CORE

J. Math. Anal. Appl. 352 (2009) 696-701

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

On a condition for α -starlikeness

Janusz Sokół

Department of Mathematics, Rzeszów University of Technology, ul. W. Pola 2, 35-959 Rzeszów, Poland

ARTICLE INFO

ABSTRACT

Article history: Received 14 July 2008 Available online 21 November 2008 Submitted by S. Ruscheweyh

Keywords: Analytic functions Convex functions Starlike functions Beta function Gamma function Convolution Differential subordinations Jack's Lemma

© 2008 Elsevier Inc. All rights reserved.

In this paper we give a sufficient condition for function to be α -starlike function and some

of its applications. We use the techniques of convolution and differential subordinations.

1. Introduction

Let \mathcal{H} denote the class of analytic functions in the open unit disc $U = \{z: |z| < 1\}$ of the complex plane \mathbb{C} . Let \mathcal{A} denote the subclass of \mathcal{H} consisting of functions normalized by f(0) = 0, f'(0) = 1 and let

$$\mathcal{S}^*(\alpha) = \left\{ f \in \mathcal{A} \colon \operatorname{Re}\left[\frac{zf'(z)}{f(z)}\right] > \alpha \text{ for } z \in U \right\}$$

be the class of α -starlike functions, $\alpha \in [0, 1)$. $\mathcal{S}^*(0) = \mathcal{S}^*$ is the class of starlike functions which map U onto a starlike domain with respect to the origin. We say that $f \in \mathcal{H}$ is subordinate to $g \in \mathcal{H}$ in *U*, written $f \prec g$, if and only if there exists a function $\omega \in \mathcal{H}$ with $\omega(0) = 0$ and $|\omega(z)| < 1$ in U such that $f(z) = g(\omega(z))$ for $z \in U$. If f < g in U, then $f(U) \subseteq g(U)$. Many classes of functions studied in geometric function theory can be described in terms of subordination. Let us denote

$$p_{\gamma}(z) = \frac{1 + \gamma z}{1 - z} = 1 + (1 + \gamma) \sum_{k=1}^{\infty} z^k \quad (z \in U).$$
⁽¹⁾

If $\gamma \neq -1$ then the function p_{γ} maps U onto the half plane Re $w > \frac{1-\gamma}{2}$ and it is easy to check that for $\gamma \in (-1, 1]$

$$\left\{ f \in \mathcal{A}: \ \frac{zf'(z)}{f(z)} \prec p_{\gamma}(z) \text{ in } U \right\} = \mathcal{S}^* \left(\frac{1-\gamma}{2} \right).$$
(2)

We say that the function $f \in \mathcal{H}$ is convex when f(U) is a convex set. It is easy to see that if $\gamma \neq -1$ then p_{γ} is a convex univalent function.

E-mail address: jsokol@prz.edu.pl.

⁰⁰²²⁻²⁴⁷X/\$ - see front matter © 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2008.11.025

R. Singh and S. Singh [10] proved that if $f \in A$ and $\text{Re}\{f'(z) + zf''(z)\} > -\frac{1}{4}$ ($z \in U$), then $f \in S^*(0)$. Ponnusamy [4] improved this result by replacing the constant -1/4 by -0.308... Recently R. Szász and L.-R. Albert [9] checked using a computer that

$$\frac{1}{8} < \inf_{\alpha \in (0,\infty)} \left\{ \forall f \in \mathcal{A} \left[\operatorname{Re} \left[f'(z) + \alpha z f''(z) \right] > 0 \implies f \in \mathcal{S}^* \right] \right\} < \frac{1}{7}.$$

In this paper we consider a similar sufficient condition for functions to be in the class $S^*(\alpha)$.

For $f(z) = a_0 + a_1z + a_2z^2 + \cdots$ and $g(z) = b_0 + b_1z + b_2z^2 + \cdots$ the Hadamard product (or convolution) is defined by $(f * g)(z) = a_0b_0 + a_1b_1z + a_2b_2z^2 + \cdots$. The convolution has the algebraic properties of ordinary multiplication. Many of convolution problems were studied by St. Ruscheweyh in [5] and have found many applications in various fields. One of them is the following theorem due to St. Ruscheweyh and J. Stankiewicz [8] which will be useful in this paper.

