

Available online at www.sciencedirect.com

ELSEVIER

Linear Algebra and its Applications 370 (2003) 251-256

www.elsevier.com/locate/laa

On the classification of the Lie algebras L_r^s

L.A.-M. Hanna

Department of Mathematics and Computer Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait

Received 3 June 2002; accepted 14 January 2003

Submitted by G. Heinig

Abstract

Linear algebraic methods are used to classify the Lie algebras L_r^s , presented by generators and relations. They were introduced as an algebraic model for quantized Hamiltonians. © 2003 Elsevier Inc. All rights reserved.

AMS classification: 17B10; 17B81; 15A90; 35Q40; 81V80

Keywords: Lie algebra; Eigenvalues; Eigenvectors; Lie algebras isomorphism; Adjoint representation

1. Introduction

In this paper we are concerned with a class of Lie algebras introduced in [2–4] as generalizations for the coupled quantized harmonic oscillators of Hamiltonian model $H = K_0 + \lambda(K_+ + K_-)$, where the coupling parameter $\lambda \in \mathbb{R}^*$, $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ [7]. These Lie algebras depend on two parameters $r, s \in \mathbb{R}$. For any such r, s the Lie algebra L_r^s is presented by generators K_0, K_+, K_- and relations:

$$[K_+, K_-] = sK_0, \quad [K_0, K_\pm] = \pm rK_\pm, \quad \text{where } s, r \in \mathbb{R}.$$
 (1)

Note that L_2^1 is just $\mathfrak{sl}(2, \mathbb{R})$. Faithful matrix representations of least degree of L_r^s were given in [3,4]. The representations were subject to the physical requirements, namely, $K_- = K_+^{\dagger}$, and K_0 is a real diagonal operator representing energy. The Lie algebras L_1^2 and L_1^{-2} correspond to the models of the two-level optical atom and the light amplifier, respectively [1,5,6].

E-mail address: hannalam@mcs.sci.kuniv.edu.kw (L.A.-M. Hanna).

The aim of this paper is to classify the Lie algebras L_r^s from an algebraic point of view. The classification is given by the following:

Theorem 1. For every $r, s \in \mathbb{R}^*$

1. $L_0^s \simeq L_0^1$. 2. $L_r^0 \simeq L_1^0$. 3. $L_r^s \simeq L_2^1$. 4. $L_2^1 \simeq \mathfrak{sl}(2, \mathbb{R}), L_0^1, L_1^0 \text{ and } L_0^0 \text{ are non-isomorphic Lie algebras.}$

Corollary 2. A system of representatives for the isomorphism classes of the Lie algebras of the form L_r^s consists of L_2^1 , L_0^1 , L_1^0 and L_0^0 .

2. Isomorphism classes for $rs \neq 0$

Lemma 3. The Lie algebras L_r^s and L_{rs}^1 are isomorphic, where $s \in \mathbb{R}^*$ and $r \in \mathbb{R}$.

Proof. Let K'_0 , K'_+ , K'_- and K_0 , K_+ , K_- be generators of L^1_{rs} and L^s_r , respectively and satisfy (1). The mapping $\phi : L^1_{rs} \to L^s_r$, defined by, $\phi(K'_{\pm}) = K_{\pm}$ and $\phi(K'_0) = sK_0$, is a Lie algebra isomorphism. $s \neq 0$, is a necessary condition for ϕ to be onto. \Box

From Lemma 3, for the case $rs \neq 0$, it is enough to discuss the case when L_c^1 and L_d^1 are isomorphic, where $cd \neq 0$. Throughout this section the following notations are used, L_c^1 is generated by K_0 , K_+ , K_- satisfying (1), and L_d^1 is generated by K'_0 , K'_+ , K'_- satisfying (1) with $cd \neq 0$. ad u is the adjoint representation of L_c^1 assigned to $u; u \in L_c^1$ defined by ad u(v) = [u, v], for every $v \in L_c^1$.

Lemma 4. If $u = \alpha K_0 + \beta K_+ + \gamma K_- \in L_c^1$; $\alpha, \beta, \gamma \in \mathbb{R}$, then the characteristic polynomial of ad u is

$$f(\lambda) \equiv \lambda \left[\lambda^2 - c(c\alpha^2 + 2\beta\gamma) \right]. \tag{2}$$

Proof. Using (1), the matrix of ad u in the ordered basis K_0 , K_+ , K_- is

$$\begin{bmatrix} 0 & -\gamma & \beta \\ -c\beta & c\alpha & 0 \\ c\gamma & 0 & -c\alpha \end{bmatrix}. \qquad \Box$$
(3)

Lemma 5. For $cd \neq 0$, there exists a nonzero element $u \in L_c^1$, for which ad u has eigenvalues 0, d, -d. More precisely, an element $u = \alpha K_0 + \beta K_+ + \gamma K_-$ satisfies this property if and only if $c(c\alpha^2 + 2\beta\gamma) = d^2$. For such u, if U is the matrix whose columns are the eigenvectors of ad u corresponding to the eigenvalues 0, d and -d respectively, then U is of the following forms:

