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In this paper we give a sufficient condition for function to be α-starlike function and some
of its applications. We use the techniques of convolution and differential subordinations.
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1. Introduction

Let H denote the class of analytic functions in the open unit disc U = {z: |z| < 1} of the complex plane C. Let A denote
the subclass of H consisting of functions normalized by f (0) = 0, f ′(0) = 1 and let

S ∗(α) =
{

f ∈ A: Re

[
zf ′(z)

f (z)

]
> α for z ∈ U

}

be the class of α-starlike functions, α ∈ [0,1). S ∗(0) = S ∗ is the class of starlike functions which map U onto a starlike
domain with respect to the origin. We say that f ∈ H is subordinate to g ∈ H in U , written f ≺ g , if and only if there exists
a function ω ∈ H with ω(0) = 0 and |ω(z)| < 1 in U such that f (z) = g(ω(z)) for z ∈ U . If f ≺ g in U , then f (U ) ⊆ g(U ).
Many classes of functions studied in geometric function theory can be described in terms of subordination. Let us denote

pγ (z) = 1 + γ z

1 − z
= 1 + (1 + γ )

∞∑
k=1

zk (z ∈ U ). (1)

If γ �= −1 then the function pγ maps U onto the half plane Re w >
1−γ

2 and it is easy to check that for γ ∈ (−1,1]{
f ∈ A:

zf ′(z)

f (z)
≺ pγ (z) in U

}
= S ∗

(
1 − γ

2

)
. (2)

We say that the function f ∈ H is convex when f (U ) is a convex set. It is easy to see that if γ �= −1 then pγ is a convex
univalent function.
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R. Singh and S. Singh [10] proved that if f ∈ A and Re{ f ′(z) + zf ′′(z)} > − 1
4 (z ∈ U ), then f ∈ S ∗(0). Ponnusamy [4]

improved this result by replacing the constant −1/4 by −0.308 . . . . Recently R. Szász and L.-R. Albert [9] checked using a
computer that

1

8
< inf

α∈(0,∞)

{∀ f ∈ A
[
Re

[
f ′(z) + αzf ′′(z)

]
> 0 ⇒ f ∈ S ∗]} <

1

7
.

In this paper we consider a similar sufficient condition for functions to be in the class S ∗(α).
For f (z) = a0 + a1z + a2z2 + · · · and g(z) = b0 + b1z + b2z2 + · · · the Hadamard product (or convolution) is defined by

( f ∗ g)(z) = a0b0 + a1b1z + a2b2z2 + · · · . The convolution has the algebraic properties of ordinary multiplication. Many of
convolution problems were studied by St. Ruscheweyh in [5] and have found many applications in various fields. One of
them is the following theorem due to St. Ruscheweyh and J. Stankiewicz [8] which will be useful in this paper.

Theorem A. Let F , G ∈ H be any convex univalent functions in U . If f ≺ F and g ≺ G, then f ∗ g ≺ F ∗ G in U .

The next theorem is a special case of the Julia–Wolf Theorem. It is known as Jack’s Lemma.

Theorem B. (See [2].) Let ω(z) be meromorphic in U , ω(0) = 0. If for a certain z0 ∈ U we have |ω(z)| � |ω(z0)| for |z| � |z0|, then
z0ω

′(z0) = mω(z0), m � 1.

2. Main result

Lemma 1. Let α > 0, γ ∈ R \ {−1}. If f ∈ A and f ′(z) + z
α f ′′(z) ≺ pγ (z), then

f (z)

z
≺ 1 + α(1 + γ )

∞∑
k=1

zk

(1 + k)(k + α)
:= H(α,γ ; z) (3)

and H(α,γ ; z) is the best dominant in the sense that if f (z)
z ≺ G(z), then H(α,γ ; z) ≺ G(z).