Theorem A. Let $F, G \in \mathcal{H}$ be any convex univalent functions in U. If $f \prec F$ and $g \prec G$, then $f * g \prec F * G$ in U.

The next theorem is a special case of the Julia-Wolf Theorem. It is known as Jack's Lemma.

Theorem B. (See [2].) Let $\omega(z)$ be meromorphic in U, $\omega(0) = 0$. If for a certain $z_0 \in U$ we have $|\omega(z)| \leq |\omega(z_0)|$ for $|z| \leq |z_0|$, then $z_0\omega'(z_0) = m\omega(z_0)$, $m \geq 1$.

2. Main result

Lemma 1. Let $\alpha > 0$, $\gamma \in \mathbb{R} \setminus \{-1\}$. If $f \in \mathcal{A}$ and $f'(z) + \frac{z}{\alpha}f''(z) \prec p_{\gamma}(z)$, then

$$\frac{f(z)}{z} \prec 1 + \alpha(1+\gamma) \sum_{k=1}^{\infty} \frac{z^k}{(1+k)(k+\alpha)} := H(\alpha,\gamma;z)$$
(3)

and $H(\alpha, \gamma; z)$ is the best dominant in the sense that if $\frac{f(z)}{z} \prec G(z)$, then $H(\alpha, \gamma; z) \prec G(z)$.

Proof. For $x \ge 0$ the function

$$\tilde{h}(x;z) = \sum_{k=1}^{\infty} \frac{(1+x)z^k}{(k+x)}$$

is convex univalent [6]. Ruscheweyh and Sheil-Small in [7] proved the Pólya–Schoenberg conjecture that the class of convex univalent functions is preserved under convolution. Thus

$$g(z) = 1 + \frac{\alpha}{2 + 2\alpha} \left[\tilde{h}(1; z) * \tilde{h}(\alpha; z) \right] = 1 + \sum_{k=1}^{\infty} \frac{\alpha z^k}{(k+1)(k+\alpha)}$$

is a convex univalent function. Also p_{γ} is convex univalent so by Theorem A we have

$$\left[f'(z) + \frac{z}{\alpha}f''(z)\right] * g(z) \prec p_{\gamma}(z) * g(z).$$

It gives (3) because

$$\left[f'(z) + \frac{z}{\alpha}f''(z)\right] * g(z) = \frac{f(z)}{z}, \qquad p_{\gamma}(z) * g(z) = H(\alpha, \gamma; z)$$

The function $H(\alpha, \gamma; z)$ is convex univalent as the convolution of convex univalent functions p_{γ} and g. Suppose that $\frac{f(z)}{z} \prec G(z)$ for each $f \in \mathcal{A}$ such that $f'(z) + \frac{z}{\alpha}f''(z) \prec p_{\gamma}(z)$. The function $f_0(z) = zH(\alpha, \gamma; z)$ gives $f'_0(z) + \frac{z}{\alpha}f''_0(z) = p_{\gamma}(z)$ thus $\frac{f_0(z)}{z} = H(\alpha, \gamma; z) \prec G(z)$. This means that $H(\alpha, \gamma; z)$ is the best dominant of $\frac{f(z)}{z}$. \Box

For $\alpha > 0$ and $\gamma > -1$ the function $H(\alpha, \gamma; z)$ is convex univalent with positive coefficients so H(U) is a convex set symmetric with respect to the real axis with

$$H(\alpha, \gamma; -1) < \operatorname{Re} \left[H(\alpha, \gamma; z) \right] < H(\alpha, \gamma; 1)$$

hence we have the following corollary.

