Available online at www.sciencedirect.com
science (d)IREct*
LINEAR ALGEBRA

On the classification of the Lie algebras L_{r}^{s}

L.A.-M. Hanna
Department of Mathematics and Computer Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
Received 3 June 2002; accepted 14 January 2003
Submitted by G. Heinig

Abstract

Linear algebraic methods are used to classify the Lie algebras L_{r}^{S}, presented by generators and relations. They were introduced as an algebraic model for quantized Hamiltonians. © 2003 Elsevier Inc. All rights reserved.

AMS classification: 17B10; 17B81; 15A90; 35Q40; 81V80 Keywords: Lie algebra; Eigenvalues; Eigenvectors; Lie algebras isomorphism; Adjoint representation

1. Introduction

In this paper we are concerned with a class of Lie algebras introduced in [2-4] as generalizations for the coupled quantized harmonic oscillators of Hamiltonian model $H=K_{0}+\lambda\left(K_{+}+K_{-}\right)$, where the coupling parameter $\lambda \in \mathbb{R}^{*}, \mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$ [7]. These Lie algebras depend on two parameters $r, s \in \mathbb{R}$. For any such r, s the Lie algebra L_{r}^{s} is presented by generators K_{0}, K_{+}, K_{-}and relations:

$$
\begin{equation*}
\left[K_{+}, K_{-}\right]=s K_{0}, \quad\left[K_{0}, K_{ \pm}\right]= \pm r K_{ \pm}, \quad \text { where } s, r \in \mathbb{R} \tag{1}
\end{equation*}
$$

Note that L_{2}^{1} is just $\mathfrak{s l}(2, \mathbb{R})$. Faithful matrix representations of least degree of L_{r}^{s} were given in $[3,4]$. The representations were subject to the physical requirements, namely, $K_{-}=K_{+}^{\dagger}$, and K_{0} is a real diagonal operator representing energy. The Lie algebras L_{1}^{2} and L_{1}^{-2} correspond to the models of the two-level optical atom and the light amplifier, respectively $[1,5,6]$.

[^0]The aim of this paper is to classify the Lie algebras L_{r}^{s} from an algebraic point of view. The classification is given by the following:

Theorem 1. For every $r, s \in \mathbb{R}^{*}$

1. $L_{0}^{s} \simeq L_{0}^{1}$.
2. $L_{r}^{0} \simeq L_{1}^{0}$.
3. $L_{r}^{s} \simeq L_{2}^{1}$.
4. $L_{2}^{1} \simeq \mathfrak{s l}(2, \mathbb{R}), L_{0}^{1}, L_{1}^{0}$ and L_{0}^{0} are non-isomorphic Lie algebras.

Corollary 2. A system of representatives for the isomorphism classes of the Lie algebras of the form L_{r}^{s} consists of $L_{2}^{1}, L_{0}^{1}, L_{1}^{0}$ and L_{0}^{0}.

2. Isomorphism classes for $r \boldsymbol{r} \neq 0$

Lemma 3. The Lie algebras L_{r}^{s} and $L_{r s}^{1}$ are isomorphic, where $s \in \mathbb{R}^{*}$ and $r \in \mathbb{R}$.
Proof. Let $K_{0}^{\prime}, K_{+}^{\prime}, K_{-}^{\prime}$ and K_{0}, K_{+}, K_{-}be generators of $L_{r s}^{1}$ and L_{r}^{s}, respectively and satisfy (1). The mapping $\phi: L_{r s}^{1} \rightarrow L_{r}^{s}$, defined by, $\phi\left(K_{ \pm}^{\prime}\right)=K_{ \pm}$and $\phi\left(K_{0}^{\prime}\right)=s K_{0}$, is a Lie algebra isomorphism. $s \neq 0$, is a necessary condition for ϕ to be onto.

From Lemma 3, for the case $r s \neq 0$, it is enough to discuss the case when L_{c}^{1} and L_{d}^{1} are isomorphic, where $c d \neq 0$. Throughout this section the following notations are used, L_{c}^{1} is generated by K_{0}, K_{+}, K_{-}satisfying (1), and L_{d}^{1} is generated by K_{0}^{\prime}, $K_{+}^{\prime}, K_{-}^{\prime}$ satisfying (1) with $c d \neq 0$. ad u is the adjoint representation of L_{c}^{1} assigned to $u ; u \in L_{c}^{1}$ defined by ad $u(v)=[u, v]$, for every $v \in L_{c}^{1}$.

