On a condition for α-starlikeness

Janusz Sokół
Department of Mathematics, Rzeszów University of Technology, ul. W. Pola 2, 35-959 Rzeszów, Poland

A R T I C L E I N F O

Article history:

Received 14 July 2008
Available online 21 November 2008
Submitted by S. Ruscheweyh

Keywords:

Analytic functions
Convex functions
Starlike functions
Beta function
Gamma function
Convolution
Differential subordinations
Jack's Lemma

Abstract

In this paper we give a sufficient condition for function to be α-starlike function and some of its applications. We use the techniques of convolution and differential subordinations. © 2008 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathcal{H} denote the class of analytic functions in the open unit disc $U=\{z:|z|<1\}$ of the complex plane \mathbb{C}. Let \mathcal{A} denote the subclass of \mathcal{H} consisting of functions normalized by $f(0)=0, f^{\prime}(0)=1$ and let

$$
\mathcal{S}^{*}(\alpha)=\left\{f \in \mathcal{A}: \operatorname{Re}\left[\frac{z f^{\prime}(z)}{f(z)}\right]>\alpha \text { for } z \in U\right\}
$$

be the class of α-starlike functions, $\alpha \in[0,1) . \mathcal{S}^{*}(0)=\mathcal{S}^{*}$ is the class of starlike functions which map U onto a starlike domain with respect to the origin. We say that $f \in \mathcal{H}$ is subordinate to $g \in \mathcal{H}$ in U, written $f \prec g$, if and only if there exists a function $\omega \in \mathcal{H}$ with $\omega(0)=0$ and $|\omega(z)|<1$ in U such that $f(z)=g(\omega(z))$ for $z \in U$. If $f \prec g$ in U, then $f(U) \subseteq g(U)$. Many classes of functions studied in geometric function theory can be described in terms of subordination. Let us denote

$$
\begin{equation*}
p_{\gamma}(z)=\frac{1+\gamma z}{1-z}=1+(1+\gamma) \sum_{k=1}^{\infty} z^{k} \quad(z \in U) \tag{1}
\end{equation*}
$$

If $\gamma \neq-1$ then the function p_{γ} maps U onto the half plane $\operatorname{Re} w>\frac{1-\gamma}{2}$ and it is easy to check that for $\gamma \in(-1,1]$

$$
\begin{equation*}
\left\{f \in \mathcal{A}: \frac{z f^{\prime}(z)}{f(z)} \prec p_{\gamma}(z) \text { in } U\right\}=\mathcal{S}^{*}\left(\frac{1-\gamma}{2}\right) . \tag{2}
\end{equation*}
$$

We say that the function $f \in \mathcal{H}$ is convex when $f(U)$ is a convex set. It is easy to see that if $\gamma \neq-1$ then p_{γ} is a convex univalent function.

[^0]R. Singh and S. Singh [10] proved that if $f \in \mathcal{A}$ and $\operatorname{Re}\left\{f^{\prime}(z)+z f^{\prime \prime}(z)\right\}>-\frac{1}{4}(z \in U)$, then $f \in \mathcal{S}^{*}(0)$. Ponnusamy [4] improved this result by replacing the constant $-1 / 4$ by $-0.308 \ldots$. Recently R. Szász and L.-R. Albert [9] checked using a computer that
$$
\frac{1}{8}<\inf _{\alpha \in(0, \infty)}\left\{\forall f \in \mathcal{A}\left[\operatorname{Re}\left[f^{\prime}(z)+\alpha z f^{\prime \prime}(z)\right]>0 \Rightarrow f \in \mathcal{S}^{*}\right]\right\}<\frac{1}{7}
$$

In this paper we consider a similar sufficient condition for functions to be in the class $\mathcal{S}^{*}(\alpha)$.
For $f(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots$ and $g(z)=b_{0}+b_{1} z+b_{2} z^{2}+\cdots$ the Hadamard product (or convolution) is defined by $(f * g)(z)=a_{0} b_{0}+a_{1} b_{1} z+a_{2} b_{2} z^{2}+\cdots$. The convolution has the algebraic properties of ordinary multiplication. Many of convolution problems were studied by St. Ruscheweyh in [5] and have found many applications in various fields. One of them is the following theorem due to St. Ruscheweyh and J. Stankiewicz [8] which will be useful in this paper.