Corollary 1. Let $\alpha > 0$, $\gamma > -1$. If $f \in A$ and $f'(z) + \frac{z}{\alpha} f''(z) \prec p_{\gamma}(z)$, then

$$H(\alpha, \gamma; -1) < \operatorname{Re}\left[\frac{f(z)}{z}\right] < H(\alpha, \gamma; 1) \quad (z \in U).$$
(4)

Notice that

$$\sum_{k=1}^{\infty} \frac{\iota^k}{k(k+x)} = \begin{cases} \frac{1}{x} [\psi(x+1) + C] & \text{for } \iota = 1, \\ \frac{1}{x} [\mathcal{B}(x+1) - \ln 2] & \text{for } \iota = -1, \end{cases}$$

where

$$\mathcal{B}(z) = \int_{0}^{1} \frac{t^{z-1}}{1+t} dt = \sum_{k=0}^{\infty} \frac{1}{(z+2k)(z+2k+1)} \quad (\text{Re } z > 0)$$
(5)

is the beta function while $\psi(z) = [\ln \Gamma(z)]'$, where Γ is the gamma function and *C* is the Euler's constant. Thus we have

$$H(\alpha, \gamma; -1) = \begin{cases} 1 + \alpha \frac{1+\gamma}{1-\alpha} [1 - \mathcal{B}(1+\alpha) - \ln 2] & \text{for } \alpha \in (0, +\infty) \setminus \{1\}, \\ 1 + (1+\gamma)(\frac{\pi^2}{12} - 1) & \text{for } \alpha = 1, \end{cases}$$
(6)

and

$$H(\alpha, \gamma; 1) = \begin{cases} 1 + \alpha \frac{1 + \gamma}{1 - \alpha} [1 - \psi(1 + \alpha) - C] & \text{for } \alpha \in (0, +\infty) \setminus \{1\} \\ 1 + (1 + \gamma)(\frac{\pi^2}{6} - 1) & \text{for } \alpha = 1. \end{cases}$$

In order to check when $H(\alpha, \beta; -1) > 0$ it is useful to rewrite (6) in the form

$$H(\alpha, \gamma; -1) = \begin{cases} 1 + \alpha \frac{1+\gamma}{1-\alpha} [\mathcal{B}(2) - \mathcal{B}(1+\alpha)] & \text{for } \alpha \in (0, +\infty) \setminus \{1\}, \\ 1 + (1+\gamma)(\frac{\pi^2}{12} - 1) & \text{for } \alpha = 1. \end{cases}$$
(7)

Applying (5) we see that the function \mathcal{B} is decreasing for z > 0 thus $\frac{\mathcal{B}(2) - \mathcal{B}(1+\alpha)}{1-\alpha} < 0$ for $\alpha \neq 1$. Therefore by (7) we conclude that

$$H(\alpha, \gamma; -1) > 0 \quad \Leftrightarrow \quad \gamma < g(\alpha) := \begin{cases} -1 - \frac{1-\alpha}{\alpha[\mathcal{B}(2) - \mathcal{B}(1+\alpha)]} & \text{for } \alpha \in (0, +\infty) \setminus \{1\}, \\ \frac{\pi^2}{12 - \pi^2} = 4.6327 \dots & \text{for } \alpha = 1. \end{cases}$$

$$(8)$$

The above result will be useful in the following theorem.

Theorem 1. Let $\alpha \in (0, 1]$ and $f \in \mathcal{A}$. Then $f \in \mathcal{S}^*(\frac{1-\alpha}{2})$ whenever for $z \in U$

$$\operatorname{Re}\left[f'(z) + \frac{z}{\alpha}f''(z)\right] > \frac{1 - \gamma(\alpha)}{2} := 1 - \frac{\alpha^2 + 3\alpha + 2}{2\alpha[2 - (\alpha^2 - \alpha + 2)B(\alpha)]} \quad and \quad \gamma(\alpha) < g(\alpha), \tag{9}$$

where

$$B(\alpha) = \sum_{k=1}^{\infty} \frac{(-1)^k}{(1+k)(k+\alpha)} = \begin{cases} \frac{1}{1-\alpha} [1 - \mathcal{B}(1+\alpha) - \ln 2] & \text{for } \alpha \in [0, 1), \\ \frac{\pi^2}{12} - 1 & \text{for } \alpha = 1. \end{cases}$$

