AMY2 as well as in the AMY2/acarbose complex, Wat607, which bridges the carboxylate groups of two catalytic residues, Glu204 and Asp289, was proposed as a good candidate for being the so-called “catalytic” water molecule in the hydrolytic reaction (Kadziola et al., 1998). A similar pocket was observed in Ps. haloplanctis α-amylase (Aghajari et al., 1998b).

The Starch Granule Binding Surface Site
In the structure of AMY1/thio-DP4, two rings from the tetrasaccharide stack onto a pair of consecutive tryptophans, Trp278 and Trp279 (Figure 3), also known as the starch granule binding surface site (Gibson and Svensson, 1987; Kadziola et al., 1994, 1998; Søgaard et al., 1993). Substitution of the interglycosidic oxygen atoms by sulphur in thio-DP4 (Figure 4A) renders this sugar noncleavable by α-amylases. The fact that only electron density corresponding to two of four rings is observed at this site may be a consequence of a disordered arrangement of the two remaining sugar rings. Indeed, this surface site is highly exposed to the solvent, and no symmetry-related molecule is present to stabilize the bound thio-DP4 sugar. Though the electron density is rather poor around the sugar rings, it clearly reveals the presence of the interglycosidic sulphur atom. Besides the hydrophobic stacking to the indole rings of Trp278 and Trp279, the two rings of thio-DP4 form six hydrogen bonds to Trp278 and neighboring residues in the structure (Gln227 and Asp234). A disaccharide unit also stacks onto these tryptophans (Trp278 and Trp277 in AMY2) with five hydrogen bond interactions in the structure of AMY2/acarbose (Kadziola et al., 1998), but, even though the latter complex is solved at 2.8 Å, versus 2.0 Å for AMY1/thio-DP4, the electron density for the disaccharide unit in the structure of AMY2/acarbose is better defined than that for the disaccharide in the thio-DP4 complex structure. The differences in electron density quality for the ligand molecules in these two complexes may be explained by the variation in geometries of substrate analogs, in particular, the angle between the two successive sugar rings. This angle, defined by C1 of ring A in acarviosine (see Figure 3B), is 125°. The corresponding angle in the bound thio-DP4 is smaller and close to 100° because of the interglycosidic sulphur atom. Besides...
Sugar and Calcium Binding Sites in α-Amylases

Figure 3. Overall Structure of AMY1 in Complex with Thio-DP4
Calcium ions, green spheres. The three upper calcium ions are those found both in AMY1 and AMY2 (Ca500, Ca501, and Ca502). The fourth Ca503 is located close to the center of the (i/i)6 barrel, where it occupies the active site (see Figures 2A and 2B). Thio-DP4 substrate analog fragments are shown as surface representations. To the left, the starch granule binding surface site on domain A is shown with the two tryptophan residues (Trp278 and Trp279) highlighted in red. In domain C (bottom part of the figure), an entire thio-DP4 molecule is curved around Tyr380 at the level of the sugar tongs.

than the smaller angle of 100° in thio-DP4. The closer the planes determined by the two indole rings and the plane of the sugar rings (in chair form) are to being ideally parallel, the stronger the forces in the hydrophobic stacking (Quiocho, 1989). It seems that the ideal angle of the glycoside bond for this interaction is between 120° and 135°.

This surface binding site seems to possess the special capacity of selecting substrates, according to their geometrical characteristics, probably governed by the surroundings of this site. Indeed, the two tryptophans adopt a locked conformation because of a very tight packing with neighboring residues (Arg226, Gln227, Val230, Asp234, Pro280, and Lys282). Owing to this environment, the side chains of Trp278 and Trp279 are restrained in their orientations. We propose that this ensemble constitutes a “geometric filter” that favors binding of structurally complementary molecules. If this hypothesis is correct, it may explain why thio-DP4 is lacking in the active site.