Theorem A. Let $F, G \in \mathcal{H}$ be any convex univalent functions in U. If $f \prec F$ and $g \prec G$, then $f * g \prec F * G$ in U.
The next theorem is a special case of the Julia-Wolf Theorem. It is known as Jack's Lemma.
Theorem B. (See [2].) Let $\omega(z)$ be meromorphic in $U, \omega(0)=0$. If for a certain $z_{0} \in U$ we have $|\omega(z)| \leqslant\left|\omega\left(z_{0}\right)\right|$ for $|z| \leqslant\left|z_{0}\right|$, then $z_{0} \omega^{\prime}\left(z_{0}\right)=m \omega\left(z_{0}\right), m \geqslant 1$.

2. Main result

Lemma 1. Let $\alpha>0, \gamma \in \mathbb{R} \backslash\{-1\}$. If $f \in \mathcal{A}$ and $f^{\prime}(z)+\frac{z}{\alpha} f^{\prime \prime}(z) \prec p_{\gamma}(z)$, then

$$
\begin{equation*}
\frac{f(z)}{z} \prec 1+\alpha(1+\gamma) \sum_{k=1}^{\infty} \frac{z^{k}}{(1+k)(k+\alpha)}:=H(\alpha, \gamma ; z) \tag{3}
\end{equation*}
$$

and $H(\alpha, \gamma ; z)$ is the best dominant in the sense that if $\frac{f(z)}{z} \prec G(z)$, then $H(\alpha, \gamma ; z) \prec G(z)$.
Proof. For $x \geqslant 0$ the function

$$
\tilde{h}(x ; z)=\sum_{k=1}^{\infty} \frac{(1+x) z^{k}}{(k+x)}
$$

is convex univalent [6]. Ruscheweyh and Sheil-Small in [7] proved the Pólya-Schoenberg conjecture that the class of convex univalent functions is preserved under convolution. Thus

$$
g(z)=1+\frac{\alpha}{2+2 \alpha}[\tilde{h}(1 ; z) * \tilde{h}(\alpha ; z)]=1+\sum_{k=1}^{\infty} \frac{\alpha z^{k}}{(k+1)(k+\alpha)}
$$

is a convex univalent function. Also p_{γ} is convex univalent so by Theorem A we have

$$
\left[f^{\prime}(z)+\frac{z}{\alpha} f^{\prime \prime}(z)\right] * g(z) \prec p_{\gamma}(z) * g(z)
$$

It gives (3) because

$$
\left[f^{\prime}(z)+\frac{z}{\alpha} f^{\prime \prime}(z)\right] * g(z)=\frac{f(z)}{z}, \quad p_{\gamma}(z) * g(z)=H(\alpha, \gamma ; z)
$$

The function $H(\alpha, \gamma ; z)$ is convex univalent as the convolution of convex univalent functions p_{γ} and g. Suppose that $\frac{f(z)}{z} \prec G(z)$ for each $f \in \mathcal{A}$ such that $f^{\prime}(z)+\frac{z}{\alpha} f^{\prime \prime}(z) \prec p_{\gamma}(z)$. The function $f_{0}(z)=z H(\alpha, \gamma ; z)$ gives $f_{0}^{\prime}(z)+\frac{z}{\alpha} f_{0}^{\prime \prime}(z)=p_{\gamma}(z)$ thus $\frac{f_{0}(z)}{z}=H(\alpha, \gamma ; z) \prec G(z)$. This means that $H(\alpha, \gamma ; z)$ is the best dominant of $\frac{f(z)}{z}$.

For $\alpha>0$ and $\gamma>-1$ the function $H(\alpha, \gamma ; z)$ is convex univalent with positive coefficients so $H(U)$ is a convex set symmetric with respect to the real axis with

$$
H(\alpha, \gamma ;-1)<\operatorname{Re}[H(\alpha, \gamma ; z)]<H(\alpha, \gamma ; 1)
$$

hence we have the following corollary.