Proof. For convenience, in this proof we will drop the variable α in $\gamma(\alpha)$. From (9) we have $f'(z) + \frac{z}{\alpha}f''(z) \prec p_{\gamma}(z)$. We have $\gamma < g(\alpha)$ thus, by Corollary 1 and by (8)

$$\operatorname{Re}\left[\frac{f(z)}{z}\right] > H(\alpha, \gamma; -1) > 0 \quad (z \in U).$$
(10)

This gives $\frac{f(z)}{z} \neq 0$, $z \in U$. Moreover the function $p_{\alpha}(z) = \frac{1+\alpha z}{1-z}$, $p_{\alpha}(\infty) = -\alpha$, maps $\overline{\mathbb{C}} \setminus \{1\}$ onto \mathbb{C} and it is univalent so a function $\omega(z)$, $\omega(0) = 0$, defined by

$$\omega(z) = p_{\alpha}^{-1} \left(\frac{zf'(z)}{f(z)} \right)$$
(11)

is analytic in *U*. In view of (2) for proving Theorem 1 it is sufficient to show that $\frac{zf'(z)}{f(z)} \prec p_{\alpha}(z)$ or equivalently that $\omega(z)$ is bounded by 1 in *U*. If this is false we find $z_0 \in U$ such that $|\omega(z)| \leq |\omega(z_0)| = 1$, $|z| \leq |z_0|$. According to Theorem B, $\frac{z_0\omega'(z_0)}{\omega(z_0)} = m \ge 1$. Taking the derivative of (11) we obtain after some manipulations the relation

$$f'(z_0) + \frac{z_0}{\alpha} f''(z_0) = \frac{f(z_0)}{\alpha z_0} \bigg[\frac{z_0 \omega'(z_0)}{\omega(z_0)} \frac{(1+\alpha)\omega(z_0)}{(1-\omega(z_0))^2} + p_\alpha^2 \big(\omega(z_0)\big) - (1-\alpha)p_\alpha\big(\omega(z_0)\big) \bigg].$$
(12)

If we denote $\omega(z_0) = e^{i\varphi}$, $\varphi \in [0, 2\pi)$, then we have

$$\frac{2\omega(z_0)}{(1-\omega(z_0))^2} = \frac{1}{\cos\varphi - 1} < 0, \qquad p_\alpha\big(\omega(z_0)\big) = \frac{1+\alpha\omega(z_0)}{1-\omega(z_0)} = \frac{1-\alpha}{2} + i\frac{1+\alpha}{2}\operatorname{ctg}\frac{\varphi}{2},$$

so the quantity in the square brackets of (12) becomes

$$[\ldots] = \frac{2m(1+\alpha) + (1+\alpha)^2(1+\cos\varphi)}{4(\cos\varphi - 1)} - \left[\frac{1-\alpha}{2}\right]^2 =: \delta.$$

It is easy to see that δ is a negative real number so from (4) and (12) we have

$$\frac{\delta}{\alpha}H(\alpha,\gamma;1) < \operatorname{Re}\left[f'(z_0) + \frac{z_0}{\alpha}f''(z_0)\right] < \frac{\delta}{\alpha}H(\alpha,\gamma;-1) = \frac{\delta}{\alpha}\left[1 + \alpha(1+\gamma)B(\alpha)\right].$$
(13)

According to (10) we have $H(\alpha, \gamma; -1) = 1 + \alpha(1 + \gamma)B(\alpha) > 0$. Moreover

$$\delta = \alpha + \frac{(1+\alpha)^2 + m(1+\alpha)}{2(\cos \varphi - 1)} \leqslant \alpha + \frac{(1+\alpha)^2 + (1+\alpha)}{2(-1-1)} = -\frac{\alpha^2 - \alpha + 2}{4}.$$