(i) If
$$\gamma = 0$$
 and $\alpha = \frac{d}{c}$, then

$$U = \begin{bmatrix} d & 0 & -2\beta d \\ c\beta & 1 & -c\beta^2 \\ 0 & 0 & 2d^2 \end{bmatrix}.$$
If $\gamma = 0$ and $\alpha = -\frac{d}{c}$, then

$$U = \begin{bmatrix} -d & 2d\beta & 0 \\ c\beta & -c\beta^2 & 1 \\ 0 & 2d^2 & 0 \end{bmatrix}.$$
(ii) If $\gamma \neq 0, \beta = 0$ and $\alpha = \frac{d}{c}$, then

$$U = \begin{bmatrix} d & 2d\gamma & 0 \\ 0 & -2d^2 & 0 \\ c\gamma & c\gamma^2 & 1 \end{bmatrix}.$$
If $\gamma \neq 0, \beta = 0$ and $\alpha = -\frac{d}{c}$, then

$$U = \begin{bmatrix} -d & 0 & -2d\gamma \\ 0 & 0 & -2d^2 \\ c\gamma & 1 & c\gamma^2 \end{bmatrix}.$$
(iii) If $\gamma \neq 0, \beta \neq 0$ and $\alpha = 0$, then

$$U = \begin{bmatrix} 0 & d & -d \\ \beta & -c\beta & -c\beta \\ \gamma & c\gamma & c\gamma \end{bmatrix}.$$
(iv) If $\gamma \neq 0, \beta \neq 0$ and $\alpha \neq 0$, then

$$U = \begin{bmatrix} \alpha & -2\beta(c\alpha - d) & 2\gamma(c\alpha - d) \\ \beta & -2c\beta^2 & -(c\alpha - d)^2 \\ \gamma & (c\alpha - d)^2 & 2c\gamma^2 \end{bmatrix}$$

where, $u = \alpha K_0 + \beta K_+ + \gamma K_-; \alpha, \beta, \gamma \in \mathbb{R}$.

Proof. From (2), ad *u* has eigenvalues 0, *d*, -d, if and only if, $c(c\alpha^2 + 2\beta\gamma) = d^2$.

The augmented matrix of the linear system $(ad u - dI_3)X = 0$, is

$$\begin{bmatrix} \operatorname{ad} u - dI_3 \mid 0 \end{bmatrix} \equiv \begin{bmatrix} -d & -\gamma & \beta & \mid 0 \\ -c\beta & c\alpha - d & 0 & \mid 0 \\ c\gamma & 0 & -(c\alpha + d) & \mid 0 \end{bmatrix}$$
$$\equiv \begin{bmatrix} 1 & \frac{\gamma}{d} & -\frac{\beta}{d} & \mid 0 \\ 0 & \alpha - \frac{d}{c} + \frac{\beta\gamma}{d} & -\frac{\beta^2}{d} & \mid 0 \\ 0 & \frac{\gamma^2}{d} & \alpha + \frac{d}{c} - \frac{\beta\gamma}{d} & \mid 0 \end{bmatrix}.$$

253

(4)

So, if $\gamma = 0$, then from (4), $\alpha = \pm \frac{d}{c}$. The eigenvectors corresponding to the eigenvalue *d* are

$$\begin{bmatrix} 0\\1\\0 \end{bmatrix} \quad \text{for } \gamma = 0 \text{ and } \alpha = \frac{d}{c}$$

and

254

$$\begin{bmatrix} 2d\beta \\ -c\beta^2 \\ 2d^2 \end{bmatrix} \quad \text{for } \gamma = 0 \text{ and } \alpha = -\frac{d}{c}$$

respectively. Similarly, it can be proved that,

$$\begin{bmatrix} -2d\beta \\ -c\beta^2 \\ 2d^2 \end{bmatrix} \text{ and } \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

are eigenvectors corresponding to the eigenvalue -d, for $\gamma = 0$, $\alpha = \frac{d}{c}$ and $\gamma = 0$, $\alpha = -\frac{d}{c}$, respectively. This proves (i), noticing that

$$\begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$

is an eigenvector for the eigenvalue 0.

Similarly, the proof can be completed, with the use of (4). \Box

Theorem 6. L_c^1 and L_d^1 are isomorphic, whenever $cd \neq 0$.

