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A devastating aspect of cancer cachexia is severe loss of muscle and fat mass. Though cachexia occurs in both
sexes, it is not well-defined in the female. The ApcMin/+mouse is genetically predisposed to develop intestinal tu-
mors; circulating IL-6 is a critical regulator of cancer cachexia in the male ApcMin/+ mouse. The purpose of this
study was to examine the relationship between IL-6 signaling and cachexia progression in the female ApcMin/+

mouse.Male and femaleApcMin/+micewere examined during the initiation and progression of cachexia. Another
group of females had IL-6 overexpressed between 12 and 14weeks or 15–18weeks of age to determinewhether
IL-6 could induce cachexia. Cachectic female ApcMin/+ mice lost body weight, muscle mass, and fat mass; in-
creased muscle IL-6 mRNA expression was associated with these changes, but circulating IL-6 levels were not.
Circulating IL-6 levels did not correlate with downstream signaling in muscle in the female. Muscle IL-6r
mRNA expression and SOCS3 mRNA expression as well as muscle IL-6r protein and STAT3 phosphorylation in-
creased with severe cachexia in both sexes. Muscle SOCS3 protein increased in cachectic females but decreased
in cachectic males. IL-6 overexpression did not affect cachexia progression in female ApcMin/+ mice. Our results
indicate that femaleApcMin/+mice undergo cachexia progression that is at least initially IL-6-independent. Future
studies in the female will need to determine mechanisms underlying regulation of IL-6 response and cachexia
induction.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Cachexia is a devastating condition that occurs secondary to several
chronic diseases, including AIDS, COPD, chronic renal failure, and many
forms of cancer [1]. There is no FDA-approved treatment for cachexia,
though it occurs in 30–50% of cancers [1–3] and has an annualmortality
rate of 80% [1]; the investigation into its etiology and progression is
therefore essential. The most recent definition of cachexia includes an
unintentional 5% weight loss over twelve months, comprising the loss
of muscle and fat [1]. Other abnormalities associated with cachexia in-
clude anemia, fatigue, muscle weakness, increased plasma triglycerides
and inflammatory markers, and insulin resistance [1]. There has been
considerable improvement in our understanding of the regulation of
cancer cachexia progression due to research employing male mouse
models [4–7]. However, there is evidence that sex differences exist in
the development of cachexia in rodents [8]. Additionally, sex differences
have been observed in the loss of muscle strength associated with ca-
chexia severity in humans [9]. Although there is clear evidence that
Science, University of South
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cachexia occurs in bothmales and females, the fundamental differences
in the pathophysiology due to sex and underlying mechanisms are
unknown.

Systemic inflammation related to cancer is thought to be a mediator
of cachexia, as several pro-inflammatory pathways are enhanced during
the progression of cachexia [10,11]. Sex hormones can modulate the in-
flammatory response to a variety of stimuli [12–14]. Specifically, estro-
gen is known to inhibit NfκB and tumor necrosis factor α (TNFα)
signaling [12,15], C-reactive protein (CRP)-induced interleukin-6 (IL-6)
production [16], and signal transducer and activator of transcription-3
(STAT3) signaling downstream of IL-6 [17]. In several rodent models of
cachexia and some human cancers, IL-6 is associated with the develop-
ment of muscle wasting and body weight loss [6,7,18–20]. Classical IL-
6 signaling involves binding of the cytokine to the membrane-bound
IL-6 receptor (mIL-6r) on target tissues, which include hepatocytes, im-
mune cells, and skeletal muscle [21–23]. mIL-6r is a heterodimer com-
prising the ligand-specific gp80 unit and the signal-transducing gp130
unit [24]. Activation of mIL-6r induces downstream activation of many
signaling pathways, including JAK/STAT, p38, and ERK [22,25–27]. Sever-
al of these pathways have been implicated in the regulation of muscle
mass loss during cancer cachexia [25,28].

The ApcMin/+ mouse is genetically predisposed to develop intestinal
tumors and becomes cachectic secondary to the tumor burden [4,29].
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Our lab initially characterized cachexia in retired female ApcMin/+

breeders [30]; however, the progression and etiology of cachexia in
the female ApcMin/+ mouse has not been described. Development of ca-
chexia in the male ApcMin/+ mouse has an established IL-6 dependence
[6–7,29,31–33]. Administration of an IL-6 receptor antibody to cachectic
male ApcMin/+ mice can attenuate further cachexia progression [5].
When IL-6 is systemically overexpressed in themale, more bodyweight
is lost and cachexia is more severe, indicating a causative role [6,7,25].
However, the response of female ApcMin/+ mice to IL-6 overexpression
has not been examined. Sex differences have been noted in the inflam-
matorymilieu of humans [34,35] andmice [13,36] undermultiple path-
ological circumstances. Additionally, estrogen has been shown to inhibit
IL-6 transcription and signaling in several tissues [16,17,36–38], which
may also lead to sex differences in IL-6 response during cancer cachexia
progression. Therefore, thepurpose of thepresent studywas to examine
the relationship of circulating IL-6 to cancer cachexia progression in the
female ApcMin/+ mouse. Our hypothesis is that cachexia progression in
the female ApcMin/+ mouse would not be associated with increased cir-
culating IL-6 levels as has been reported in the male. This hypothesis
was tested through three experiments. The first experiment followed
a cohort of female and male ApcMin/+ mice to 18 weeks of age, at
which point the association between cachexia severity and circulating
IL-6 level was determined. In the second experiment, 12-week old fe-
male ApcMin/+ mice had IL-6 systemically overexpressed for two
weeks (until 14 weeks of age) to determine if supraphysiological IL-6
levels could induce cachexia as we have previously shown in the male
[7,32,39]. In the third experiment, 15-week old female ApcMin/+ mice
had IL-6 systemically overexpressed for three weeks (until 18 weeks
of age) to determine if supraphysiological IL-6 levels could accelerate
cachexia progression as we have previously shown in the male [29].

