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Abstract

Linear algebraic methods are used to classify the Lie algebras Ls
r , presented by generators

and relations. They were introduced as an algebraic model for quantized Hamiltonians.
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1. Introduction

In this paper we are concerned with a class of Lie algebras introduced in [2–4] as
generalizations for the coupled quantized harmonic oscillators of Hamiltonian model
H = K0 + λ(K+ + K−), where the coupling parameter λ ∈ R∗, R∗ = R\{0} [7].
These Lie algebras depend on two parameters r, s ∈ R. For any such r , s the Lie
algebra Ls

r is presented by generators K0, K+, K− and relations:

[K+, K−] = sK0, [K0, K±] = ±rK±, where s, r ∈ R. (1)

Note that L1
2 is just sl(2, R). Faithful matrix representations of least degree of Ls

r

were given in [3,4]. The representations were subject to the physical requirements,
namely, K− = K

†
+, and K0 is a real diagonal operator representing energy. The Lie

algebras L2
1 and L−2

1 correspond to the models of the two-level optical atom and the
light amplifier, respectively [1,5,6].

E-mail address: hannalam@mcs.sci.kuniv.edu.kw (L.A.-M. Hanna).

0024-3795/03/$ - see front matter � 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0024-3795(03)00453-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81962446?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


252 L.A.-M. Hanna / Linear Algebra and its Applications 370 (2003) 251–256

The aim of this paper is to classify the Lie algebras Ls
r from an algebraic point of

view. The classification is given by the following:

Theorem 1. For every r, s ∈ R∗

1. Ls
0 � L1

0.
2. L0

r � L0
1.

3. Ls
r � L1

2.
4. L1

2 � sl(2, R), L1
0, L0

1 and L0
0 are non-isomorphic Lie algebras.

Corollary 2. A system of representatives for the isomorphism classes of the Lie
algebras of the form Ls

r consists of L1
2, L1

0, L0
1 and L0

0.

2. Isomorphism classes for rs /= 0

Lemma 3. The Lie algebras Ls
r and L1

rs are isomorphic, where s ∈ R∗ and r ∈ R.

Proof. Let K ′
0, K ′+, K ′− and K0, K+, K− be generators of L1

rs and Ls
r , respec-

tively and satisfy (1). The mapping φ : L1
rs → Ls

r , defined by, φ(K ′±) = K± and
φ(K ′

0) = sK0, is a Lie algebra isomorphism. s /= 0, is a necessary condition for φ to
be onto. �

From Lemma 3, for the case rs /= 0, it is enough to discuss the case when L1
c and

L1
d are isomorphic, where cd /= 0. Throughout this section the following notations

are used, L1
c is generated by K0, K+, K− satisfying (1), and L1

d is generated by K ′
0,

K ′+, K ′− satisfying (1) with cd /= 0. ad u is the adjoint representation of L1
c assigned

to u; u ∈ L1
c defined by ad u(v) = [u, v], for every v ∈ L1

c .

Lemma 4. If u = αK0 + βK+ + γK− ∈ L1
c; α, β, γ ∈ R, then the characteristic

polynomial of ad u is

f (λ) ≡ λ
[
λ2 − c(cα2 + 2βγ )

]
. (2)

Proof. Using (1), the matrix of ad u in the ordered basis K0, K+, K− is[ 0 −γ β

−cβ cα 0
cγ 0 −cα

]
. � (3)

Lemma 5. For cd /= 0, there exists a nonzero element u ∈ L1
c, for which ad u has

eigenvalues 0, d, −d . More precisely, an element u = αK0 + βK+ + γK− satisfies
this property if and only if c(cα2 + 2βγ ) = d2. For such u, if U is the matrix whose
columns are the eigenvectors of ad u corresponding to the eigenvalues 0, d and −d

respectively, then U is of the following forms:
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(i) If γ = 0 and α = d
c
, then

U =

 d 0 −2βd

cβ 1 −cβ2

0 0 2d2


 .

If γ = 0 and α = − d
c
, then

U =

−d 2dβ 0

cβ −cβ2 1
0 2d2 0


 .

(ii) If γ /= 0, β = 0 and α = d
c
, then

U =

 d 2dγ 0

0 −2d2 0
cγ cγ 2 1


 .

If γ /= 0, β = 0 and α = − d
c
, then

U =

−d 0 −2dγ

0 0 −2d2

cγ 1 cγ 2


 .

