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Let P and Q be two generalized reflection matrices, i.e., P = PH ,

P2 = I and Q = QH , Q2 = I. An n × n matrix A is said to be

generalized reflexive (generalized anti-reflexive)with respect to the

matrix pair (P;Q) if A = PAQ (A = −PAQ ). It is obvious that any

n×mmatrix is also a generalized reflexivewith respect to thematrix

pair (In; Im). By extending the conjugate gradient least square (CGLS)
approach, the present paper treats two iterative algorithms to solve

the system of matrix equations

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F1(X) = A1,

F2(X) = A2,

.

.

.
.
.
.

.

.

.

Fm(X) = Am,

(including the Sylvester and Lyapunov matrix equations as special

cases) over the generalized reflexive and anti-reflexive matrices,

whereF1,F2, . . . ,Fm are the linearoperators fromCn×n ontoCri×si

and Ai ∈ Cri×si for i = 1, 2, . . . ,m. When this system is consistent

over the generalized reflexive (generalized anti-reflexive) matrix,

it is proved that the first (second) iterative algorithm converges to

a generalized reflexive (generalized anti-reflexive) solution for any

initial generalized reflexive (generalized anti-reflexive)
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matrix. Also the first (second) iterative algorithm can obtain

the least Frobenius norm generalized reflexive (generalized anti-

reflexive) solution for special initial generalized reflexive (general-

ized anti-reflexive)matrix. Furthermore, the optimal approximation

generalized reflexive (generalized anti-reflexive) solution to a given

generalized reflexive (generalized anti-reflexive) matrix can be

derived by finding the least Frobenius norm generalized reflexive

(generalized anti-reflexive) solution of a new systemofmatrix equa-

tions. Finally, we test the proposed iterative algorithms and show

their effectiveness using numerical examples.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The following notations are adopted in this paper. Cn (Rn) denotes the complex (real) n-vector

space, Cm×n (Rm×n) denotes the set of m × n complex (real) matrices. We denote by In the n × n

identity matrix. We also write it as I, when the dimension of this matrix is clear. We use AT , AH , tr(A)
and R(A) to denote the transpose, the conjugate transpose, the trace and the column space of the

matrix A, respectively. The inner product 〈., .〉r in Cm×n is defined as follows:

〈A, B〉r = Re(tr(BHA)) for A, B ∈ Cm×n,

that is 〈A, B〉r is the real part of the trace of BHA. It is can be shown that (Cm×n, 〈., .〉r) is a Hilbert inner
product space. The induced matrix norm is ‖A‖ = √〈A, A〉r =

√
Re(tr(AHA)) =

√
tr(AHA), which is

the Frobenius norm [41,42]. We represent [51] by F∗ the conjugate transpose of the linear operator of

F from Cp×q to Cr×s such that

〈F(X), Y〉r = 〈X,F∗(Y)〉r where X ∈ Cr×s and Y ∈ Cp×q.

For a matrix A ∈ Cm×n, the so-called stretching function vec(A) is defined by the following

vec(A) = ( aT1 aT2 · · · aTn )T ,

where ak is the k-th columnofA. The symbolA⊗B stands for theKronecker product ofmatricesA andB.

The investigation [3–5] indicates that generalized reflexive matrices arise naturally from problems

with reflexive symmetry, which account for a great number of real-world scientific and engineering

applications. Much of the activity in this field involves exploiting the underlying mathematical or

physical problem. These matrices can be defined as follows [5]:

Definition 1.1. A matrix P ∈ Cn×n is called a generalized reflection matrix if P = PH and P2 = In.

Suppose that P and Q are two generalized reflection matrices of dimensions n and m, respectively. A

matrix A ∈ Cn×m is said to be generalized reflexive (generalized anti-reflexive) with respect to the

matrix pair (P;Q) if A = PAQ (A = −PAQ ). Cn×m
r (P,Q) (Cn×m

a (P,Q)) denote the set of order n × m

generalized reflexive (generalized anti-reflexive) with respect to the matrix pair (P;Q).