2. Methods

2.1. Animals

Female ApcMin/+ mice (N = 32), male ApcMin/+ mice (N = 12), fe-
male C57BL/6 mice (N = 6), and male C57BL/6 mice (N = 6) were
bred and maintained at the University of South Carolina Animal Re-
source Facility. ApcMin/+ mice used were offspring from breeders origi-
nally purchased from Jackson Labs (Bar Harbor, ME, USA). Male and
femalemice were taken during the three-month period from a standing
inbred ApcMin/+ breeding colony. ApcMin/+mice usedwere on a C57BL/6
background. Mice were kept on a 12:12 h light/dark cycle beginning at
7:00 AM and were given unrestricted access to standard rodent chow
(Harlan Teklad Rodent Diet, #8604). Mice were weighed weekly.
Blood was collected by retro-orbital eye bleed at 12, 14, 16, 18, and
20 weeks for IL-6 analysis. All experiments were approved by the Uni-
versity of South Carolina's Institutional Animal Care andUse Committee.

2.2. Procedures

Three experiments were performed. Experiment 1 examined the
progression of cachexia. Female ApcMin/+ mice (n= 18) were sacrificed
at 18 weeks of age. Male ApcMin/+ mice were sacrificed at 18–20 weeks
of age. Female (n=6) andmale (n=6) C57BL/6 (B6)were sacrificed at
18 weeks of age as non-cancer controls. Prior to sacrifice, blood was
taken for analysis of IL-6 levels. Experiment 2 examined 2 weeks of IL-
6 over-expression in 12 week-old, weight stable female ApcMin/+ mice
as we have previously completed in the male [39]. Female ApcMin/+

micewere electroporatedwith a control plasmid orwith an IL-6 overex-
pression plasmid (n= 4 per group) at 12 weeks and were sacrificed at
14 weeks. Blood was taken at sacrifice (post-treatment) to determine
plasma IL-6 levels. Mice from this experiment were not used for any
other analysis. Experiment 3 examined IL-6 over-expression in 15-
week-old female ApcMin/+ mice corresponding with the initiation of ca-
chexia, a time course we have previously examined in the male [29]. At
15 weeks of age mice were randomly separated into IL-6 over-
expression (n = 6), control plasmid (N = 3), or non-electroporated
control (n = 3) treatment groups. All female ApcMin/+ mice were
sacrificed at 18 weeks of age. Blood was taken at sacrifice (post-
treatment) for determination of plasma IL-6 levels. No differences
were found in body weight (p = 0.78) or muscle mass (p = 0.36) be-
tween control plasmid and non-electroporated mice. Therefore, the
control plasmid and non-electroporated female ApcMin/+ mice were
then pooled for analysis. Additionally, these 6 mice are in the cohort of
18 female ApcMin/+ mice related to Experiment 1. In all experiments,
blood, inguinal fat, hindlimb muscles, and spleen were removed at the
time of sacrifice. Hindlimb muscle mass measurements comprise the
sum of left soleus, plantaris, gastrocnemius, tibialis anterior, extensor
digitalis longus, and quadriceps masses.

2.3. IL-6 overexpression by electroporation

In vivo intramuscular electroporation of an IL-6 plasmid was used to
increase circulating IL-6 levels in mice as previously described [40]. The
right quadriceps muscle was used to synthesize and secrete exogenous
IL-6 into circulation from the injected expression plasmid, and was not
used for any analyses in the study. The gastrocnemius muscle used in
the study was not subjected to electroporation. Briefly, mice were
injectedwith 50 μg of IL-6 plasmid driven by the CMV promoter, or con-
trol plasmid (pV1J), into the right quadriceps muscle. Mice were anes-
thetized with a 2% mixture of isoflurane (IsoSol, VEDCO, St. Joseph,
MO, USA) and oxygen (1 L/min). The leg was shaved, and a small inci-
sion was made over the quadriceps muscle. Fat was dissected away
from themuscle, and the plasmidwas injected in a 50 μl volume of ster-
ile phosphate-buffered saline (PBS). A series of eight 50ms, 100 Vpulses
was used to promote uptake of the plasmid into myonuclei, and the in-
cision was closed with a wound clip. In Experiment 2, electroporation
was performed at 12 weeks and mice were sacrificed at 14 weeks of
age. In Experiment 3, electroporation was performed at 15 weeks and
mice were sacrificed at 18 weeks of age.

2.4. RNA isolation and RT-PCR

RNA isolation, cDNA synthesis, and real-time PCRwere performed as
previously described [41]. Reagents from Applied Biosystems (Foster
City, CA, USA) were used. Briefly, proximal gastrocnemius muscle was
homogenized in TRIzol (Life Technologies, Grand Island, NY, USA) and
mixed with chloroform, then centrifuged. The RNA phase was removed
and washed several times with ethanol in DEPC-treated water. cDNA
was synthesized using 1 μg of RNA. RT-PCR was performed on an Ap-
plied Biosystems 7300 thermocycler. A Taqman gene expression assay
was used to determine IL-6 mRNA expression (Life Technologies). IL-6
receptor (forward, 5′-CTGCCAGTATTCTCAGCAGCTG-3′, and reverse,
5′-CCTGTGTGGGGTTCCAGAGGAT-3′); SOCS3 (forward, 5′-TGCAGGAG
AGCTGATTCTAC-3′, and reverse, 5′-TGACGCTCAACGTGAAGAAG-3′);
gp130 and GAPDH primer sequences have been published elsewhere
[42].