Proof. In order to show that L_c^1 and L_d^1 are isomorphic, it is enough to find elements $u, u_+, u_- \in L_c^1$ satisfying

$$[u, u_{\pm}] = \pm du_{\pm} \text{ and } [u_{+}, u_{-}] = u.$$
 (5)

In particular this requires ad *u* to have eigenvalues 0, *d*, -d. Lemma 5 provides all such elements *u*. As in case (i) of Lemma 5, with $\beta = 0$, choose $u = \frac{d}{c}K_0$, $u_+ = \lambda K_+$ and $u_- = 2d^2\mu K_-$. Using (1),

$$[u, u_{+}] = \left[\frac{d}{c}K_{0}, \lambda K_{+}\right] = d\lambda K_{+} = du_{+},$$

$$[u, u_{-}] = \left[\frac{d}{c}K_{0}, 2d^{2}\mu K_{-}\right] = -d(2\mu d^{2})K_{-} = -du_{-},$$

$$[u_{+}, u_{-}] = \left[\lambda K_{+}, 2d^{2}\mu K_{-}\right] = 2\lambda\mu d^{2}K_{0}.$$

Taking λ and μ such that $\lambda \mu = \frac{1}{2cd}$, we have $[u_+, u_-] = \frac{d}{c}K_0 = u$. Hence the proof of the theorem follows. \Box

 $L_2^1 \simeq \mathfrak{sl}(2, \mathbb{R})$ can be chosen as a representative for the isomorphism class of L_c^1 , for $c \neq 0$.

3. Isomorphism classes for rs = 0

Lemma 7. For any $s \in \mathbb{R}$, L_r^s has a trivial center if and only if $r \neq 0$.

Proof. Let $Z = \alpha K_0 + \beta K_+ + \gamma K_- \in L_r^s$ be a central element. Using (1), $0 = [Z, K_0] = -r\beta K_+ + r\gamma K_-$, implies that $r\beta = r\gamma = 0$. If $r \neq 0$, then $\beta = \gamma = 0$, and hence, $Z = \alpha K_0$ which is central if and only if $\alpha = 0$. Conversely, if r = 0, then K_0 generates the center of L_r^s . \Box

Lemma 8. L_0^s and L_0^1 are isomorphic, for $s \neq 0$.

Proof. It follows directly from Lemma 3. \Box

Lemma 9. L_r^0 and L_1^0 are isomorphic, for $r \neq 0$.

Proof. It can be shown that $\phi : L_r^0 \to L_1^0$, defined by $\phi(K_0) = rK'_0$ and $\phi(K_{\pm}) = K'_{\pm}$ is an isomorphism, where K_0, K_+, K_- , satisfying (1) respectively, are generators of L_r^0 and K'_0, K'_+, K'_- , satisfying (1) respectively, are generators of L_1^0 . \Box

Theorem 10. The Lie algebras L_2^1 , L_0^1 , L_1^0 and L_0^0 are nonisomorphic Lie algebras.

Proof. L_0^0 is an abelian Lie algebra. From Lemma 7, L_0^1 has a nontrivial centre, while L_2^1 and L_1^0 have trivial centre. Let K'_0 , K'_+ , K'_- , satisfying (1) respectively, be generators of L_1^0 . We have $[L_2^1, L_2^1] = L_2^1$, but $[L_1^0, L_1^0] = \mathbb{R}K'_+ + \mathbb{R}K'_- \neq L_1^0$. If $\phi : L_2^1 \to L_1^0$ were an isomorphism, then $[\phi(L_2^1), \phi(L_2^1)] = \phi(L_2^1)$ yields to the contradiction that $[L_1^0, L_1^0] = L_1^0$. \Box

Acknowledgements

The author acknowledges the fruitful discussions with Sorin Dascalescu and S.S. Hassan, the referees for valuable remarks, and the support of Kuwait University.

References

- M.A. Al-Gwaiz, M.S. Abdalla, S. Deshmukh, Lie algebraic approach to coupled-model oscillator, J. Phys. A 27 (1994) 1275–1282.
- [2] L.A.-M. Hanna, M.E. Khalifa, S.S. Hassan, On representations of Lie algebras for quantized Hamiltonians, Linear Algebra Appl. 266 (1997) 69–79.
- [3] L.A.-M. Hanna, On the matrix representation of the Lie algebras for quantized Hamiltonians and their central extensions, Riv. Mat. Univ. Parma (5) 6 (1997) 5–11.
- [4] L.A.-M. Hanna, A note on the matrix representations of the Lie algebras L_r^s for quantized Hamiltonians where rs = 0, Riv. Mat. Univ. Parma (6) 1 (1998) 149–154.

255

- [5] S.S. Hassan, L.A.-M. Hanna, M.E. Khalifa, Lie algebraic approach to Schrödinger equations for Hamiltonian models of optical atoms, in: Second Int. Conf. on Dynamic Systems and Applications, Atlanta, USA, 1995.
- [6] S.S. Hassan, M.S. Abdalla, G.M. Abd Al-Kader, L.A.-M. Hanna, Squeezing evolution with non-dissipative and dissipative SU(2) systems, J. Opt. B: Quantum Semiclass. Opt. 4 (2002) S204–S212.
 [7] R.J.C. Spreeuw, J.P. Woerdman, Optical atoms, Prog. Opt. 31 (1993) 263–319.

256