In many areas of principal component analysis, biology, electricity, solid mechanics, automatics

control theory and vibration theory, matrix equations can be encountered. In recent years, many new

numerical methods have been developed for solving several matrix equations. Several authors have

established the problem for determining solutions to various matrix equations [7,13,40,48–51]. The

matrix equations

AX − XB = C, (1.1)

and

X − AXB = C, (1.2)
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play important roles in the theories and applications of stability and control [1,2]. Golub et al. [25]

investigated the solution to the matrix equation (1.1) by Hessenberg–Schur method. In [29], Jameson

studied the matrix equation (1.1) by the method of characteristic polynomial, and derived explicit

solution of thismatrix equation. Jiang andWei [30] obtained explicit solutions ofmatrix equation (1.2)

by the method of characteristic polynomial. The matrix equation

AX + XTC = B, (1.3)

plays important roles in system theory, such as eigenstructure assignment [23], observer design [6],

control of system with input constraint [22], and fault detection [24]. In [32], the problem of solution

to the matrix equation (1.3) was considered by the Moore–Penrose generalized inverse matrix, and a

general solution to this equation was obtained. In [34–39], the solutions of several quaternion matrix

equations are studied. Wang [33] considered the matrix equations

A1XB1 = C1 and A2XB2 = C2, (1.4)

over an arbitrary regular ring with identity and derived the necessary and sufficient conditions for

the existence and the expression of the general solution to the system. In [14], Dehghan and Hajarian

used the principle of hierarchical identification and the Hermitian/skew-Hermitian splitting of the

coefficient matrices for solving linear matrix equations. It is well-known that the Sylvester and Lya-

punovmatrix equations are important equationswhich play a fundamental role in the various fields of

engineering theory, particularly in control systems.Ding andChenpresented thehierarchical gradient-

iterative (HGI) algorithms for generalmatrix equations [16,21] and hierarchical least-squares-iterative

(HLSI) algorithms for generalized coupled Sylvestermatrix equation and general coupledmatrix equa-

tions [17,18]. The HGI algorithms [16,21] and HLSI algorithms [20,21,18] for solving general (coupled)

matrix equations are innovational and computationally efficient numerical methods and were pro-

posed based on the hierarchical identification principle [17,19] which regards the unknown matrix

as the system parameter matrix to be identified. In [15,8–12], some efficient iterative methods were

proposed to solve Sylvester and Lyapunov matrix equations. Zhou and Duan [43,44,46] established

the solution of the several generalized Sylvester matrix equations. Zhou et al. [45] proposed gradient

based iterative algorithms for solving the general coupled Sylvester matrix equations with weighted

least squares solutions. In [47], general parametric solution to a family of generalized Sylvester matrix

equations arising in linear system theory is presented by using the so-called generalized Sylvester

mapping which has some elegant properties.

It is known that solving coupled complex matrix equations can be very difficult and it is sufficiently

complicated. The main purpose of the paper is to study the system of matrix equations⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F1(X) = A1,

F2(X) = A2,

...
...

...

Fm(X) = Am,

(1.5)

(including the Lyapunov and Sylvestermatrix equations as special cases) over the generalized reflexive

(generalized anti-reflexive) matrix X ∈ Cn×n
r (P,Q) (X ∈ Cn×n

a (P,Q)), where Fi are the linear opera-

tors from Cn×n onto Cri×si and Ai ∈ Cri×si for i = 1, 2, . . . ,m. Also the system of matrix equations

(1.5) is quite general and includes many matrix equations such as

AX − XB = C, Continuous–time (CT) Sylvester matrix equation, (1.6)

AXBT − X = C, Discrete–time (DT) Sylvester matrix equation, (1.7)

X − AXB = C, Kalman–Yakubovich matrix equation, (1.8)
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conjugate matrix equations

X − AXB = C, (1.9)

XF − AX = F, (1.10)

and matrix equations (1.1)–(1.4). The present paper considers the following four problems:

Problem 1.1. For given the linear operators Fi from Cn×n onto Cri×si , the generalized reflection ma-

trices P and Q of size n, and Ai ∈ Cri×si for i = 1, 2, . . . ,m, find the generalized reflexive matrix

X ∈ Cn×n
r (P;Q) such that holds (1.5).

Problem 1.2. When Problem 1.1 is consistent, let its solution set be denoted by Sr . For a given gener-

alized reflexive matrix X̂ ∈ Cn×n
r (P;Q), find X̃ ∈ Cn×n

r (P;Q) such that

‖X̃ − X̂‖2 = min
X∈Sr

‖X − X̂‖2. (1.11)

Problem 1.3. For given the linear operators Fi from Cn×n onto Cri×si , the generalized reflection ma-

trices P and Q of size n (P �= I, Q �= I) and Ai ∈ Cri×si for i = 1, 2, . . . ,m, find the generalized

anti-reflexive matrix X ∈ Cn×n
a (P;Q) such that holds (1.5).