Corollary 1. Let $\alpha>0, \gamma>-1$. If $f \in \mathcal{A}$ and $f^{\prime}(z)+\frac{z}{\alpha} f^{\prime \prime}(z) \prec p_{\gamma}(z)$, then

$$
\begin{equation*}
H(\alpha, \gamma ;-1)<\operatorname{Re}\left[\frac{f(z)}{z}\right]<H(\alpha, \gamma ; 1) \quad(z \in U) \tag{4}
\end{equation*}
$$

Notice that

$$
\sum_{k=1}^{\infty} \frac{\iota^{k}}{k(k+x)}= \begin{cases}\frac{1}{x}[\psi(x+1)+C] & \text { for } \iota=1, \\ \frac{1}{x}[\mathcal{B}(x+1)-\ln 2] & \text { for } \iota=-1,\end{cases}
$$

where

$$
\begin{equation*}
\mathcal{B}(z)=\int_{0}^{1} \frac{t^{z-1}}{1+t} \mathrm{~d} t=\sum_{k=0}^{\infty} \frac{1}{(z+2 k)(z+2 k+1)} \quad(\operatorname{Re} z>0) \tag{5}
\end{equation*}
$$

is the beta function while $\psi(z)=[\ln \Gamma(z)]^{\prime}$, where Γ is the gamma function and C is the Euler's constant. Thus we have

$$
H(\alpha, \gamma ;-1)= \begin{cases}1+\alpha \frac{1+\gamma}{1-\alpha}[1-\mathcal{B}(1+\alpha)-\ln 2] & \text { for } \alpha \in(0,+\infty) \backslash\{1\} \tag{6}\\ 1+(1+\gamma)\left(\frac{\pi^{2}}{12}-1\right) & \text { for } \alpha=1\end{cases}
$$

and

$$
H(\alpha, \gamma ; 1)= \begin{cases}1+\alpha \frac{1+\gamma}{1-\alpha}[1-\psi(1+\alpha)-C] & \text { for } \alpha \in(0,+\infty) \backslash\{1\} \\ 1+(1+\gamma)\left(\frac{\pi^{2}}{6}-1\right) & \text { for } \alpha=1\end{cases}
$$

In order to check when $H(\alpha, \beta ;-1)>0$ it is useful to rewrite (6) in the form

$$
H(\alpha, \gamma ;-1)= \begin{cases}1+\alpha \frac{1+\gamma}{1-\alpha}[\mathcal{B}(2)-\mathcal{B}(1+\alpha)] & \text { for } \alpha \in(0,+\infty) \backslash\{1\} \tag{7}\\ 1+(1+\gamma)\left(\frac{\pi^{2}}{12}-1\right) & \text { for } \alpha=1\end{cases}
$$

Applying (5) we see that the function \mathcal{B} is decreasing for $z>0$ thus $\frac{\mathcal{B}(2)-\mathcal{B}(1+\alpha)}{1-\alpha}<0$ for $\alpha \neq 1$. Therefore by (7) we conclude that

$$
H(\alpha, \gamma ;-1)>0 \quad \Leftrightarrow \quad \gamma<g(\alpha):= \begin{cases}-1-\frac{1-\alpha}{\alpha[\mathcal{B}(2)-\mathcal{B}(1+\alpha)]} & \text { for } \alpha \in(0,+\infty) \backslash\{1\} \tag{8}\\ \frac{\pi^{2}}{12-\pi^{2}}=4.6327 \ldots & \text { for } \alpha=1\end{cases}
$$

The above result will be useful in the following theorem.
Theorem 1. Let $\alpha \in(0,1]$ and $f \in \mathcal{A}$. Then $f \in \mathcal{S}^{*}\left(\frac{1-\alpha}{2}\right)$ whenever for $z \in U$

$$
\begin{equation*}
\operatorname{Re}\left[f^{\prime}(z)+\frac{z}{\alpha} f^{\prime \prime}(z)\right]>\frac{1-\gamma(\alpha)}{2}:=1-\frac{\alpha^{2}+3 \alpha+2}{2 \alpha\left[2-\left(\alpha^{2}-\alpha+2\right) B(\alpha)\right]} \quad \text { and } \quad \gamma(\alpha)<g(\alpha) \text {, } \tag{9}
\end{equation*}
$$

where

$$
B(\alpha)=\sum_{k=1}^{\infty} \frac{(-1)^{k}}{(1+k)(k+\alpha)}= \begin{cases}\frac{1}{1-\alpha}[1-\mathcal{B}(1+\alpha)-\ln 2] & \text { for } \alpha \in[0,1), \\ \frac{\pi^{2}}{12}-1 & \text { for } \alpha=1\end{cases}
$$

Proof. For convenience, in this proof we will drop the variable α in $\gamma(\alpha)$. From (9) we have $f^{\prime}(z)+\frac{z}{\alpha} f^{\prime \prime}(z) \prec p_{\gamma}(z)$. We have $\gamma<g(\alpha)$ thus, by Corollary 1 and by (8)

$$
\begin{equation*}
\operatorname{Re}\left[\frac{f(z)}{z}\right]>H(\alpha, \gamma ;-1)>0 \quad(z \in U) \tag{10}
\end{equation*}
$$