Proof. For x � 0 the function

h̃(x; z) =
∞∑

k=1

(1 + x)zk

(k + x)

is convex univalent [6]. Ruscheweyh and Sheil-Small in [7] proved the Pólya–Schoenberg conjecture that the class of convex
univalent functions is preserved under convolution. Thus

g(z) = 1 + α

2 + 2α

[
h̃(1; z) ∗ h̃(α; z)

] = 1 +
∞∑

k=1

αzk

(k + 1)(k + α)

is a convex univalent function. Also pγ is convex univalent so by Theorem A we have

[
f ′(z) + z

α
f ′′(z)

]
∗ g(z) ≺ pγ (z) ∗ g(z).

It gives (3) because[
f ′(z) + z

α
f ′′(z)

]
∗ g(z) = f (z)

z
, pγ (z) ∗ g(z) = H(α,γ ; z).

The function H(α,γ ; z) is convex univalent as the convolution of convex univalent functions pγ and g . Suppose that
f (z)

z ≺ G(z) for each f ∈ A such that f ′(z)+ z
α f ′′(z) ≺ pγ (z). The function f0(z) = zH(α,γ ; z) gives f ′

0(z)+ z
α f ′′

0 (z) = pγ (z)

thus f0(z)
z = H(α,γ ; z) ≺ G(z). This means that H(α,γ ; z) is the best dominant of f (z)

z . �
For α > 0 and γ > −1 the function H(α,γ ; z) is convex univalent with positive coefficients so H(U ) is a convex set

symmetric with respect to the real axis with

H(α,γ ;−1) < Re
[

H(α,γ ; z)
]
< H(α,γ ;1)

hence we have the following corollary.
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Corollary 1. Let α > 0, γ > −1. If f ∈ A and f ′(z) + z
α f ′′(z) ≺ pγ (z), then

H(α,γ ;−1) < Re

[
f (z)

z

]
< H(α,γ ;1) (z ∈ U ). (4)

Notice that
∞∑

k=1

ιk

k(k + x)
=

{
1
x [ψ(x + 1) + C] for ι = 1,
1
x [B(x + 1) − ln 2] for ι = −1,

where

B(z) =
1∫

0

tz−1

1 + t
dt =

∞∑
k=0

1

(z + 2k)(z + 2k + 1)
(Re z > 0) (5)

is the beta function while ψ(z) = [ln �(z)]′ , where � is the gamma function and C is the Euler’s constant. Thus we have

H(α,γ ;−1) =
{

1 + α 1+γ
1−α [1 − B(1 + α) − ln 2] for α ∈ (0,+∞) \ {1},

1 + (1 + γ )(π2

12 − 1) for α = 1,
(6)

and

H(α,γ ;1) =
{

1 + α 1+γ
1−α [1 − ψ(1 + α) − C] for α ∈ (0,+∞) \ {1},

1 + (1 + γ )(π2

6 − 1) for α = 1.

In order to check when H(α,β;−1) > 0 it is useful to rewrite (6) in the form

H(α,γ ;−1) =
{

1 + α 1+γ
1−α [B(2) − B(1 + α)] for α ∈ (0,+∞) \ {1},

1 + (1 + γ )(π2

12 − 1) for α = 1.
(7)

Applying (5) we see that the function B is decreasing for z > 0 thus B(2)−B(1+α)
1−α < 0 for α �= 1. Therefore by (7) we conclude

that

H(α,γ ;−1) > 0 ⇔ γ < g(α) :=
{−1 − 1−α

α[B(2)−B(1+α)] for α ∈ (0,+∞) \ {1},
π2

12−π2 = 4.6327 . . . for α = 1.
(8)

The above result will be useful in the following theorem.

Theorem 1. Let α ∈ (0,1] and f ∈ A. Then f ∈ S ∗( 1−α
2 ) whenever for z ∈ U

Re

[
f ′(z) + z

α
f ′′(z)

]
>

1 − γ (α)

2
:= 1 − α2 + 3α + 2

2α[2 − (α2 − α + 2)B(α)] and γ (α) < g(α), (9)

where

B(α) =
∞∑

k=1

(−1)k

(1 + k)(k + α)
=

{
1

1−α [1 − B(1 + α) − ln 2] for α ∈ [0,1),

π2

12 − 1 for α = 1.