Problem 1.4. When Problem 1.3 is consistent, let its solution set be denoted by Sr . For a given gener-

alized anti-reflexive matrix X̂ ∈ Cn×n
a (P;Q), find X̃ ∈ Cn×n

a (P;Q) such that hold (1.11)

The remainder of this paper is organized as follows. In Section 2, by extending the CGLS scheme

we first construct two iterative algorithms to solve Problems 1.1–1.4, then we present some basic

properties of the iterative algorithms. For any initial generalized reflexive (generalized anti-reflexive)

matrix X(1), a generalized reflexive (generalized anti-reflexive) solution can be obtained within a

finite number of iterations in the absence of roundoff errors, and the least Frobenius norm generalized

reflexive (generalized anti-reflexive) solution can be obtained by choosing a special kind of initial

generalized reflexive (generalized anti-reflexive) matrix. The generalized reflexive (generalized anti-

reflexive) solution of Problem 1.2 (1.4) is obtained by finding the least Frobenius norm generalized

reflexive (generalized anti-reflexive) solution of a new system of matrix equations in Section 3. In

Section 4 we present two examples to illustrate the effectiveness of the proposed algorithms. Finally,

we offer some concluding remarks in Section 5.

2. The solution of Problems 1.1 and 1.3

It is well-known that iterative algorithms are common in the areas of matrix algebra and system

identification. If the conjugate-gradient method for symmetric positive definite systems is applied

naively to the normal equations ATAx = ATb, the method does not perform well on ill-conditioned

systems.Analgorithmwithbetternumerical properties is easilyderivedbya slight algebraic rearrange-

ment, making use of the intermediate vector Api [26]. This approach is named the conjugate gradient

least square (CGLS) and is usually stated in notation similar to the following [31].

Algorithm CGLS

Set r0 = b, s0 = ATb, p1 = s0, γ0 = ‖s0‖2, x0 = 0

For i = 1, 2, 3, . . . repeat the following:

qi = Api

αi = γi−1/‖qi‖2

xi = xi−1 + αipi
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ri = ri−1 − αiqi

si = AT ri

γi = ‖si‖2

βi = γi/γi−1

pi+1 = si + βipi.

It is obvious that the above algorithm can not be used directly to solve Problems 1.1 and 1.3 . In this

work, we extend Algorithm CGLS for solving Problems 1.1 and 1.3. By extending CGLS method, we

construct two iterative algorithms to solve Problems 1.1 and 1.3 as:

Algorithm 1.

Step 1. Given the linear operators Fi from Cn×n onto Cri×si , the generalized reflection matrices P,Q
of size n, Ai ∈ Cri×si for i = 1, 2, . . . ,m and X(1) ∈ Cn×n

r (P;Q);

Step 2. Compute

Ri(1) = Ai − Fi(X(1)), for i = 1, 2, . . . ,m;
S(1) = 1

2

[
m∑

t=1

F∗
t (Rt(1)) +

m∑
t=1

PF∗
t (Rt(1))Q

]
;

k := 1;
Step 3. If

∑m
i=1 ‖Ri(k)‖2 = 0 or

∑m
i=1 ‖Ri(k)‖2 �= 0, S(k) = 0 then stop; else k = k + 1;

Step 4. Compute

X(k) = X(k − 1) +
∑m

t=1 ‖Rt(k − 1)‖2

‖S(k − 1)‖2
S(k − 1);

Ri(k) = Ai − Fi(X(k))

= Ri(k − 1) −
∑m

t=1 ‖Rt(k − 1)‖2

‖S(k − 1)‖2
Fi(S(k − 1)), for i = 1, 2, . . . ,m;

S(k) = 1

2

[
m∑

t=1

F∗
t (Rt(k)) +

m∑
t=1

PF∗
t (Rt(k))Q

]
+

∑m
t=1 ‖Rt(k)‖2∑m

t=1 ‖Rt(k − 1)‖2
S(k − 1);

Step 5. Go to Step 3.

Algorithm 2.