A Tyrosine Essential for a New Sugar Binding Site in Domain C: The “Sugar Tongs”
In the AMY1/thio-DP4 complex, electron density corresponding to an entire molecule of thio-DP4 was observed in the vicinity of Tyr380 in domain C. In contrast to the surface binding site described above, the electron density at this second surface site was well defined and continuous, including all four sugar rings and leaving doubt about neither the orientation of this tetrasaccharide nor the nature of its atoms. As seen in Figure 4C, nine direct hydrogen bonds are formed between sugar rings and AMY1 residues Lys375, Tyr380, Asp381, Val382, His395, and Asp398, where Val382 and Asp398 interact with oxygen atoms of thio-DP4 via their peptide nitrogen. Moreover, the carbonyl oxygen in Tyr380 makes direct hydrogen bonds to two hydroxyl groups from the sugar and several hydrophobic contacts to Thr392, Tyr399, and Trp402, whereas the phenol ring makes five hydrophobic contacts to the two sulphur atoms of the trisaccharide unit at the reducing end (Figure 4C). Finally, the glucose unit at the nonreducing end extends into the solvent and makes one hydrogen bond to the protein (Asp398) and two hydrophobic contacts with Tyr380. This explains the high average B factor for this ring [57.9 Å²] as compared to those of the other three others (32.0 Å², 14.4 Å², and 24.6 Å²) being stabilized through a higher number of interactions with the protein. Remarkably, all these interacting amino acid residues exist in AMY2, with the exception of Thr392, which is a valine in AMY2, but this does not seem to be determinant for why only AMY1 binds maltooligosaccharides to domain C.

Of these residues Tyr380 clearly has a key role in the binding of thio-DP4 to domain C, since, out of a total of 17 contacts to the ligand, this residue makes 8 (5 hydrophobic contacts and 3 hydrogen bonds). The critical role of Tyr380, is emphasized by the superimposition of the structures of native AMY1 on AMY1/thio-DP4, showing that Tyr380 has moved in the complex to entrap the sugar (Figure 5). The comparison of the two structures shows that the C6 and the phenol oxygen of Tyr380 shift 1.2 and 3.1 Å, respectively. The short loop preceding Tyr380 is flexible in AMY1, whereas it seems more restrained in AMY2, with Pro376 (Ser378 in AMY1) only two positions from Tyr380. The residue at this position (Ser378, Pro376, Asp379) is thus proposed to be a major determinant of an isozyme-specific difference in the flexibility of this loop, which may control maltooligosaccharide binding to domain C.

Other clear differences are found between the two isozymes in domain C. One of the most remarkable is a large negatively charged surface area in AMY1 close to Tyr380, which stems from Asp381 (see Figure 5C). In AMY2 the side chain of the corresponding Asp379 is oriented away from Tyr380, while, in AMY1, Asp381 has the same orientation as Tyr380. Subtle differences in the backbone conformation and, particularly, in the peptide bonds from Asp381, Val382, and Gly383 seem to cause these differences in orienta-
Structure Comparison of C Domains from Different α-Amylases

To further analyze the implication of domain C in maltooligosaccharide binding, we compared the structures of C domains in AMY1, AMY2, and ten α-amylases from different species. Domain C in α-amylase structures solved to date is mostly composed of antiparallel β strands, and Tyr380 is only present in AMY2 (Tyr378) (Figure 6). Furthermore, among the set of compared structures, AMY1 and AMY2 have the smallest domain C, with five β strands, whereas those in α-amylases from B. licheniformis and B. stearothermophilus have seven β strands, and those from A. niger, A. oryzae, Ps. Haloplanctis, and B. subtilis have eight β strands. Finally, insect (T. molitor) and mammalian α-amylases (human salivary, human pancreas, and porcine pancreas) have ten β strands (Figure 6). The smaller structural organization seems to be one of the major determinants of the ability of domain C in AMY1 to bind sugar molecules.