Lemma 4. If $u=\alpha K_{0}+\beta K_{+}+\gamma K_{-} \in L_{c}^{1} ; \alpha, \beta, \gamma \in \mathbb{R}$, then the characteristic polynomial of ad u is

$$
\begin{equation*}
f(\lambda) \equiv \lambda\left[\lambda^{2}-c\left(c \alpha^{2}+2 \beta \gamma\right)\right] \tag{2}
\end{equation*}
$$

Proof. Using (1), the matrix of ad u in the ordered basis K_{0}, K_{+}, K_{-}is

$$
\left[\begin{array}{ccc}
0 & -\gamma & \beta \tag{3}\\
-c \beta & c \alpha & 0 \\
c \gamma & 0 & -c \alpha
\end{array}\right]
$$

Lemma 5. For $c d \neq 0$, there exists a nonzero element $u \in L_{c}^{1}$, for which ad u has eigenvalues $0, d,-d$. More precisely, an element $u=\alpha K_{0}+\beta K_{+}+\gamma K_{-}$satisfies this property if and only if $c\left(c \alpha^{2}+2 \beta \gamma\right)=d^{2}$. For such u, if U is the matrix whose columns are the eigenvectors of ad u corresponding to the eigenvalues $0, d$ and $-d$ respectively, then U is of the following forms:
(i) If $\gamma=0$ and $\alpha=\frac{d}{c}$, then

$$
\begin{aligned}
U & =\left[\begin{array}{ccc}
d & 0 & -2 \beta d \\
c \beta & 1 & -c \beta^{2} \\
0 & 0 & 2 d^{2}
\end{array}\right] . \\
\text { If } \gamma & =0 \text { and } \alpha=-\frac{d}{c}, \text { then } \\
U & =\left[\begin{array}{ccc}
-d & 2 d \beta & 0 \\
c \beta & -c \beta^{2} & 1 \\
0 & 2 d^{2} & 0
\end{array}\right] .
\end{aligned}
$$

(ii) If $\gamma \neq 0, \beta=0$ and $\alpha=\frac{d}{c}$, then

$$
\begin{aligned}
U & =\left[\begin{array}{ccc}
d & 2 d \gamma & 0 \\
0 & -2 d^{2} & 0 \\
c \gamma & c \gamma^{2} & 1
\end{array}\right] . \\
\text { If } \gamma & \neq 0, \beta=0 \text { and } \alpha=-\frac{d}{c}, \text { then } \\
U & =\left[\begin{array}{ccc}
-d & 0 & -2 d \gamma \\
0 & 0 & -2 d^{2} \\
c \gamma & 1 & c \gamma^{2}
\end{array}\right] .
\end{aligned}
$$

(iii) If $\gamma \neq 0, \beta \neq 0$ and $\alpha=0$, then

$$
U=\left[\begin{array}{ccc}
0 & d & -d \\
\beta & -c \beta & -c \beta \\
\gamma & c \gamma & c \gamma
\end{array}\right]
$$

(iv) If $\gamma \neq 0, \beta \neq 0$ and $\alpha \neq 0$, then

$$
U=\left[\begin{array}{ccc}
\alpha & -2 \beta(c \alpha-d) & 2 \gamma(c \alpha-d) \\
\beta & -2 c \beta^{2} & -(c \alpha-d)^{2} \\
\gamma & (c \alpha-d)^{2} & 2 c \gamma^{2}
\end{array}\right]
$$

where, $u=\alpha K_{0}+\beta K_{+}+\gamma K_{-} ; \alpha, \beta, \gamma \in \mathbb{R}$.
Proof. From (2), ad u has eigenvalues $0, d,-d$, if and only if,

$$
\begin{equation*}
c\left(c \alpha^{2}+2 \beta \gamma\right)=d^{2} . \tag{4}
\end{equation*}
$$