Step 1. Given the linear operators Fi from Cn×n onto Cri×si , the generalized reflection matrices P,Q
of size n (P �= I), Ai ∈ Cri×si for i = 1, 2, . . . ,m and X(1) ∈ Cn×n

a (P;Q);

Step 2. Compute

Ri(1) = Ai − Fi(X(1)), for i = 1, 2, . . . ,m;
S(1) = 1

2

[
m∑

t=1

F∗
t (Rt(1)) −

m∑
t=1

PF∗
t (Rt(1))Q

]
;

k := 1;
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Step 3. If
∑m

i=1 ‖Ri(k)‖2 = 0 or
∑m

i=1 ‖Ri(k)‖2 �= 0, S(k) = 0 then stop; else k = k + 1;

Step 4. Compute

X(k) = X(k − 1) +
∑m

t=1 ‖Rt(k − 1)‖2

‖S(k − 1)‖2
S(k − 1);

Ri(k) = Ai − Fi(X(k)) = Ri(k − 1)−
∑m

t=1 ‖Rt(k − 1)‖2

‖S(k − 1)‖2
Fi(S(k − 1)), for i=1, 2, . . . ,m;

S(k) = 1

2

[
m∑

t=1

F∗
t (Rt(k)) −

m∑
t=1

PF∗
t (Rt(k))Q

]
+

∑m
t=1 ‖Rt(k)‖2∑m

t=1 ‖Rt(k − 1)‖2
S(k − 1);

Step 5. Go to Step 3.

Remark 2.1. From Algorithm 1 (2), it is obvious that X(k) ∈ Cn×n
r (P;Q) and S(k) ∈ Cn×n

r (P;Q)

(X(k) ∈ Cn×n
a (P;Q) and S(k) ∈ Cn×n

a (P;Q)) for all k = 1, 2, . . . Also Algorithm 1 (2) implies that if∑m
i=1 ‖Ri(k)‖2, thenX(k) ∈ Cn×n

r (P;Q) (X(k) ∈ Cn×n
a (P;Q)) is the generalized reflexive (generalized

anti-reflexive) solution of (1.5).

Remark 2.2. Because of the influence of the error of calculation, the residual Rk (k = 1, 2, . . .) is
usually unequal to zero exactly in the process of the iteration. We regard the matrix

∑m
i=1 ‖Ri(k)‖2

as a zero matrix if
∑m

i=1 ‖Ri(k)‖2 < ε where ε is a small positive number. In Algorithms 1 and 2, the

iteration will be stopped whenever
∑m

i=1 ‖Ri(k)‖2 < ε.

We beginwith the following useful lemmas about Algorithms 1 and 2 to be used in the next results.

Lemma 2.1. For any initial generalized reflexive matrix X(1), the sequences {R(i)} (R(i) �= 0) and {S(i)}
generated by Algorithm 1 satisfy

m∑
r=1

〈Rr(i), Rr(j)〉r = 0, 〈S(i), S(j)〉r = 0 for i, j = 1, 2, . . . , v (i �= j). (2.1)

The proof of Lemma 2.1 is given in the Appendix.

Similarly to the proof of Lemma 2.1, we can prove the following lemma.

Lemma 2.2. For any initial generalized anti-reflexive matrix X(1), the sequences {R(i)} (R(i) �= 0) and

{S(i)} generated by Algorithm 2 satisfy
m∑

r=1

〈Rr(i), Rr(j)〉r = 0, 〈S(i), S(j)〉r = 0 for i, j = 1, 2, . . . , v (i �= j). (2.2)

Lemma 2.3. Suppose that the system of matrix equations (1.5) is consistent over the generalized reflexive

matrices andX∗ is anarbitrary generalized reflexive solutionof (1.5), then for any initial generalized reflexive
matrix X(1), the sequences {X(i)}, {R(i)} and {S(i)} generated by Algorithm 1 satisfy

〈X∗ − X(i), S(j)〉r =
m∑

r=1

‖Rr(j)‖2 for j � i, (2.3)

〈X∗ − X(i), S(j)〉r = 0 for j < i. (2.4)

The proof of Lemma 2.3 is presented in the Appendix.