These studies show that α-amylases from B. licheniformis and B. stearothermophilus in general display very different spatial organization, despite the apparent secondary structure conservation in the alignment, and it is impossible to superimpose the secondary structure elements succeeding β1 with those in the ten other α-amylases (Figure 6). For the ten remaining structures, the major difference is that β4 in AMY1 and AMY2 is not entirely superimposed with β strands in the other enzymes, since, spatially speaking, this one β strand in AMY1 and AMY2 corresponds to two separate β strands in the other α-amylases (Figure 6).

Careful examination of the topologies shows that the eight α-amylases that are comparable to AMY1 and AMY2 contain either two or three additional β strands, all inserted between β4 and β5. These eight enzymes, however, share two well-superimposed β strands (Figure 6, purple and dark green). This motif thus character-
Figure 5. Close-up of the Sugar Tongs
(A) Close-up of the sugar tongs in AMY1. The electron density (2Fo - Fc map contoured at 1σ) is only shown for the thio-DP4 substrate analog (purple). The methylated hydroxy group at the reducing end is seen to the right. All four sugar rings of the substrate analog are present in the electron density. Tyr380 involved in binding, pink.

(B) Close-up of the sugar tongs and Tyr380_{AMY1}/Tyr378_{AMY2} side chain positions in native states or in complex with substrate analogs. Tyrosine in yellow corresponds to the native AMY2 structure, in blue to AMY2/acarbose, in green to native AMY1, and in orange to AMY1 in complex with the thio-DP4 substrate analog, which is shown in ball and stick representation with standard color-coding.

(C) Comparison of the domain C surface of, from left to right, AMY1/thio-DP4, native AMY1, and AMY2 colored as a function of charges. Tyr380_{AMY1}/Tyr378_{AMY2}, white arrow; the plane defined by the five antiparallel β strands, green line (see also Figure 7). Asp381_{AMY1}/Asp379_{AMY2}, yellow arrow. Negative charges, red; positive charges, blue. Representations are generated with the program GRASP (Nicholls et al., 1991) and are on the same scale.

(D) Superimposition of the C domain of AMY1/thio-DP4 on that of AMY2. AMY1/thio-DP4, purple; AMY2, blue. Thio-DP4 is shown in ball and stick presentation with standard color-coding.

Figure 6. Primary and Secondary Structure Alignment of 12 α-Amylase C Domains from Different Species with a Maltotetraose-Forming Amylase
Each sequence is labeled by the Protein Data Bank entry code from which it has been extracted. Secondary structures are presented above the alignment and colored as a function of their spatial superimposability: structures superimposed or located in close vicinity are shown in the same color. β strands, arrows; α helices, helices; turn, T. Labels β1–β5 and γ1 (γ being helices with less than five residues) are attributed to AMY1 (1HT6). Gaps inserted in the sequence alignment are indicated by dots. Tyr380 in AMY1 numbering and its counterpart in AMY2 are highlighted in yellow, and blue boxes contouring red letters indicate most-homologous residues (or regions) in the sequence alignment.
Figure 7. Domain C from Different Amylases Superimposed on AMY1
AMY1 is presented in the color code from the sequence alignment in Figure 6, with the Tyr380 side chain highlighted in orange. From top to bottom are shown 1HSA, 1AQH, and 1GCY, all in cyan, with the β strand blocking the access to the sugar tongs site in AMY1 in dark green (see Figure 6).

main C in AMY1. Thus, in AMY1, the pair of sugar tongs with Tyr380 situated at the top of the domain is located between β3 and β4 and immediately precedes the small helix α1 in a region without particular secondary structure. The basis of the pair of sugar tongs is constituted by the part of the C domain that comprises the motif β4/turn/β5 forming an antiparallel β sheet. The loop containing Tyr380 is perpendicular to this antiparallel β sheet, and, together, they define a small cavity where sugars can bind and wind around Tyr380 (Figure 5). Residues 386–390 connecting α1 and β4 form a barrier for the maltooligosaccharide to adopt the curvature seen in Figure 5, and Tyr380 undergoes a significant positional shift upon sugar binding.