The augmented matrix of the linear system $\left(\operatorname{ad} u-d I_{3}\right) X=0$, is

$$
\begin{aligned}
{\left[\operatorname{ad} u-d I_{3} \mid 0\right] } & \equiv\left[\begin{array}{ccc|c}
-d & -\gamma & \beta & 0 \\
-c \beta & c \alpha-d & 0 & 0 \\
c \gamma & 0 & -(c \alpha+d) & 0
\end{array}\right] \\
& \equiv\left[\begin{array}{ccc|c}
1 & \frac{\gamma}{d} & -\frac{\beta}{d} & 0 \\
0 & \alpha-\frac{d}{c}+\frac{\beta \gamma}{d} & -\frac{\beta^{2}}{d} & 0 \\
0 & \frac{\gamma^{2}}{d} & \alpha+\frac{d}{c}-\frac{\beta \gamma}{d} & 0
\end{array}\right] .
\end{aligned}
$$

So, if $\gamma=0$, then from (4), $\alpha= \pm \frac{d}{c}$. The eigenvectors corresponding to the eigenvalue d are

$$
\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \text { for } \gamma=0 \text { and } \alpha=\frac{d}{c}
$$

and

$$
\left[\begin{array}{c}
2 d \beta \\
-c \beta^{2} \\
2 d^{2}
\end{array}\right] \text { for } \gamma=0 \text { and } \alpha=-\frac{d}{c}
$$

respectively. Similarly, it can be proved that,

$$
\left[\begin{array}{c}
-2 d \beta \\
-c \beta^{2} \\
2 d^{2}
\end{array}\right] \text { and }\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

are eigenvectors corresponding to the eigenvalue $-d$, for $\gamma=0, \alpha=\frac{d}{c}$ and $\gamma=0$, $\alpha=-\frac{d}{c}$, respectively. This proves (i), noticing that

$$
\left[\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right]
$$

is an eigenvector for the eigenvalue 0 .
Similarly, the proof can be completed, with the use of (4).
Theorem 6. L_{c}^{1} and L_{d}^{1} are isomorphic, whenever $c d \neq 0$.
Proof. In order to show that L_{c}^{1} and L_{d}^{1} are isomorphic, it is enough to find elements $u, u_{+}, u_{-} \in L_{c}^{1}$ satisfying

$$
\begin{equation*}
\left[u, u_{ \pm}\right]= \pm d u_{ \pm} \quad \text { and } \quad\left[u_{+}, u_{-}\right]=u . \tag{5}
\end{equation*}
$$

In particular this requires ad u to have eigenvalues $0, d,-d$. Lemma 5 provides all such elements u. As in case (i) of Lemma 5 , with $\beta=0$, choose $u=\frac{d}{c} K_{0}, u_{+}=$ λK_{+}and $u_{-}=2 d^{2} \mu K_{-}$. Using (1),

$$
\begin{aligned}
& {\left[u, u_{+}\right]=\left[\frac{d}{c} K_{0}, \lambda K_{+}\right]=d \lambda K_{+}=d u_{+}} \\
& {\left[u, u_{-}\right]=\left[\frac{d}{c} K_{0}, 2 d^{2} \mu K_{-}\right]=-d\left(2 \mu d^{2}\right) K_{-}=-d u_{-},} \\
& {\left[u_{+}, u_{-}\right]=\left[\lambda K_{+}, 2 d^{2} \mu K_{-}\right]=2 \lambda \mu d^{2} K_{0}}
\end{aligned}
$$

Taking λ and μ such that $\lambda \mu=\frac{1}{2 c d}$, we have $\left[u_{+}, u_{-}\right]=\frac{d}{c} K_{0}=u$. Hence the proof of the theorem follows.
$L_{2}^{1} \simeq \mathfrak{s l}(2, \mathbb{R})$ can be chosen as a representative for the isomorphism class of L_{c}^{1}, for $c \neq 0$.

3. Isomorphism classes for $\boldsymbol{r}=\mathbf{0}$

Lemma 7. For any $s \in \mathbb{R}, L_{r}^{s}$ has a trivial center if and only if $r \neq 0$.
Proof. Let $Z=\alpha K_{0}+\beta K_{+}+\gamma K_{-} \in L_{r}^{s}$ be a central element. Using (1), $0=$ $\left[Z, K_{0}\right]=-r \beta K_{+}+r \gamma K_{-}$, implies that $r \beta=r \gamma=0$. If $r \neq 0$, then $\beta=\gamma=0$, and hence, $Z=\alpha K_{0}$ which is central if and only if $\alpha=0$. Conversely, if $r=0$, then K_{0} generates the center of L_{r}^{s}.