This gives $\frac{f(z)}{z} \neq 0, z \in U$. Moreover the function $p_{\alpha}(z)=\frac{1+\alpha z}{1-z}, p_{\alpha}(\infty)=-\alpha$, maps $\overline{\mathbb{C}} \backslash\{1\}$ onto \mathbb{C} and it is univalent so a function $\omega(z), \omega(0)=0$, defined by

$$
\begin{equation*}
\omega(z)=p_{\alpha}^{-1}\left(\frac{z f^{\prime}(z)}{f(z)}\right) \tag{11}
\end{equation*}
$$

is analytic in U. In view of (2) for proving Theorem 1 it is sufficient to show that $\frac{z f^{\prime}(z)}{f(z)} \prec p_{\alpha}(z)$ or equivalently that $\omega(z)$ is bounded by 1 in U. If this is false we find $z_{0} \in U$ such that $|\omega(z)| \leqslant\left|\omega\left(z_{0}\right)\right|=1,|z| \leqslant\left|z_{0}\right|$. According to Theorem B, $\frac{z_{0} \omega^{\prime}\left(z_{0}\right)}{\omega\left(z_{0}\right)}=m \geqslant 1$. Taking the derivative of (11) we obtain after some manipulations the relation

$$
\begin{equation*}
f^{\prime}\left(z_{0}\right)+\frac{z_{0}}{\alpha} f^{\prime \prime}\left(z_{0}\right)=\frac{f\left(z_{0}\right)}{\alpha z_{0}}\left[\frac{z_{0} \omega^{\prime}\left(z_{0}\right)}{\omega\left(z_{0}\right)} \frac{(1+\alpha) \omega\left(z_{0}\right)}{\left(1-\omega\left(z_{0}\right)\right)^{2}}+p_{\alpha}^{2}\left(\omega\left(z_{0}\right)\right)-(1-\alpha) p_{\alpha}\left(\omega\left(z_{0}\right)\right)\right] . \tag{12}
\end{equation*}
$$

If we denote $\omega\left(z_{0}\right)=e^{i \varphi}, \varphi \in[0,2 \pi)$, then we have

$$
\frac{2 \omega\left(z_{0}\right)}{\left(1-\omega\left(z_{0}\right)\right)^{2}}=\frac{1}{\cos \varphi-1}<0, \quad p_{\alpha}\left(\omega\left(z_{0}\right)\right)=\frac{1+\alpha \omega\left(z_{0}\right)}{1-\omega\left(z_{0}\right)}=\frac{1-\alpha}{2}+i \frac{1+\alpha}{2} \operatorname{ctg} \frac{\varphi}{2}
$$

so the quantity in the square brackets of (12) becomes

$$
[\ldots]=\frac{2 m(1+\alpha)+(1+\alpha)^{2}(1+\cos \varphi)}{4(\cos \varphi-1)}-\left[\frac{1-\alpha}{2}\right]^{2}=: \delta .
$$

It is easy to see that δ is a negative real number so from (4) and (12) we have

$$
\begin{equation*}
\frac{\delta}{\alpha} H(\alpha, \gamma ; 1)<\operatorname{Re}\left[f^{\prime}\left(z_{0}\right)+\frac{z_{0}}{\alpha} f^{\prime \prime}\left(z_{0}\right)\right]<\frac{\delta}{\alpha} H(\alpha, \gamma ;-1)=\frac{\delta}{\alpha}[1+\alpha(1+\gamma) B(\alpha)] . \tag{13}
\end{equation*}
$$

According to (10) we have $H(\alpha, \gamma ;-1)=1+\alpha(1+\gamma) B(\alpha)>0$. Moreover

$$
\delta=\alpha+\frac{(1+\alpha)^{2}+m(1+\alpha)}{2(\cos \varphi-1)} \leqslant \alpha+\frac{(1+\alpha)^{2}+(1+\alpha)}{2(-1-1)}=-\frac{\alpha^{2}-\alpha+2}{4}
$$

Therefore we obtain from (13)

$$
\operatorname{Re}\left[f^{\prime}\left(z_{0}\right)+\frac{z_{0}}{\alpha} f^{\prime \prime}\left(z_{0}\right)\right] \leqslant-\frac{\alpha^{2}-\alpha+2}{4 \alpha}[1+\alpha(1+\gamma) B(\alpha)]=\frac{1-\gamma}{2}
$$

which contradicts our assumption (9).