Therefore we obtain from (13)

$$\operatorname{Re}\left[f'(z_0) + \frac{z_0}{\alpha}f''(z_0)\right] \leqslant -\frac{\alpha^2 - \alpha + 2}{4\alpha}\left[1 + \alpha(1+\gamma)B(\alpha)\right] = \frac{1-\gamma}{2}$$

which contradicts our assumption (9). \Box

3. Some applications

In this section we shall look at some examples where we see how our result improve earlier results. If $\alpha = 1$, then by (8) and (9) we obtain $\frac{1-\gamma(1)}{2} = \frac{6-\pi^2}{24-\pi^2}$, $\gamma(1) = \frac{12+\pi^2}{24-\pi^2} = 1.54...$ and $\gamma(1) < g(1) = 4.63...$ Therefore Theorem 1 becomes

Corollary 2. If $f \in A$ then $f \in S^*(0) = S^*$ whenever

$$\operatorname{Re}\left[f'(z) + zf''(z)\right] > \frac{6 - \pi^2}{24 - \pi^2} = -0.273\dots \quad (z \in U).$$
(14)

The integral form of above result due to Miller and Mocanu one can find in [3, p. 309]. Moreover the constant given in (14) is a little grater than -0.308... given by Ponnusamy [4].

Let us consider $\alpha = 1/2$. If $-1 \le x \le 1$ then

$$\sum_{k=1}^{\infty} \frac{(-1)^{(k-1)} x^{2k}}{k(2k-1)} = 2x \arctan x - \ln(1+x^2)$$

so $B(1/2) = \sum_{k=1}^{\infty} \frac{(-1)^k}{(1+k)(1/2+k)} = \pi - \ln 4 - 2 = -0.24...$ Thus we have

$$\gamma(1/2) = -1 + \frac{30}{22 - 7(\pi - \ln 4)} = 2.088...$$
 and $g(1/2) = -1 - \frac{2}{\pi - \ln 4 - 2} = 7.17...$

Therefore $\gamma(1/2) < g(1/2)$ and Theorem 1 becomes the following result.

Corollary 3. *If* $f \in A$ *then* $f \in S^*(1/4)$ *whenever*

$$\operatorname{Re}\left[f'(z) + 2zf''(z)\right] > 1 - \frac{15}{22 - 7(\pi - \ln 4)} = -0.541\dots \quad (z \in U).$$

Let us consider $\alpha = 1/3$. If $-1 < x \le 1$ then

$$\sum_{k=0}^{\infty} \frac{(-1)^k x^{3k+1}}{3k+1} = \frac{1}{3} \ln \frac{1+x}{\sqrt{x^2 - x + 1}} + \frac{1}{\sqrt{3}} \arctan \frac{2x-1}{\sqrt{3}} + \frac{\pi}{6\sqrt{3}}$$

and if $-1 \leq x < 1$ then

$$\sum_{k=1}^{\infty} \frac{x^k}{k} = \ln \frac{1}{1-x}$$

so

$$B(1/3) = 9\sum_{k=1}^{\infty} \frac{(-1)^k}{(3k+3)(3k+1)} = \frac{9}{2} \sum_{k=1}^{\infty} \frac{(-1)^k}{3k+1} - \frac{3}{2} \sum_{k=1}^{\infty} \frac{(-1)^k}{k+1}$$
$$= \frac{9}{2} \left[\frac{1}{3} \ln 2 + \frac{\pi}{3\sqrt{3}} - 1 \right] - \frac{3}{2} [\ln 2 - 1] = \frac{3\pi}{2\sqrt{3}} - 3 = -0.279\dots$$

Thus we have

$$\gamma(1/3) = -1 + \frac{14\sqrt{3}}{11\sqrt{3} - 4\pi} = 2.738...$$
 and $g(1/3) = -1 - \frac{2\sqrt{3}}{\pi - 2\sqrt{3}} = 9.74...$

Therefore $\gamma(1/3) < g(1/3)$ and we obtain the following result.