In conclusion, the presence of Tyr380 in a flexible region seems mandatory, but not sufficient, for creating a sugar binding site in domain C in AMY1. In addition to the flexible loop (Ser378–Pro387), an antiparallel β sheet motif (β4 and β5) is required. It appears that β4 is highly specific to AMY1 and AMY2, although its N- and C-terminal segments can be structurally aligned with two distinct β strands in certain other α-amyloses (Figure 6). Furthermore, a β strand (Figure 6, dark green), inserted in α-amyloses different from AMY1 and AMY2 and preceding the terminal β strand, β5, in AMY1 (Figure 6, gray), prevents formation of a binding site equivalent to the pair of sugar tongs in AMY1. Indeed, this β strand and, to a minor extent, the preceding one (Figure 6, purple) shortcut the domain C binding site in AMY1 and sterically hinder access to the sugar tongs (Figure 7).

Finally, we have compared domain C of AMY1 with the corresponding domain of the maltotetraose-forming amylase from Pseudomonas stutzeri (Mezaki et al., 2001). Interestingly, though this latter is an exo-acting α-amyrase, its domain C is very similar in terms of tertiary structure to that of AMY1 (rmsd of 1.05 Å). As concerns their size, domains C of AMY1 and of the maltotetraose-forming amylase have 61 and 56 amino acid residues, respectively, and their five β strands are nearly perfectly superimposed. No β strand obstructs a hypothetical sugar tongs binding site, as seen in most of the enzymes compared in this study. However, in the three-dimensional structure of the maltotetraose-forming amylase, no tyrosine or other hydrophobic residue was found at a location comparable to Tyr380amy1. Moreover, the side chain of Arg414 in this enzyme seems to prevent the formation of a sugar tongs-like binding site by blocking the accessibility and preventing the binding of a polysaccharide chain.

So far, AMY1 appears to be unique among α-amyloses in its capacity of binding maltooligodextrines and, probably, polysaccharide substrates in domain C. Though domain C of AMY2 is highly similar, this binding site does not exist in AMY2. Pro376amy2 (Ser378amy1) possibly impedes the loop mobility necessary for accommodation of the sugar, and mutational analysis of structural requirements for sugar binding in the Tyr380 region has been initiated. The structure of the AMY1/thio-DP4 complex thus unveils a possible biological role of domain C, characteristic of the AMY1 type of plant α-amyloses.
Table 1. Data Collection and Refinement Statistics for Native AMY1 and AMY1/Thio-DP4

<table>
<thead>
<tr>
<th></th>
<th>Native AMY1</th>
<th>AMY1/Thio-DP4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength (Å)</td>
<td>0.9761</td>
<td>1.5418</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Cell dimensions (Å) a</td>
<td>a = 88.36</td>
<td>a = 93.4</td>
</tr>
<tr>
<td></td>
<td>b = 72.82</td>
<td>b = 72.1</td>
</tr>
<tr>
<td></td>
<td>c = 61.74</td>
<td>c = 60.9</td>
</tr>
<tr>
<td>Space group</td>
<td>P2_12_2_1</td>
<td>P2_12_1_1</td>
</tr>
<tr>
<td>Resolution range (Å)</td>
<td>41.6–1.5 (1.54–1.5)</td>
<td>46.6–2.0 (2.11–2.0)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>98.7 (97.3)</td>
<td>96.7 (96.7)</td>
</tr>
<tr>
<td>Total number of reflections</td>
<td>271,695</td>
<td>83,778</td>
</tr>
<tr>
<td>Number of unique reflections</td>
<td>63,366</td>
<td>27,556</td>
</tr>
<tr>
<td>Redundancy</td>
<td>4.3 (3.5)</td>
<td>3.0 (3.0)</td>
</tr>
<tr>
<td>Rsym (%)</td>
<td>4.5 (11.9)</td>
<td>12.4 (47.6)</td>
</tr>
<tr>
<td>Overall R(Fo − Fc)</td>
<td>13.3 (6.2)</td>
<td>5.7 (1.6)</td>
</tr>
<tr>
<td>Rfree (%)</td>
<td>13.6 (14.4)</td>
<td>17.1 (20.8)</td>
</tr>
<tr>
<td>Rfree (%)</td>
<td>16.3 (17.3)</td>
<td>21.9 (26.0)</td>
</tr>
<tr>
<td>Bond lengths (Å)</td>
<td>0.017</td>
<td>0.012</td>
</tr>
<tr>
<td>Bond angles (°)</td>
<td>1.70</td>
<td>1.34</td>
</tr>
</tbody>
</table>