3. Some applications

In this section we shall look at some examples where we see how our result improve earlier results.
If $\alpha=1$, then by (8) and (9) we obtain $\frac{1-\gamma(1)}{2}=\frac{6-\pi^{2}}{24-\pi^{2}}, \gamma(1)=\frac{12+\pi^{2}}{24-\pi^{2}}=1.54 \ldots$ and $\gamma(1)<g(1)=4.63 \ldots$. Therefore Theorem 1 becomes

Corollary 2. If $f \in \mathcal{A}$ then $f \in \mathcal{S}^{*}(0)=\mathcal{S}^{*}$ whenever

$$
\begin{equation*}
\operatorname{Re}\left[f^{\prime}(z)+z f^{\prime \prime}(z)\right]>\frac{6-\pi^{2}}{24-\pi^{2}}=-0.273 \ldots \quad(z \in U) \tag{14}
\end{equation*}
$$

The integral form of above result due to Miller and Mocanu one can find in [3, p. 309]. Moreover the constant given in (14) is a little grater than $-0.308 \ldots$ given by Ponnusamy [4].

Let us consider $\alpha=1 / 2$. If $-1 \leqslant x \leqslant 1$ then

$$
\sum_{k=1}^{\infty} \frac{(-1)^{(k-1)} x^{2 k}}{k(2 k-1)}=2 x \arctan x-\ln \left(1+x^{2}\right)
$$

so $B(1 / 2)=\sum_{k=1}^{\infty} \frac{(-1)^{k}}{(1+k)(1 / 2+k)}=\pi-\ln 4-2=-0.24 \ldots$. Thus we have

$$
\gamma(1 / 2)=-1+\frac{30}{22-7(\pi-\ln 4)}=2.088 \ldots \quad \text { and } \quad g(1 / 2)=-1-\frac{2}{\pi-\ln 4-2}=7.17 \ldots
$$

Therefore $\gamma(1 / 2)<g(1 / 2)$ and Theorem 1 becomes the following result.
Corollary 3. If $f \in \mathcal{A}$ then $f \in \mathcal{S}^{*}(1 / 4)$ whenever

$$
\operatorname{Re}\left[f^{\prime}(z)+2 z f^{\prime \prime}(z)\right]>1-\frac{15}{22-7(\pi-\ln 4)}=-0.541 \ldots \quad(z \in U)
$$

Let us consider $\alpha=1 / 3$. If $-1<x \leqslant 1$ then

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{3 k+1}}{3 k+1}=\frac{1}{3} \ln \frac{1+x}{\sqrt{x^{2}-x+1}}+\frac{1}{\sqrt{3}} \arctan \frac{2 x-1}{\sqrt{3}}+\frac{\pi}{6 \sqrt{3}}
$$

and if $-1 \leqslant x<1$ then

$$
\sum_{k=1}^{\infty} \frac{x^{k}}{k}=\ln \frac{1}{1-x}
$$

so

$$
\begin{aligned}
B(1 / 3) & =9 \sum_{k=1}^{\infty} \frac{(-1)^{k}}{(3 k+3)(3 k+1)}=\frac{9}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k}}{3 k+1}-\frac{3}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k+1} \\
& =\frac{9}{2}\left[\frac{1}{3} \ln 2+\frac{\pi}{3 \sqrt{3}}-1\right]-\frac{3}{2}[\ln 2-1]=\frac{3 \pi}{2 \sqrt{3}}-3=-0.279 \ldots
\end{aligned}
$$

Thus we have

$$
\gamma(1 / 3)=-1+\frac{14 \sqrt{3}}{11 \sqrt{3}-4 \pi}=2.738 \ldots \quad \text { and } \quad g(1 / 3)=-1-\frac{2 \sqrt{3}}{\pi-2 \sqrt{3}}=9.74 \ldots
$$

Therefore $\gamma(1 / 3)<g(1 / 3)$ and we obtain the following result.