Corollary 4. *If* $f \in A$ *then* $f \in S^*(1/3)$ *whenever*

$$\operatorname{Re}\left[f'(z) + 3zf''(z)\right] > 1 - \frac{7\sqrt{3}}{11\sqrt{3} - 4\pi} = -0.869\dots \quad (z \in U).$$

Let us consider $\alpha = 1/4$. If $-1 < x \leq 1$ then

$$\sum_{k=0}^{\infty} \frac{(-1)^k x^{4k+1}}{4k+1} = \frac{1}{4\sqrt{2}} \ln \frac{x^2 + x\sqrt{2} + 1}{x^2 - x\sqrt{2} + 1} + \frac{1}{2\sqrt{2}} \left[\arctan(x\sqrt{2} + 1) + \arctan(x\sqrt{2} - 1) \right].$$

Thus

$$B(1/4) = 16 \sum_{k=1}^{\infty} \frac{(-1)^k}{(4k+4)(4k+1)} = \frac{16}{3} \sum_{k=1}^{\infty} \frac{(-1)^k}{4k+1} - \frac{4}{3} \sum_{k=1}^{\infty} \frac{(-1)^k}{k+1}$$
$$= \frac{16}{3} \left[\frac{1}{4\sqrt{2}} \ln \frac{2+\sqrt{2}}{2-\sqrt{2}} + \frac{\pi}{4\sqrt{2}} - 1 \right] - \frac{4}{3} [\ln 2 - 1] = -0.3 \dots$$

Thus we have

$$\gamma(1/4) = -1 + \frac{180}{32 - 21B(1/4)} = 3.699...$$
 and $g(1/4) = -1 - \frac{4}{B(1/4)} = 12.3...$

Therefore $\gamma(1/4) > g(1/4)$ and Theorem 1 gives the following result.

Corollary 5. *If* $f \in A$ *then* $f \in S^*(3/8)$ *whenever*

Re[f'(z) + 4zf''(z)] > 1 −
$$\frac{90}{32 - 21B(1/4)} = -1.349...$$
 (z ∈ U).

If $\alpha \rightarrow 0$ then Theorem 1 becomes the next corollary.

Corollary 6. *If* $f \in A$ *then* $f \in S^*(1/2)$ *whenever*

$$\operatorname{Re}[zf''(z)] > -\frac{2}{4+2B(0)} = -\frac{1}{3-\ln 4} = -0.61969... (z ∈ U).$$

Corollary 6 is analogous to a sharp result of the form

$$f \in \mathcal{A}$$
 and $\operatorname{Re}\left[zf''(z)\right] > -\frac{3}{8\ln 2} = -0.721... \Rightarrow f \in \mathcal{S}^*$

obtained by Ali, Ponnusamy and Singh in [1], see also [3, pp. 275-277] for the other results.

Acknowledgment

I would like to express sincere thanks to the referee for careful reading and suggestions which helped me to improve the paper.

References

- [1] R. Ali, M. Ponnusamy, V. Singh, Starlikeness of functions satisfying a differential inequality, Ann. Polon. Math. 61 (2) (1995) 135-140.
- [2] I.S. Jack, Functions starlike and convex of order α , J. London Math. Soc. 3 (1971) 469–474.
- [3] S.S. Miller, P.T. Mocanu, Differential Subordinations: Theory and Applications, Monogr. Textbooks Pure Appl. Math., vol. 225, Marcel Dekker, Inc., New York/Basel, 2000.
- [4] S. Ponnusamy, On starlikeness of certain integral transforms, Ann. Polon. Math. 56 (3) (1992) 227-232.
- [5] St. Ruscheweyh, Convolution in Geometric Function Theory, Les Presses de l'Univ. de Montreal, 1982.
- [6] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975) 109-115.
- [7] St. Ruscheweyh, T. Sheil-Small, Hadamard product of schlicht functions and the Pólya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973) 119–135.
- [8] St. Ruscheweyh, J. Stankiewicz, Subordination under convex univalent function, Bull. Pol. Acad. Sci. Math. 33 (1985) 499-502.
- [9] R. Szász, L.-R. Albert, About a condition for starlikeness, J. Math. Anal. Appl. 335 (2007) 1328-1334.
- [10] R. Singh, S. Singh, Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc. 106 (1989) 145-152.