Lemma 8. L_{0}^{s} and L_{0}^{1} are isomorphic, for $s \neq 0$.
Proof. It follows directly from Lemma 3.
Lemma 9. L_{r}^{0} and L_{1}^{0} are isomorphic, for $r \neq 0$.
Proof. It can be shown that $\phi: L_{r}^{0} \rightarrow L_{1}^{0}$, defined by $\phi\left(K_{0}\right)=r K_{0}^{\prime}$ and $\phi\left(K_{ \pm}\right)=$ $K_{ \pm}^{\prime}$ is an isomorphism, where K_{0}, K_{+}, K_{-}, satisfying (1) respectively, are generators of L_{r}^{0} and $K_{0}^{\prime}, K_{+}^{\prime}, K_{-}^{\prime}$, satisfying (1) respectively, are generators of L_{1}^{0}.

Theorem 10. The Lie algebras $L_{2}^{1}, L_{0}^{1}, L_{1}^{0}$ and L_{0}^{0} are nonisomorphic Lie algebras.
Proof. L_{0}^{0} is an abelian Lie algebra. From Lemma 7, L_{0}^{1} has a nontrivial centre, while L_{2}^{1} and L_{1}^{0} have trivial centre. Let $K_{0}^{\prime}, K_{+}^{\prime}, K_{-}^{\prime}$, satisfying (1) respectively, be generators of L_{1}^{0}. We have $\left[L_{2}^{1}, L_{2}^{1}\right]=L_{2}^{1}$, but $\left[L_{1}^{0}, L_{1}^{0}\right]=\mathbb{R} K_{+}^{\prime}+\mathbb{R} K_{-}^{\prime} \neq L_{1}^{0}$. If $\phi: L_{2}^{1} \rightarrow L_{1}^{0}$ were an isomorphism, then $\left[\phi\left(L_{2}^{1}\right), \phi\left(L_{2}^{1}\right)\right]=\phi\left(L_{2}^{1}\right)$ yields to the contradiction that $\left[L_{1}^{0}, L_{1}^{0}\right]=L_{1}^{0}$.

Acknowledgements

The author acknowledges the fruitful discussions with Sorin Dascalescu and S.S. Hassan, the referees for valuable remarks, and the support of Kuwait University.

References

[1] M.A. Al-Gwaiz, M.S. Abdalla, S. Deshmukh, Lie algebraic approach to coupled-model oscillator, J. Phys. A 27 (1994) 1275-1282.
[2] L.A.-M. Hanna, M.E. Khalifa, S.S. Hassan, On representations of Lie algebras for quantized Hamiltonians, Linear Algebra Appl. 266 (1997) 69-79.
[3] L.A.-M. Hanna, On the matrix representation of the Lie algebras for quantized Hamiltonians and their central extensions, Riv. Mat. Univ. Parma (5) 6 (1997) 5-11.
[4] L.A.-M. Hanna, A note on the matrix representations of the Lie algebras L_{r}^{s} for quantized Hamiltonians where $r s=0$, Riv. Mat. Univ. Parma (6) 1 (1998) 149-154.
[5] S.S. Hassan, L.A.-M. Hanna, M.E. Khalifa, Lie algebraic approach to Schrödinger equations for Hamiltonian models of optical atoms, in: Second Int. Conf. on Dynamic Systems and Applications, Atlanta, USA, 1995.
[6] S.S. Hassan, M.S. Abdalla, G.M. Abd Al-Kader, L.A.-M. Hanna, Squeezing evolution with non-dissipative and dissipative $S U(2)$ systems, J. Opt. B: Quantum Semiclass. Opt. 4 (2002) S204-S212.
[7] R.J.C. Spreeuw, J.P. Woerdman, Optical atoms, Prog. Opt. 31 (1993) 263-319.

[^0]: E-mail address: hannalam@mcs.sci.kuniv.edu.kw (L.A.-M. Hanna).

 0024-3795/03/\$ - see front matter © 2003 Elsevier Inc. All rights reserved.
 doi:10.1016/S0024-3795(03)00453-1