Corollary 4. If $f \in \mathcal{A}$ then $f \in \mathcal{S}^{*}(1 / 3)$ whenever

$$
\operatorname{Re}\left[f^{\prime}(z)+3 z f^{\prime \prime}(z)\right]>1-\frac{7 \sqrt{3}}{11 \sqrt{3}-4 \pi}=-0.869 \ldots \quad(z \in U)
$$

Let us consider $\alpha=1 / 4$. If $-1<x \leqslant 1$ then

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{4 k+1}}{4 k+1}=\frac{1}{4 \sqrt{2}} \ln \frac{x^{2}+x \sqrt{2}+1}{x^{2}-x \sqrt{2}+1}+\frac{1}{2 \sqrt{2}}[\arctan (x \sqrt{2}+1)+\arctan (x \sqrt{2}-1)] .
$$

Thus

$$
\begin{aligned}
B(1 / 4) & =16 \sum_{k=1}^{\infty} \frac{(-1)^{k}}{(4 k+4)(4 k+1)}=\frac{16}{3} \sum_{k=1}^{\infty} \frac{(-1)^{k}}{4 k+1}-\frac{4}{3} \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k+1} \\
& =\frac{16}{3}\left[\frac{1}{4 \sqrt{2}} \ln \frac{2+\sqrt{2}}{2-\sqrt{2}}+\frac{\pi}{4 \sqrt{2}}-1\right]-\frac{4}{3}[\ln 2-1]=-0.3 \ldots
\end{aligned}
$$

Thus we have

$$
\gamma(1 / 4)=-1+\frac{180}{32-21 B(1 / 4)}=3.699 \ldots \quad \text { and } \quad g(1 / 4)=-1-\frac{4}{B(1 / 4)}=12.3 \ldots .
$$

Therefore $\gamma(1 / 4)>g(1 / 4)$ and Theorem 1 gives the following result.

Corollary 5. If $f \in \mathcal{A}$ then $f \in \mathcal{S}^{*}(3 / 8)$ whenever

$$
\operatorname{Re}\left[f^{\prime}(z)+4 z f^{\prime \prime}(z)\right]>1-\frac{90}{32-21 B(1 / 4)}=-1.349 \ldots \quad(z \in U)
$$

If $\alpha \rightarrow 0$ then Theorem 1 becomes the next corollary.

Corollary 6. If $f \in \mathcal{A}$ then $f \in \mathcal{S}^{*}(1 / 2)$ whenever

$$
\operatorname{Re}\left[z f^{\prime \prime}(z)\right]>-\frac{2}{4+2 B(0)}=-\frac{1}{3-\ln 4}=-0.61969 \ldots \quad(z \in U)
$$

Corollary 6 is analogous to a sharp result of the form

$$
f \in \mathcal{A} \quad \text { and } \quad \operatorname{Re}\left[z f^{\prime \prime}(z)\right]>-\frac{3}{8 \ln 2}=-0.721 \ldots \Rightarrow f \in \mathcal{S}^{*}
$$

obtained by Ali, Ponnusamy and Singh in [1], see also [3, pp. 275-277] for the other results.

Acknowledgment

I would like to express sincere thanks to the referee for careful reading and suggestions which helped me to improve the paper.

References

[1] R. Ali, M. Ponnusamy, V. Singh, Starlikeness of functions satisfying a differential inequality, Ann. Polon. Math. 61 (2) (1995) 135-140.
[2] I.S. Jack, Functions starlike and convex of order α, J. London Math. Soc. 3 (1971) 469-474.
[3] S.S. Miller, P.T. Mocanu, Differential Subordinations: Theory and Applications, Monogr. Textbooks Pure Appl. Math., vol. 225, Marcel Dekker, Inc., New York/Basel, 2000.
[4] S. Ponnusamy, On starlikeness of certain integral transforms, Ann. Polon. Math. 56 (3) (1992) 227-232.
[5] St. Ruscheweyh, Convolution in Geometric Function Theory, Les Presses de l'Univ. de Montreal, 1982.
[6] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975) 109-115.
[7] St. Ruscheweyh, T. Sheil-Small, Hadamard product of schlicht functions and the Pólya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973) 119-135.
[8] St. Ruscheweyh, J. Stankiewicz, Subordination under convex univalent function, Bull. Pol. Acad. Sci. Math. 33 (1985) 499-502.
[9] R. Szász, L.-R. Albert, About a condition for starlikeness, J. Math. Anal. Appl. 335 (2007) 1328-1334.
[10] R. Singh, S. Singh, Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc. 106 (1989) 145-152.

[^0]: E-mail address: jsokol@prz.edu.pl.

