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Abstract

Linear algebraic methods are used to classify the Lie algebras L, presented by generators
and relations. They were introduced as an algebraic model for quantized Hamiltonians.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we are concerned with a class of Lie algebras introduced in [2—4] as
generalizations for the coupled quantized harmonic oscillators of Hamiltonian model
H = Ko+ MKy + K_), where the coupling parameter » € R*, R* = R\{0} [7].
These Lie algebras depend on two parameters r, s € R. For any such r, s the Lie
algebra L7 is presented by generators Ko, K, K_ and relations:

[K+, K_] =5Kp, [Ko, K+]==xrKy, wheres,r € R. @))

Note that L% is just sl(2, R). Faithful matrix representations of least degree of L?
were given in [3,4]. The representations were subject to the physical requirements,
namely, K_ = K L and K is a real diagonal operator representing energy. The Lie
algebras L% and L1_2 correspond to the models of the two-level optical atom and the
light amplifier, respectively [1,5,6].
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The aim of this paper is to classify the Lie algebras L{ from an algebraic point of
view. The classification is given by the following:

Theorem 1. For everyr, s € R*
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Corollary 2. A system of representatives for the isomorphism classes of the Lie
algebras of the form LY consists of L1, L(l), L(l) and L8.

2. Isomorphism classes for rs # 0

Lemma 3. The Lie algebras L} and L}S are isomorphic, where s € R* andr € R.

Proof. Let K{, K\, K and Ko, K;, K_ be generators of L}S and L¥, respec-
tively and satisfy (1). The mapping ¢ : L}S — L3, defined by, ¢(K\) = K+ and
¢ (K()) = sKo, is a Lie algebra isomorphism. s # 0, is a necessary condition for ¢ to
be onto. [

From Lemma 3, for the case rs # 0, it is enough to discuss the case when L é and
L Lli are isomorphic, where cd # 0. Throughout this section the following notations
are used, Lé is generated by Ko, K1, K_ satisfying (1), and L}l is generated by K,
K., K’ satisfying (1) with cd 5 0. ad u is the adjoint representation of L l assigned
tou,u € Lé defined by ad u(v) = [u, v], for every v € Lé.

Lemmad4. I[fu =aKo+ BK+ +yK_ € LZ.; o, B,y € R, then the characteristic
polynomial of ad u is

F) = A[A% = c(ca® +28y)]. )
Proof. Using (1), the matrix of ad u in the ordered basis Ko, K4+, K_ is
0 -y B
—cB  ca 0 . ] 3)
cy 0 —ca

Lemma 5. For cd + 0, there exists a nonzero element u € L i, for which adu has
eigenvalues 0, d, —d. More precisely, an element u = a Koy + K+ + y K_ satisfies
this property if and only if c(ca® + 2By) = d>. For such u, if U is the matrix whose
columns are the eigenvectors of ad u corresponding to the eigenvalues 0, d and —d
respectively, then U is of the following forms:
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() Ify =0and o = <, then

[d 0 —28d]
U=|cg 1 —cp?]|.
|0 0 2d* |
Ify =0and o = —%, then
[—d 2dB O]
U=|cB —-cB> 1
L 0 24> 0]
(i) Ify #0, B=0anda = £, then
[d 2dy O
U=|0 —2d*> 0
LcY cy2 1
Ify #0,8=0and a = —%, then
[—d 0 —2dy
U=|0 0 —24°
Lcy 1 cy2
(i) Ify #£0, B £ 0and o = 0, then
[0 d —d
U=|p —-cB —cB
Ly ¢y ¢y
@v) Ify #0, B #0and a # 0, then
[ —2B(ca —d) 2y(ca —d)
U= |8 —2¢B? —(ca — d)?
Ly (ca — d)? 2cy?

where, u = aKo+ K+ +yvK_; o, B,y € R

Proof. From (2), ad u has eigenvalues 0, d, —d, if and only if,
c(ca’ 4+ 28y) = d>.
The augmented matrix of the linear system (adu — d13)X =0, is

[adu —dI5 | 0]

[ —d -y B 0
=|—-cf ca—d 0 0

| ¢y 0 —(ca+d) | 0

B B

1 g -9 0
_ d B B
=10 CI—E+7)/ - aq 0

2
0 - a+? -8B 10
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So, if y = 0, then from (4), @ = :I:%. The eigenvectors corresponding to the eigen-
value d are

0

d
1 fory =0 and o = —
0 C
and
[ 24B d
—cﬂz fory =0 and o« = ——,
24> ¢
respectively. Similarly, it can be proved that,
[[—24B 0
—cp? and 1
| 24? 0
are eigenvectors corresponding to the eigenvalue —d, for y =0, o = % and y =0,
o=-— %, respectively. This proves (i), noticing that
o
B
4

is an eigenvector for the eigenvalue 0.
Similarly, the proof can be completed, with the use of (4). [

Theorem 6. L i and L (11 are isomorphic, whenever cd + 0.

Proof. In order to show that L! and Lé are isomorphic, it is enough to find elements
U, Uy, U_ € Lg, satisfying

[,us] =+duy and [uy,u_]=u. 5)

In particular this requires ad u to have eigenvalues 0, d, —d. Lemma 5 provides all
such elements u. As in case (i) of Lemma 5, with 8 = 0, choose u = %Ko, Uy =

AK, and u_ = 24> K _. Using (1),
[u,us] = [¢Ko. AK ;] = dAKy = duy,
[u,u_]=[9Ko,2d*nK_] = —dud*)K_ = —du_,
[ug, u_]=[rKy,2d*nK_] = 2rpd*Ko.

Taking X and p such that Ap = ﬁ, we have [uy,u_] = %Ko = u. Hence the proof
of the theorem follows. [

Lé =~ sl(2, R) can be chosen as a representative for the isomorphism class of Lg,
for ¢ £ 0.
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3. Isomorphism classes for rs = 0
Lemma 7. Foranys € R, L} has a trivial center if and only if r # 0.

Proof. Let Z=aKo+ BK+ +yK_ € L} be a central element. Using (1), 0 =
[Z,Ko] = —rBK4+ +ryK_, implies that rf =ry =0.If r £0, then B =y =0,
and hence, Z = a K¢ which is central if and only if o = 0. Conversely, if r =0,
then K generates the center of LY. [J

Lemma8. L and L(l) are isomorphic, fors + 0.
Proof. It follows directly from Lemma 3. [
Lemma 9. L(r) and L? are isomorphic, forr # 0.

Proof. It can be shown that ¢ : L(r) — L(l), defined by ¢ (K() = rK(/) and p(Ky) =
K, is anisomorphism, where Ko, K, K_, satisfying (1) respectively, are generators
of LY and Ky, K, K’ satisfying (1) respectively, are generators of L(]). O

Theorem 10. The Lie algebras L;, L(l), L? and Lg are nonisomorphic Lie algebras.

Proof. L8 is an abelian Lie algebra. From Lemma 7, L(l) has a nontrivial centre,
while L} and LY have trivial centre. Let Ky, K., K’ , satisfying (1) respectively,
be generators of L(l). We have [L}, Lé] = Lé, but [L?, L(l)] = [RK; + RK' + L(l).
If ¢ : L% — L(l) were an isomorphism, then [¢ (L%), qb(Lé)] = ¢)(Lé) yields to the
contradiction that [LY, L(l)] = L(l). O
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