2.5. Western blotting

Western blots were performed as described previously [5,43]. Brief-
ly, gastrocnemius muscle samples were run on 6–8% acrylamide gels
and transferred overnight to PVDF membrane (Thermo Scientific, Wal-
tham, MA, USA). After transfer, Ponceau stains were imaged to verify
equal loading. The membrane was blocked for 1 h in 5% milk-TBS-
Tween 20, and incubated with primary antibodies at 1:2000 dilution
overnight at 4 °C. After several washes, membranes were incubated
with secondary antibodies at 1:2000 dilution for 1 h. Blots were visual-
ized with WesternBright ECL (BioExpress, Kaysville, UT, USA). SOCS3
antibody was obtained from Abcam (Cambridge, MA, USA). STAT3,
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phospho-STAT3 (Y705), anti-mouse IgG, and anti-rabbit IgG antibodies
were obtained from Cell Signaling (Danvers, MA, USA).

2.6. Grip strength measurement

Grip strength measurements were determined as previously de-
scribed [7]. Mice underwent 2 sets of 5 grip strength trials. The first
mouse was removed from its cage, held firmly by the base of the tail,
and allowed to grasp the top of the grate attached to the force gauge
(Chatillon, Largo, FL, USA) with its paws. The mouse was firmly pulled
down the grate, and grip strength was recorded in Newtons. The
mouse completed the 5 trials of the first set and was returned to its
cage. Each mouse tested went through the same procedure for its first
trial, and mice were cycled through in the same order for the second
trial.

2.7. Fasting glucose

Micewere fasted for 5 h prior to blood glucosemeasurements. Blood
glucose measurements were performed using a handheld glucometer
(Bayer CONTOUR®, Whippany, NJ, USA) according to the manu-
facturer's instructions.

2.8. IL-6 enzyme-linked immunosorbent assay

Plasma IL-6 concentrations were determined as previously de-
scribed [7]. A commercial IL-6 ELISA kit was obtained from Invitrogen
(Fredrick, MD, USA) and the manufacturer's protocol was followed.
Briefly, blood was centrifuged after sacrifice; plasma was removed and
stored at −80 °C until analysis. A Costar clear 96-well plate (Corning,
NY, USA) was coated with IL-6 capture antibody and allowed to incu-
bate overnight. The nextmorning, the plate was blocked with assay dil-
uent buffer. The plate was washed; plasma samples and IL-6 standards
were diluted with assay diluent buffer and added in duplicate to the
plate. The plate was again washed and sAV-HRP reagent was added to
wells. After several washes, TMB substrate was added to wells and
color was allowed to develop. The reaction was stopped with sulfuric
acid and absorbance was read in a BioRad iMark plate reader (Hercules,
CA, USA) at 450 nm.

2.9. IL-6R enzyme-linked immunosorbent assay

Muscle IL-6R protein levels were determined using a DuoSet ELISA
kit (R&D Systems, Minneapolis, MN, USA) as previously described
[44]. Briefly, gastrocnemius muscle tissue was homogenized in buffer
containing 50 mM HEPES, 4 mM EGTA, 10 mM EDTA, 15 mM Na4P2O7,
100 mM β-glycerophosphate, 25 mM NaF, 5 mM NaVO4, 0.1% Triton-
X, and 0.1% protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO,
USA). A Costar 96-well plate (Corning) was coated with IL-6r capture
antibody and allowed to incubate overnight. The next morning, the
plate was blocked with assay diluent. After washing, IL-6r standards
and 50–500 μg protein of samples were added to wells in duplicate.
The platewas againwashed and detection antibodywas added. Another
wash was performed and streptavidin-HRP was added to the plate.
After a final wash, substrate solution was added to the plate and color
was allowed to develop before the addition of stop solution. Absorbance
was read at 450 and 570 nm in a BioRad iMark plate reader (BioRad).
Standard and sample concentration was determined using a third-
order polynomial curve.

2.10. Intestinal polyp quantification

Quantification of intestinal polyps was determined as previously de-
scribed [45]. Briefly, intestinal sections were fixed in formalin at time of
sacrifice. At time of analysis, sections were rinsed in deionized water
and dipped briefly in 0.1% methylene blue. Polyps from segment 4
were counted under a dissecting microscope; it has been determined
that tumor number in segment 4 is representative of total tumor num-
ber [46].

2.11. Statistical analysis

All results are reported as means ± SEM. Differences between de-
grees of cachexia severity were analyzed by one-way ANOVA using
Tukey post hoc test where appropriate. Differences between sexes and
genotypes were determined by two-way ANOVA with Student–
Newman–Keuls post hoc test where appropriate. Correlations were de-
termined by Pearson's test for correlation. Differences between 12–
14 week and 15–18 week IL-6 treatment groups were determined by
Student's t-test. Level of significance was set at 0.05.

3. Results

3.1. Differential cachexia progression in male and female ApcMin/+ mice
(Experiment 1)

Both male and female ApcMin/+ mice undergo varying degrees of ca-
chexia; however, efforts to characterize progression have focused over-
whelmingly on themale. Our lab has previously described themale [5,7,
18], but limited data has been presented related to the female response
[47]. Both male (n= 12) and female (n= 18) ApcMin/+ mice lost a sig-
nificant amount of body weight from their peak weight (Fig. 1A);
however, males lost a greater percentage of body weight than females
(p b 0.0001). ApcMin/+ mice generally have the greatest density of tu-
mors in segment 4 of the small intestine, and the number of tumors in
this segment correlates with total tumor number [46]. The number of
tumors in male and female ApcMin/+ mice, though significantly higher
than male and female B6 mice (p b 0.0001), did not differ (Fig. 1B), in-
dicating that the differences in body weight loss were not due to
tumor burden. Regardless of sex, ApcMin/+mice had significantly higher
circulating IL-6 levels than B6mice (pb 0.0001). Despite the consistency
in tumor burden, male ApcMin/+ mice had higher circulating IL-6 levels
than females (p b 0.0001) (Fig. 1C). Both male and female ApcMin/+

mice had significantly larger spleens than B6 mice of the same sex
(p b 0.0001), indicating a higher level of systemic inflammation
(Fig. 1D); however, male ApcMin/+ had larger spleens than females
(p = 0.03).