(iii) If γ /= 0, β /= 0 and α = 0, then

U =

0 d −d

β −cβ −cβ

γ cγ cγ


 .

(iv) If γ /= 0, β /= 0 and α /= 0, then

U =

α −2β(cα − d) 2γ (cα − d)

β −2cβ2 −(cα − d)2

γ (cα − d)2 2cγ 2




where, u = αK0 + βK+ + γK−; α, β, γ ∈ R.

Proof. From (2), ad u has eigenvalues 0, d , −d , if and only if,

c(cα2 + 2βγ ) = d2. (4)

The augmented matrix of the linear system (ad u − dI3)X = 0, is

[
ad u − dI3 0

] ≡

 −d −γ β 0

−cβ cα − d 0 0
cγ 0 −(cα + d) 0




≡




1 γ
d

−β
d

0

0 α − d
c

+ βγ
d

−β2

d
0

0 γ 2

d
α + d

c
− βγ

d
0


 .
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So, if γ = 0, then from (4), α = ± d
c

. The eigenvectors corresponding to the eigen-
value d are

0
1
0


 for γ = 0 and α = d

c

and 
 2dβ

−cβ2

2d2


 for γ = 0 and α = −d

c
,

respectively. Similarly, it can be proved that,
−2dβ

−cβ2

2d2


 and


0

1
0




are eigenvectors corresponding to the eigenvalue −d , for γ = 0, α = d
c

and γ = 0,
α = − d

c
, respectively. This proves (i), noticing that

α

β

γ




is an eigenvector for the eigenvalue 0.
Similarly, the proof can be completed, with the use of (4). �

Theorem 6. L1
c and L1

d are isomorphic, whenever cd /= 0.

Proof. In order to show that L1
c and L1

d are isomorphic, it is enough to find elements
u, u+, u− ∈ L1

c satisfying

[u, u±] = ±du± and [u+, u−] = u. (5)

In particular this requires ad u to have eigenvalues 0, d , −d . Lemma 5 provides all
such elements u. As in case (i) of Lemma 5, with β = 0, choose u = d

c
K0, u+ =

λK+ and u− = 2d2µK−. Using (1),

[u, u+] = [
d
c
K0, λK+

] = dλK+ = du+,

[u, u−] = [
d
c
K0, 2d2µK−

] = −d(2µd2)K− = −du−,

[u+, u−] = [
λK+, 2d2µK−

] = 2λµd2K0.

Taking λ and µ such that λµ = 1
2cd

, we have [u+, u−] = d
c
K0 = u. Hence the proof

of the theorem follows. �

L1
2 � sl(2, R) can be chosen as a representative for the isomorphism class of L1

c ,
for c /= 0.
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3. Isomorphism classes for rs = 0

Lemma 7. For any s ∈ R, Ls
r has a trivial center if and only if r /= 0.

Proof. Let Z = αK0 + βK+ + γK− ∈ Ls
r be a central element. Using (1), 0 =

[Z,K0] = −rβK+ + rγK−, implies that rβ = rγ = 0. If r /= 0, then β = γ = 0,
and hence, Z = αK0 which is central if and only if α = 0. Conversely, if r = 0,
then K0 generates the center of Ls

r . �

Lemma 8. Ls
0 and L1

0 are isomorphic, for s /= 0.

Proof. It follows directly from Lemma 3. �

Lemma 9. L0
r and L0

1 are isomorphic, for r /= 0.

Proof. It can be shown that φ : L0
r → L0

1, defined by φ(K0) = rK ′
0 and φ(K±) =

K ′± is an isomorphism, where K0, K+, K−, satisfying (1) respectively, are generators
of L0

r and K ′
0, K ′+, K ′−, satisfying (1) respectively, are generators of L0

1. �

Theorem 10. The Lie algebras L1
2, L1

0, L0
1 and L0

0 are nonisomorphic Lie algebras.

Proof. L0
0 is an abelian Lie algebra. From Lemma 7, L1

0 has a nontrivial centre,
while L1

2 and L0
1 have trivial centre. Let K ′

0, K ′+, K ′−, satisfying (1) respectively,
be generators of L0

1. We have [L1
2, L

1
2] = L1

2, but [L0
1, L

0
1] = RK ′+ + RK ′− /= L0

1.
If φ : L1

2 → L0
1 were an isomorphism, then [φ(L1

2), φ(L1
2)] = φ(L1

2) yields to the
contradiction that [L0

1, L
0
1] = L0

1. �
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