Proof. For convenience, in this proof we will drop the variable α in γ (α). From (9) we have f ′(z) + z
α f ′′(z) ≺ pγ (z). We

have γ < g(α) thus, by Corollary 1 and by (8)

Re

[
f (z)

z

]
> H(α,γ ;−1) > 0 (z ∈ U ). (10)

This gives f (z)
z �= 0, z ∈ U . Moreover the function pα(z) = 1+αz

1−z , pα(∞) = −α, maps C \ {1} onto C and it is univalent so a
function ω(z), ω(0) = 0, defined by

ω(z) = p−1
α

(
zf ′(z)

f (z)

)
(11)

is analytic in U . In view of (2) for proving Theorem 1 it is sufficient to show that zf ′(z)
f (z) ≺ pα(z) or equivalently that ω(z)

is bounded by 1 in U . If this is false we find z0 ∈ U such that |ω(z)| � |ω(z0)| = 1, |z| � |z0|. According to Theorem B,
z0ω

′(z0)
ω(z0)

= m � 1. Taking the derivative of (11) we obtain after some manipulations the relation

f ′(z0) + z0
f ′′(z0) = f (z0)

[
z0ω

′(z0) (1 + α)ω(z0)

2
+ p2

α

(
ω(z0)

) − (1 − α)pα

(
ω(z0)

)]
. (12)
α αz0 ω(z0) (1 − ω(z0))
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If we denote ω(z0) = eiϕ , ϕ ∈ [0,2π), then we have

2ω(z0)

(1 − ω(z0))2
= 1

cosϕ − 1
< 0, pα

(
ω(z0)

) = 1 + αω(z0)

1 − ω(z0)
= 1 − α

2
+ i

1 + α

2
ctg

ϕ

2
,

so the quantity in the square brackets of (12) becomes

[. . .] = 2m(1 + α) + (1 + α)2(1 + cosϕ)

4(cosϕ − 1)
−

[
1 − α

2

]2

=: δ.

It is easy to see that δ is a negative real number so from (4) and (12) we have

δ

α
H(α,γ ;1) < Re

[
f ′(z0) + z0

α
f ′′(z0)

]
<

δ

α
H(α,γ ;−1) = δ

α

[
1 + α(1 + γ )B(α)

]
. (13)

According to (10) we have H(α,γ ;−1) = 1 + α(1 + γ )B(α) > 0. Moreover

δ = α + (1 + α)2 + m(1 + α)

2(cosϕ − 1)
� α + (1 + α)2 + (1 + α)

2(−1 − 1)
= −α2 − α + 2

4
.

Therefore we obtain from (13)

Re

[
f ′(z0) + z0

α
f ′′(z0)

]
� −α2 − α + 2

4α

[
1 + α(1 + γ )B(α)

] = 1 − γ

2

which contradicts our assumption (9). �
3. Some applications

In this section we shall look at some examples where we see how our result improve earlier results.
If α = 1, then by (8) and (9) we obtain 1−γ (1)

2 = 6−π2

24−π2 , γ (1) = 12+π2

24−π2 = 1.54 . . . and γ (1) < g(1) = 4.63 . . . . Therefore
Theorem 1 becomes

Corollary 2. If f ∈ A then f ∈ S ∗(0) = S ∗ whenever

Re
[

f ′(z) + zf ′′(z)
]
>

6 − π2

24 − π2
= −0.273 . . . (z ∈ U ). (14)

The integral form of above result due to Miller and Mocanu one can find in [3, p. 309]. Moreover the constant given
in (14) is a little grater than −0.308 . . . given by Ponnusamy [4].