3.2. Progression of cachexia in female ApcMin/+ mice (Experiment 1)

To determine the changes seen with progression of cachexia in the
female ApcMin/+ mouse, a cohort of 18 week old female ApcMin/+ mice
(n = 18) were stratified based on body weight change from peak
(Table 1). The cohort was divided based on body weight loss; “Weight
Stable” comprises mice with less than 2% body weight loss from peak
weight (n = 6), “Initial Cachexia” comprises mice with 2–9% body
weight loss (n = 6), and “Cachexia” comprises mice with greater than
10% body weight loss (n = 6). Body weight loss ranged from 0% to
−15.8%; ~30% of the mice were classified as “cachectic,” with severe
body weight loss, fat and muscle mass loss, and decreased muscle
strength (Table 1). As expected, body weight change from peak weight
was significantly different between all groups (Table 1). Spleen weight
did not differ between weight stable and the initiation of cachexia. Ca-
chectic female ApcMin/+mice had significantly larger spleens than either
of the other groups (p=0.01) (Table 1). Segment 4 tumor count did not
differ between weight stable and the initiation of cachexia. Cachectic
ApcMin/+ mice had significantly more tumors than either of the other
groups (p = 0.002) (Table 1). This indicates a relationship between
tumor burden and cachexia development in the female that has also
been reported in the male [4]. Hindlimb muscle mass and inguinal fat
mass did not differ betweenweight stable and initiation of cachexia. Ca-
chectic ApcMin/+ females had significantly less hindlimb muscle mass
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Fig. 1. Characteristics of male and female ApcMin/+ mice (Experiment 1): A) Average body
weight change from peakweight inmale and female ApcMin/+mice (n=12males, n=18
females). Male ApcMin/+ mice had more body weight loss than female ApcMin/+ mice.
B) There is no difference in the average number of tumors in segment 4 of the small intes-
tine between male and female ApcMin/+ mice. C) Average level of plasma IL-6 (pg/ml).
D) Average spleenweight inmale and female ApcMin/+mice.Male ApcMin/+mice had larg-
er spleens than female ApcMin/+ mice. (*) indicates significantly different from B6 mice of
the same sex (p b 0.05); (†) indicates significant difference frommale ApcMin/+ (p b 0.05).

Table 1
Characteristics of female ApcMin/+ mice (Experiment 1). Weight change (%): Percent
weight change from peak body weight to weight at sacrifice [(weight at sacrifice −
peak weight) / peak weight]. Hindlimb muscle mass comprises left soleus, plantaris, gas-
trocnemius, tibialis anterior, extensor digitalis longus, and quadriceps mass. n, number.
seg 4, segment 4 of the small intestine. mg, milligrams. pg, picograms. ml, milliliters. N,
Newtons.

Female ApcMin/+ mice

Weight stable Initial
cachexia

Cachexia

n 6 6 6
Weight change (%) −1.1 ± 0.5% −4.2 ± 0.4%⁎ −11.0 ± 1.3%⁎†

Spleen weight (mg) 250.5 ± 50.2 310.5 ± 64.4 485.7 ± 37.7⁎†

Tumor count (seg 4) 7.8 ± 2.2 6.8 ± 3.0 26.3 ± 1.0⁎†

Hindlimb muscle mass (mg) 300.2 ± 9.9 299.7 ± 18.9 226.8 ± 13.4⁎†

Inguinal fat mass (mg) 224.0 ± 34.7 153.8 ± 35.2 14.8 ± 6.6⁎†

Plasma IL-6 (pg/ml) 17.6 ± 6.7 34.4 ± 18.9 39.3 ± 13.1
Grip strength (N) 1.9 ± 0.2 1.9 ± 0.1 1.6 ± 0.1⁎†

Grip strength/body
weight (N/g)

0.092 ± 0.008 0.098 ± 0.006 0.084 ± 0.003

⁎ Indicates significantly different from weight stable (p b 0.05).
† Indicates significantly different from initial cachexia (p b 0.05).
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and inguinal fat mass than weight stable or the initial cachexia groups
(Table 1). Importantly, there were no differences in circulating IL-6
levels between any of the groups (Table 1). Cachectic ApcMin/+ females
had significantly lower voluntary forelimb grip strength than either of
the other groups, though this difference was eliminated when normal-
ized to body weight (Table 1).

All female ApcMin/+ mice continued to gain weight until 16 weeks of
age; differences in body weight between groups are only seen after this
point (Fig. 2A; p = 0.016). Across all female ApcMin/+ mice, there was a
significant relationship between hindlimbmusclemass and bodyweight
loss (Fig. 2B; p b 0.0001, R2 = 0.64). Inguinal fat mass demonstrated a
curvilinear relationship (p = 0.0002, R2 = 0.58) with body weight
loss, with fat mass having the most direct relationship with body loss
during the initiation of cachexia (Fig. 2C). Taken together, this indicates
that during the progression of cachexia in the female ApcMin/+ mouse
the loss of inguinal fatmass occurs early, whilemusclemass loss demon-
strates a consistent decline over time.

3.3. Muscle Il-6 signaling-associated mRNA expression in male and female
ApcMin/+ mice (Experiment 1)

The levels of circulating IL-6 in female ApcMin/+ mice were not associ-
ated with body weight loss, hindlimb muscle mass, or inguinal fat mass
(Table2).However,musclemRNAexpressionof IL-6was significantly cor-
related with both body weight loss and hindlimb muscle mass (Table 2).
Therewas amain effect of cachexia independent of sex to increasemuscle
IL-6 receptor mRNA expression (p = 0.043; Fig. 3A). In female ApcMin/+

mice, muscle IL-6 receptor mRNA expression was significantly correlated
withmuscle gp130mRNAand SOCS3mRNAexpression (Table 2). Neither
sex nor cachexia had a significant effect on muscle gp130 mRNA expres-
sion (Fig. 3B). Although gp130 mRNA expression was not associated
with body weight loss in female ApcMin/+mice, it was significantly associ-
ated with muscle SOCS3 mRNA expression (Table 2). Cachexia increased
muscle SOCS3 mRNA expression independent of sex (p = 0.01; Fig. 3C).
However, muscle SOCS3 mRNA expression was not correlated with body
weight loss in female ApcMin/+ mice (Table 2).