Outermost shell values are indicated in parentheses.

* Rfree = \(\sum |F_{o} - F_{c}| / \sum |F_{c}| \), where k is a scaling factor.

** Experimental Procedures **

Crystallization, Data Collection, Processing, and Structure Refinement

AMY1.9 (herein referred to as AMY1) was produced by heterologous expression in *Pichia pastoris* and crystallized as described earlier (Robert et al., 2002a). The AMY1/thio-DP4 complex was obtained by soaking a crystal in 20% polyethylene glycol 8000 containing 10 mM thio-DP4 for 24 hr.

Diffraction data for AMY1 was collected as described elsewhere (Robert et al., 2002a). Data for the AMY1/thio-DP4 complex were collected in-house on a MAR345 image plate detector, with CuKα radiation generated from a Nonius rotating anode operated at 4.4 kW and coupled to Osnic mirrors. The crystal was cryoprotected by soaking a crystal in 20% polyethylene glycol 8000 for 24 hr.

Experimental Procedures

Crystallization, Data Collection, Processing, and Structure Refinement

AMY1.9 (herein referred to as AMY1) was produced by heterologous expression in *Pichia pastoris* and crystallized as described earlier (Robert et al., 2002a). The AMY1/thio-DP4 complex was obtained by soaking a crystal in 20% polyethylene glycol 8000 containing 10 mM thio-DP4 for 24 hr.

Diffraction data for AMY1 was collected as described elsewhere (Robert et al., 2002a). Data for the AMY1/thio-DP4 complex were collected in-house on a MAR345 image plate detector, with CuKα radiation generated from a Nonius rotating anode operated at 4.4 kW and coupled to Osnic mirrors. The crystal was cryoprotected by soaking a crystal in 20% polyethylene glycol 8000 for 24 hr.

Experimental Procedures

Crystallization, Data Collection, Processing, and Structure Refinement

AMY1.9 (herein referred to as AMY1) was produced by heterologous expression in *Pichia pastoris* and crystallized as described earlier (Robert et al., 2002a). The AMY1/thio-DP4 complex was obtained by soaking a crystal in 20% polyethylene glycol 8000 containing 10 mM thio-DP4 for 24 hr.

Diffraction data for AMY1 was collected as described elsewhere (Robert et al., 2002a). Data for the AMY1/thio-DP4 complex were collected in-house on a MAR345 image plate detector, with CuKα radiation generated from a Nonius rotating anode operated at 4.4 kW and coupled to Osnic mirrors. The crystal was cryoprotected by soaking a crystal in 20% polyethylene glycol 8000 for 24 hr.
in the $F_o - F_m$ map contoured at 3 σ were examined and could be clearly described as ordered ethylene glycol molecules.

The final R factor for the native structure was 13.6%, with an R_{int} of 16.3% for all data within the 41.6–1.5 A˚ resolution range. The R factor and Rfree for the complex were 17.1% and 21.9%, respectively, for all data within the 46.6–2.0 A˚ resolution range. Table 1 gives a summary of the refinement statistics. The quality of both three-dimensional structures, in terms of geometry and coordinate errors, has been examined with the program WHATCHECK (Hooff et al., 1996).

Alignment and Figure Rendering
Sugar and Binding Sites in α-Amylases

983