Let us consider α = 1/2. If −1 � x � 1 then

∞∑
k=1

(−1)(k−1)x2k

k(2k − 1)
= 2x arctan x − ln

(
1 + x2)

so B(1/2) = ∑∞
k=1

(−1)k

(1+k)(1/2+k)
= π − ln 4 − 2 = −0.24 . . . . Thus we have

γ (1/2) = −1 + 30

22 − 7(π − ln 4)
= 2.088 . . . and g(1/2) = −1 − 2

π − ln 4 − 2
= 7.17 . . . .

Therefore γ (1/2) < g(1/2) and Theorem 1 becomes the following result.

Corollary 3. If f ∈ A then f ∈ S ∗(1/4) whenever

Re
[

f ′(z) + 2zf ′′(z)
]
> 1 − 15

22 − 7(π − ln 4)
= −0.541 . . . (z ∈ U ).

Let us consider α = 1/3. If −1 < x � 1 then

∞∑
k=0

(−1)kx3k+1

3k + 1
= 1

3
ln

1 + x√
x2 − x + 1

+ 1√
3

arctan
2x − 1√

3
+ π

6
√

3

and if −1 � x < 1 then

∞∑ xk

k
= ln

1

1 − x

k=1
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so

B(1/3) = 9
∞∑

k=1

(−1)k

(3k + 3)(3k + 1)
= 9

2

∞∑
k=1

(−1)k

3k + 1
− 3

2

∞∑
k=1

(−1)k

k + 1

= 9

2

[
1

3
ln 2 + π

3
√

3
− 1

]
− 3

2
[ln 2 − 1] = 3π

2
√

3
− 3 = −0.279 . . . .

Thus we have

γ (1/3) = −1 + 14
√

3

11
√

3 − 4π
= 2.738 . . . and g(1/3) = −1 − 2

√
3

π − 2
√

3
= 9.74 . . . .

Therefore γ (1/3) < g(1/3) and we obtain the following result.

Corollary 4. If f ∈ A then f ∈ S ∗(1/3) whenever

Re
[

f ′(z) + 3zf ′′(z)
]
> 1 − 7

√
3

11
√

3 − 4π
= −0.869 . . . (z ∈ U ).

Let us consider α = 1/4. If −1 < x � 1 then

∞∑
k=0

(−1)kx4k+1

4k + 1
= 1

4
√

2
ln

x2 + x
√

2 + 1

x2 − x
√

2 + 1
+ 1

2
√

2

[
arctan(x

√
2 + 1) + arctan(x

√
2 − 1)

]
.

Thus

B(1/4) = 16
∞∑

k=1

(−1)k

(4k + 4)(4k + 1)
= 16

3

∞∑
k=1

(−1)k

4k + 1
− 4

3

∞∑
k=1

(−1)k

k + 1

= 16

3

[
1

4
√

2
ln

2 + √
2

2 − √
2

+ π

4
√

2
− 1

]
− 4

3
[ln 2 − 1] = −0.3 . . . .

Thus we have

γ (1/4) = −1 + 180

32 − 21B(1/4)
= 3.699 . . . and g(1/4) = −1 − 4

B(1/4)
= 12.3 . . . .

Therefore γ (1/4) > g(1/4) and Theorem 1 gives the following result.

Corollary 5. If f ∈ A then f ∈ S ∗(3/8) whenever

Re
[

f ′(z) + 4zf ′′(z)
]
> 1 − 90

32 − 21B(1/4)
= −1.349 . . . (z ∈ U ).

If α → 0 then Theorem 1 becomes the next corollary.

Corollary 6. If f ∈ A then f ∈ S ∗(1/2) whenever

Re
[
zf ′′(z)

]
> − 2

4 + 2B(0)
= − 1

3 − ln 4
= −0.61969 . . . (z ∈ U ).

Corollary 6 is analogous to a sharp result of the form

f ∈ A and Re
[
zf ′′(z)

]
> − 3

8 ln 2
= −0.721 . . . ⇒ f ∈ S ∗

obtained by Ali, Ponnusamy and Singh in [1], see also [3, pp. 275–277] for the other results.
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