3.4. Muscle IL-6 signaling-associated protein expression inmale and female
ApcMin/+ mice (Experiment 1)

Muscle IL-6 receptor protein expressionwas examined in gastrocne-
mius muscle of male and female b6 and ApcMin/+ mice. Interestingly,
male B6 mice have significantly higher levels of muscle IL-6r than fe-
male B6 mice (Fig. 4A; p = 0.006). In female ApcMin/+ mice, muscle IL-
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Fig. 2. Cachexia progression in female ApcMin/+ mice (Experiment 1): A) Average body
weight from 10–18 weeks for weight stable, initial cachexia, and cachexia groups (n =
6 per group). Groups are significantly different at 18 weeks of age (p = 0.016, repeated
measures ANOVA). B) Hindlimbmuscle mass has a negative correlationwith bodyweight
loss during cachexia in the female ApcMin/+ mouse (Pearson's correlation, p b 0.0001).
C) Inguinal fat mass has a negative correlation with body weight loss during cachexia in
the female ApcMin/+ mouse (Pearson's correlation, p = 0.0002). Horizontal dotted lines
in B and C show average B6 muscle and fat masses. Dotted line at −5% body weight loss
intended to show the contrast between fat and muscle loss before and after 5% body
weight loss. (*) indicates significant differences between groups (p b 0.05).

Table 2
Relationships between circulating IL-6 and skeletal muscle signaling during cachexia de-
velopment (Experiment 1). Correlations calculated in 18-week female ApcMin/+ mice of
varying degrees of cachexia (n= 18). R2, coefficient of determination; p, p-value. Correla-
tions determined by Pearson's correlation.mRNA levels are expressed as fold change from
female C57BL/6 mice.

Muscle mRNA expression correlations

Factor 1 Factor 2 R2 p

Circulating plasma
IL-6 (pg/ml)

Body weight loss 0.004 0.802
Hindlimb muscle mass 0.070 0.289
Inguinal fat mass 0.004 0.797
IL-6 mRNA 0.041 0.436
IL-6 receptor mRNA 0.038 0.468
gp130 mRNA 0.014 0.701
SOCS3 mRNA 0.045 0.428

Muscle IL-6 mRNA
expression

Body weight loss 0.380 0.008⁎

Hindlimb muscle mass 0.315 0.019⁎

Inguinal fat mass 0.151 0.124
IL-6 receptor mRNA 0.183 0.112
gp130 mRNA 0.000 0.981
SOCS3 mRNA 0.224 0.075

Muscle IL-6 receptor
mRNA expression

Body weight loss 0.189 0.092
Hindlimb muscle mass 0.142 0.150
Inguinal fat mass 0.218 0.068
IL-6 receptor protein 0.246 0.060
gp130 mRNA 0.769 0.000⁎

SOCS3 mRNA 0.913 0.000⁎

Muscle gp130 mRNA
expression

Body weight loss 0.200 0.125
Hindlimb muscle mass 0.130 0.226
Inguinal fat mass 0.151 0.190
SOCS3 mRNA 0.757 0.000⁎

Muscle SOCS3 mRNA
expression

Body weight loss 0.212 0.110
Hindlimb muscle mass 0.124 0.181
Inguinal fat mass 0.045 0.428

Muscle protein expression correlations

Factor 1 Factor 2 R2 p

Circulating plasma
IL-6 (pg/ml)

IL-6 receptor protein 0.098 0.221
STAT3 phosphorylation/STAT3 0.008 0.728
Body weight loss 0.005 0.795

Muscle IL-6 receptor
protein (pg/ug)

Hindlimb muscle mass 0.007 0.745
Inguinal fat mass 0.001 0.913
STAT3 phosphorylation/STAT3 0.001 0.912

Muscle pSTAT3/STAT3 Body weight loss 0.205 0.059
Hindlimb muscle mass 0.385 0.006⁎

Inguinal fat mass 0.034 0.465

⁎ Indicates significant correlation between factors (p b 0.05).
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6r increases with cachexia severity (Fig. 4B; p = 0.002); however, ca-
checticmale ApcMin/+micehave significantly higher expression than ca-
chectic females (Fig. 4B; p = 0.02).

Muscle STAT3 phosphorylation was examined during the progression
of cachexia in female ApcMin/+mice (Fig. 4C).Muscle STAT3 phosphoryla-
tion (Y705) was normalized to female B6 levels of phosphorylation. Total
STAT3muscle expression did not changewith the progression of cachexia
(B6: 1±0.05;Weight stable: 1.03±0.03; Cachexia: 1.02±0.07).Muscle
STAT3 phosphorylation was significantly different across groups (p =
0.010).Muscle STAT3 phosphorylation significantly increased in cachectic
muscle when compared to the initially cachectic female ApcMin/+ mice
(p = 0.049). The induction of STAT3 phosphorylation had a strong
trend towards correlation with body weight loss in female ApcMin/+

mice, but there was no association with circulating IL-6 levels (Table 2).
There was no difference in muscle STAT3 phosphorylation between fe-
male and male cachectic muscle (Fig. 4C). These results demonstrate
that muscle STAT3 phosphorylation is not related to circulating IL-6
level during the progression of cachexia in female ApcMin/+ mice.

SOCS3 protein expression was examined in muscle of male and fe-
male B6 and cachectic ApcMin/+ mice. As with the IL-6 receptor, male
B6 mice had significantly higher levels of SOCS3 protein than female
B6mice (Fig. 4D; p= 0.015). However, cachexia had differential effects
on SOCS3 protein expression between the sexes. SOCS3 protein expres-
sion was significantly higher in female ApcMin/+ mice than female B6
(Fig. 4D; p = 0.03); however, there was a strong trend towards a de-
crease in SOCS3 protein with cachexia in the male versus the B6 male
(Fig. 4D; p = 0.053).
3.5. Effect of IL-6 overexpression on cachexia initiation in ApcMin/+ females
(Experiment 2)

Wehave previously shown that IL-6 overexpression inmale ApcMin/+

mice is sufficient to initiateoraccelerate cachexiaprogression [7,29]. Todeter-
mine the effect of IL-6 on the initiation of cachexia in the female ApcMin/+

mouse,weoverexpressed IL-6 from12–14weeksof age,when tumorburden
is fully present but cachexia has not been initiated. Plasma IL-6 levels were
significantly higher in mice treated with the IL-6 overexpression vector
(Table 3). There were no differences in body weight between treatments
groups at the initiation of IL-6 overexpression, and IL-6 treatment did not
alter bodyweights after twoweeks (Table 3). In spite of IL-6 overexpression,
12–14week-old female ApcMin/+mice continued to grow (Table 3). Inguinal
fat mass and hindlimbmuscle mass did not significantly change in response
to IL-6 overexpression (Table 3). Tumor numberwas quantified at the end of
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Fig. 3. Muscle IL-6 signaling-associated mRNA levels (Experiment 1): A) IL-6 receptor
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the study. Although tumor numbers were variable, therewere no significant
differences between treatment groups (not shown).
3.6. Effect of IL-6 overexpression on cachexia progression in ApcMin/+ fe-
males (Experiment 3)

To determine the effect of IL-6 on cachexia progression in the female
ApcMin/+ mouse, we overexpressed IL-6 between 15 and 18 weeks of
age, which generally corresponds with the development of cachexia.
Plasma IL-6 levels were significantly higher in mice overexpressing IL-
6 (p = 0.002, Fig. 5A), though it is important to note that the control
mice had significantly higher levels of IL-6 than B6 females (p = 0.01,
data not shown). IL-6 overexpression above this cancer-induced increase
did not induce an acceleration of body weight loss in female ApcMin/+

mice that had initiated cachexia (Table 3, Fig. 5B). It is unlikely that tumor
counts would have been affected by IL-6 overexpression, as polyp number
stabilizes at approximately 12weeks of age [31]. Tumornumberwashighly
variable, but there were no differences between treatment groups in the
number of intestine segment 4 tumors (not shown). Spleen weight was
not further increased with IL-6 overexpression (Table 3). Hindlimbmuscle
mass and inguinal fatmass losswerenot acceleratedby IL-6overexpression
in 18 week female ApcMin/+ mice (Fig. 5B, Table 3). Importantly, muscle
STAT3 phosphorylation was not increased by systemic IL-6 overexpression
(Fig. 5D). These results are in direct contrast to previous work by our lab
with the male ApcMin/+ mouse, which showed decreases in body weight
andmuscle mass, and an increase in spleen weight as a result of IL-6 over-
expression in addition to the cancer-induced levels between 16 and
18 weeks [29].

4. Discussion

Circulating IL-6 has been demonstrated to be a regulator of cancer
cachexia progression in male ApcMin/+ mice. Circulating IL-6 is a
known cachectic factor in human cancer populations as well [20,
48–50]. Treatments for cancer cachexia that target IL-6 signaling are
currently being examined [51,52]. However, it is known that sex differ-
ences exist in inflammatory responses [12,13,53,54], and sex differ-
ences have been reported in cancer cachexia progression in both
rodents and humans [8,9,26]. We therefore sought to determine the re-
lationship between circulating IL-6 and cachexia progression the female
ApcMin/+ mouse. We have demonstrated for the first time that circulat-
ing IL-6 level is not associated with the degree of cachexia in the female
ApcMin/+ mouse, as IL-6 levels were similar between weight stable and
cachectic mice. We also report that, unlike themale [7,29], IL-6 overex-
pression above cancer-induced levels does not induce or accelerate ca-
chexia progression in female ApcMin/+mice. Additionally, we report that
sex altersmuscle IL-6 transcription during cachexia. Femalemuscle IL-6
mRNA expression increased with cachexia severity, which contrasts
with male cachexia progression [5,29]. We found that the female mus-
cle may becomemore sensitive to circulating IL-6 levels during the pro-
gression of cachexia, since muscle IL-6r protein and phosphorylated
STAT3 increased with severe cachexia. Though the female ApcMin/+

mouse loses both muscle and fat with the progression of cachexia, the
development of this loss occurs differently from that reported in the
male [5]. The male ApcMin/+ mouse initiates cachexia with the rapid
loss of both muscle and fat [5]. We provide evidence that the initiation
of cachexia in the female ApcMin/+ mouse involves a rapid loss of fat
mass, while the loss of muscle mass occurs later in the development
of cachexia. These data clearly show that sex influences the regulation
of cachexia progression in the ApcMin/+ mouse.

As therapies targeting IL-6 for the treatment of cancer cachexia are
gaining traction [51,52], it is of utmost importance that basic research
support this modality. Themajority of investigations into human cancer
cachexia do not separately analyze men and women [48–50,55], which
does not allow for the determination of sex differences in IL-6 levels. Re-
cent investigation into single nucleotide polymorphisms (SNPs) in the
IL-6 and IL-6 receptor promoter sequences has shown that certain
SNPs affect levels of circulating IL-6 and soluble IL-6r; however, there
are no differences between the sexes in allele frequency, indicating
that sex differences do not likely occur at the transcriptional level [56].
While we have consistently found that cachexia development in the
male ApcMin/+ mouse is directly related to tumor burden and the level
of circulating IL-6 [6,7,18,29,32,39,57], this relationship has not been
firmly established in the female. Thoughwe found thatmale and female
ApcMin/+ mice had similar tumor burdens, females had significantly
lower levels of circulating IL-6 than males, even when weight loss was
comparable. However, the female also appears to have a differential ca-
chectic response to IL-6 that is independent of circulating level. Specifi-
cally, plasma IL-6 did not increase as cachexia progressed, while muscle
IL-6 mRNA expression and STAT3 phosphorylation were increased. Ad-
ditionally, systemic overexpression of circulating IL-6 did not accelerate
the progression of cachexia, indicating that higher circulating IL-6 levels



Table 3
Characteristics of 14-week and 18-week female ApcMin/+ mice with IL-6 overexpression
(Experiments 2 and 3). Female ApcMin/+ mice had the right quadriceps muscle
electroporated with control plasmid or IL-6 overexpression plasmid. g, grams; mg, milli-
grams; dl, deciliter; pg, picograms; ml, milliliters; seg 4, segment 4 of the small intestine;
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are not sufficient to induce cachexia in the female ApcMin/+ mouse. We
also found that circulating IL-6 levelswere not correlatedwith increased
muscle IL-6r mRNA expression. Though the C26 and ApcMin/+ models of
cancer cachexia are IL-6 dependent in the male [25,28,57], sex
N, Newtons.

Female ApcMin/+ mice

IL-6 overexpression – +

12–14 week treatment p-Value

n 4 4
12-week body weight (g) 20.0 ± 0.7 19.0 ± 0.7 0.38
14-week body weight (g) 20.3 ± 0.6 19.5 ± 0.7 0.49
Spleen weight (mg) 312.3 ± 35.0 336.5 ± 22.3 0.59
Fasting glucose (mg/dl) 140.7 ± 1.3 171.0 ± 28.0 0.34
Plasma IL-6 (pg/ml) 1.5 ± 1.5 65.0 ± 18.1⁎ 0.02
Grip strength (N) 2.1 ± 0.1 2.0 ± 0.1 0.67

15–18 week treatment

n 6 6
Peak body weight (g) 20.4 ± 0.3 19.4 ± 0.6 0.21
15-week body weight (g) 19.6 ± 0.3 18.8 ± 0.7 0.41
18-week body weight (g) 19.3 ± 0.3 17.9 ± 0.6 0.06
Inguinal fat mass (mg) 130.3 ± 39.9 65.5 ± 36.3 0.27
Spleen weight (mg) 318.7 ± 77.6 367.3 ± 75.7 0.68
Fasting glucose (mg/dl) 119.3 ± 6.8 111.3 ± 4.7 0.37
Grip strength (N) 1.9 ± 0.1 1.9 ± 0.1 0.89

⁎ Denotes significant difference from control group (p b 0.05).
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differences have been found in the C26model of cachexia, providing ev-
idence that this is not a singular phenomenon related to the ApcMin/+

mouse [8]. Importantly, estrogen inhibits IL-6 transcription and signal-
ing in many tissues [16,17,36–38]; however, IL-6 is a known mediator
of diseases in females including polycystic ovarian syndrome, ovarian
cancer, and osteoporosis [37,58,59], indicating that females are suscep-
tible to the pathophysiological effects of IL-6 under multiple circum-
stances regardless of estrogen status. The overall inflammatory
environment related to the underlying disease may also alter IL-6 ac-
tion. The circulating levels of IL-10, IL-4, and interferon-α (IFNα) have
been shown to influence IL-6 action [50,60]. Interestingly, sex differ-
ences in inflammation have been reported in IL-10 knockout mice
[11]. Further investigation is required to determine if the systemic in-
flammatory environment, particularly the presence of estrogen, is dif-
ferentially regulating IL-6 function in female ApcMin/+ mice.

A key factor that determines tissue response to the inflammatory
environment is receptor expression. IL-6 initiates intracellular signaling
through binding with mIL-6r, which interacts with the signal-
Fig. 4.Muscle IL-6 signaling-associated protein levels (Experiment 1): A) Muscle IL-6 re-
ceptor levels (pg/ug total protein) are significantly higher in male B6 than in female B6
mice (0.28±0.04 vs 0.07±0.04, p=0.01, Student's t-test). B)Muscle IL-6 receptor levels
(pg/ug total protein) increase with cachexia severity in female ApcMin/+ mice (one-way
ANOVA, p b 0.0001). Cachectic levels were different from all other groups (p b 0.05,
Tukey post hoc). IL-6 receptor levels are significantly higher inmale cachexia than female
cachexia (0.78±0.11 vs. 0.42±0.09, p=0.02, Student's t-test). C)Upper: Representative
blots shown. All samples per group were run on a gel with all weight stable samples, and
then normalized during analysis. Lower: Quantification of pSTAT3/STAT3 blots. The ratio
of phosphorylated STAT3 (Y705)/STAT3 increases with cachexia severity in the female
ApcMin/+ mouse (one-way ANOVA, p = 0.01). There is no difference in phosphorylation
of STAT3 (Y705) between cachectic females and cachectic males (p = 0.154, Student's t-
test). No differences were seen between groups in total STAT3. D) Upper: Representative
blots shown. All ApcMin/+ samples were run on a gel with male B6 samples for normaliza-
tion. Lower: Quantification of SOCS3 blots. There is a significant interaction of sex by geno-
type in muscle SOCS3 protein expression (p = 0.006, two-way ANOVA). Female B6 mice
had significantly lower SOCS3 expression than male B6 mice (p = 0.015, Student–New-
man–Keuls post hoc). Female ApcMin/+ mice had significantly higher SOCS3 expression
than female B6 (p = 0.029, Student–Newman–Keuls post hoc), while male ApcMin/+

mice showed a strong trend towards lower SOCS3 expression than male B6 (p = 0.053,
Student–Newman–Keuls post hoc). $ indicates significant difference from initial cachexia
(p= 0.005, Tukey post hoc); (*) indicates significantly different from same-sex B6; (#) in-
dicates significant difference from male B6; (†) indicates significantly different from fe-
male. Dotted lines on graphs indicate B6 levels.



823K.L. Hetzler et al. / Biochimica et Biophysica Acta 1852 (2015) 816–825
transducing gp130 [61]. The importance of muscle IL-6 signaling
through mIL-6r and gp130 in the development of cachexia has been
clearly demonstrated in many tumor models [26,32,59,62]. Signaling
through gp130 activates many signaling pathways, including JAK/
STAT, p38, and ERK [22,25–27]. We have previously demonstrated
that LLC-induced cachexia in males suppresses muscle gp130 expres-
sion [10]. However, alterations in the expression level of gp130 or IL-
6r during cachexia progression in ApcMin/+ mice have not been previ-
ously reported. Interestingly, cachectic muscle from both male and fe-
male ApcMin/+ mice demonstrated an induction of muscle IL-6r mRNA
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expression and protein expression,without a significant change inmus-
cle gp130 mRNA expression. The novel observation that male C57BL/6
mice have significantly higher muscle IL-6r protein level than females
may explain why males have a more robust response to IL-6 than fe-
males. As IL-6 signaling has been linked to the induction of muscle pro-
tein degradation [5,25], it remains to be determined why this signal is
being amplified in cachectic muscle of both sexes at both the mRNA
and protein levels. It also appears unlikely that differential muscle
gp130 and IL-6r expression can account for differential sex responses
to circulating IL-6 in ApcMin/+ mice.

In addition to IL-6 interaction with its receptor complex, down-
stream regulators have the potential to alter IL-6 signaling in muscle
[63–65]. STAT3 is activated by phosphorylation at Y705 by Janus kinases
downstream of the IL-6r/gp130 complex [25]. Activation of JAK/STAT
signaling in cachectic muscle is associated with ubiquitin/proteasome
and autophagy-mediated protein degradation [5,25]. SOCS3 has the ca-
pacity to directly bind to gp130, inhibiting IL-6 signaling [65]. Cachexia
increased muscle SOCS3 mRNA expression in ApcMin/+ mice of both
sexes. However, the observation that SOCS3 protein has a differential
sex response both in B6 and cachectic ApcMin/+ mice may have implica-
tions for differential control of STAT3 expression and downstream sig-
naling between the sexes. The pattern of increased SOCS mRNA and
decreased SOCS3 protein that we report in the male ApcMin/+ has been
previously noted with cachexia in the C26 tumor-bearing model; it
has been shown that phosphorylation of SOCS3 by Jak can destabilize
SOCS3 and lead to its proteasome-mediated degradation [28]. Further,
there is evidence that a second chronological activation of STAT3 signal-
ing may occur even in the presence of SOCS3 binding; this activation is
induced by binding of the epidermal growth factor receptor (EGFR) to
IL-6r in the continued presence of IL-6, though it is unknown if sex dif-
ferences exist [66]. We demonstrate a strong trend towards increased
STAT3 phosphorylation during cachexia progression in female ApcMin/+

mice, as previously seen in the male [5]. This also corresponds with female
muscle becoming more sensitive to inflammatory signaling with the pro-
gression of cachexia, andmay represent the loss of a protectivemechanism
present in femalemuscle that suppresses inflammatory signaling.However,
IL-6 signaling is only one of many inflammatory pathways involved in the
progression of cachexia, and other inflammatory factors may regulate
cachexia development in the femaleApcMin/+mouse. Furtherwork is need-
ed todetermine the regulationof JAK/STAT signalingduring theprogression
of cachexia in female muscle and its relationship to wasting.

We have shown that female ApcMin/+ mice undergo cachexia that is,
at least initially, independent of IL-6 regulation. This finding has impor-
tant ramifications, particularly as IL-6 has garnered interest as a poten-
tial therapeutic target for cancer cachexia. We report for the first time
levels of IL-6r, gp130, and SOCS3 mRNA and protein expression in the
muscle ofmale and female ApcMin/+mice.We also report the novel find-
ing that there is differential expression of muscle IL-6r protein in male
and female mice. Further, we have reported a difference in the timing
of muscle and fat loss between the sexes that may have important ram-
ifications for metabolism and cytokine signaling during the progression
Fig. 5. Effect of IL-6 overexpression in 18 week-old female ApcMin/+ mice (Experiment 3):
A) Female ApcMin/+ mice that had IL-6 systemically overexpressed from 15–18 weeks of
age had higher circulating plasma IL-6 than control mice (p = 0.002). B) There is no dif-
ference in body weight change from peak body weight (%) between female ApcMin/+

mice that have had IL-6 systemically overexpressed from 15–18 weeks of age and control
femaleApcMin/+mice at 18weeks of age. C) There is nodifference inhindlimbmusclemass
between female ApcMin/+ mice that have had IL-6 systemically overexpressed from 15–
18 weeks of age and control female ApcMin/+ mice at 18 weeks of age. D) There is no dif-
ference in the ratio of phosphorylation of STAT3/STAT3 between female ApcMin/+ mice
that have had IL-6 systemically overexpressed from 15–18 weeks of age and control fe-
male ApcMin/+mice at 18weeks of age (p=0.662, Student's t-test). Upper: Representative
blots showing pSTAT3 and STAT3 expression. Dashed line indicates that sampleswere run
on same gel, but separated by other samples. Lower: Quantification of pSTAT3/STAT3 ex-
pression. Dotted line on graph indicates female B6 level of phosphorylation/total STAT3.
(*) indicates pSTAT3/STAT3 levels were significantly higher than B6 (p = 0.008).
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of cachexia. It appears that factors involved in the regulation of cancer
cachexia progression are subject to differential sex regulation, and
more work is needed to mechanistically understand these differences.
In addition, futureworkwill need to determine themechanisms in skel-
etal muscle during the progression of cachexia related to protein turn-
over, oxidative metabolism, and apoptosis that undergo differential
regulation in the female.
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