Similarly to the proof of Lemma 2.3, we can prove the following lemma.
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Lemma 2.4. Suppose that the system of matrix equations (1.5) is consistent over the generalized anti-

reflexive matrices and X∗ is an arbitrary generalized anti-reflexive solution of (1.5), then for any initial gen-

eralized anti-reflexivematrix X(1), the sequences {X(i)}, {R(i)} and {S(i)} generated by Algorithm 2 satisfy

〈X∗ − X(i), S(j)〉r =
m∑

r=1

‖Rr(j)‖2 for j � i, (2.5)

〈X∗ − X(i), S(j)〉r = 0 for j < i. (2.6)

Remark 2.3. If there exists a positive number k such that S(k) = 0 but Rt(k) �= 0 for some

t ∈ 1, 2, ..,m, then by considering Lemma 2.3 (2.4), we have that the matrix equations (1.5) are

not consistent over the generalized reflexive (generalized anti-reflexive)matrices. Hence, the solvabil-

ity of the matrix equations (1.5) over the generalized reflexive (generalized anti-reflexive) matrices

can be determined by Algorithm 1 (2) in the absence of roundoff errors.

Theorem 2.1. Suppose that Problem 1.1 is consistent, then by Algorithm 1 with any initial generalized

reflexive matrix X(1), a generalized reflexive solution of Problem 1.1 can be obtained within a finite number

of iterations in the absence of roundoff errors.

Proof. From Lemma 2.3, it is no difficult to obtain that S(1), S(2), . . . are orthogonal to each other in

finite dimension matrix space Cn×n, therefore there exists a positive number k such that S(k) = 0.

This implies that
∑m

t=1 Rt(k) = 0. The proof is completed. �

Similarly to the proof of the above theorem, we can prove the following theorem.

Theorem 2.2. Suppose that Problem 1.3 is consistent, then by Algorithm 2 with any initial generalized

reflexive matrix X(1), a generalized anti-reflexive solution of Problem 1.3 can be obtained within a finite

number of iterations in the absence of roundoff errors.

Lemma 2.5 [27]. Let F be a given linear operator from Cp×q to Cr×s and F∗ be the conjugate transpose

of the linear operator F . Then there exists a unique matrix H ∈ Crs×pq such that vec(F(X)) = Mvec(X)
and vec(F∗(Y)) = MHvec(Y) for all X ∈ Cp×q and Y ∈ Cr×s.

Lemma 2.6 [28]. Assume that the consistent system of linear equations Ay = b has a solution y∗ ∈ R(AH).
Then y∗ is an unique least Frobenius norm solution of the system of linear equations.

Theorem 2.3. Assume that Problem 1.1 is consistent. If we take the initial generalized reflexive matrix

X(1) = F∗
1 (K1) + PF∗

1 (K1)Q + F∗
2 (K2) + PF∗

2 (K2)Q + · · · + F∗
m(Km) + PF∗

m(Km)Q , (2.7)

where K1, K2, . . . , Km are arbitrary, or more especially X(1) = 0, then the generalized reflexive solution

X∗ obtained by Algorithm 1 is the least Frobenius generalized reflexive solution of Problem 1.1.

Proof. The solvability of linear matrix equation (1.5) over the generalized reflexive matrix X is equiv-

alent to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1(X) = A1,

F1(PXQ) = A1,

F2(X) = A2,

F2(PXQ) = A2,

...
...

...

Fm(X) = Am,

Fm(PXQ) = Am.

(2.8)
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By considering Lemma 2.5, there exist matrices H1,H2, . . . ,H2m such that the system of matrix equa-

tions (2.8) is equivalent to the following system:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H1

H2

H3

H4

...

H2m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
vec(X) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vec(A1)

vec(A1)

vec(A2)

vec(A2)

...

vec(Am)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.9)

Now let K1, K2, . . . , Km be arbitrary matrices, we can write

vec(F∗
1 (K1) + PF∗

1 (K1)Q + F∗
2 (K2) + PF∗

2 (K2)Q + · · · + F∗
m(Km) + PF∗

m(Km)Q)

=
(
HH
1 HH

2 HH
3 HH

4 . . . HH
2m

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vec(K1)

vec(K1)

vec(K2)

vec(K2)

· · ·
vec(Km)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H1

H2

H3

H4

...

H2m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

H
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is obvious that if we consider

X(1) = F∗
1 (K1) + PF∗

1 (K1)Q + F∗
2 (K2) + PF∗

2 (K2)Q + · · · + F∗
m(Km) + PF∗

m(Km)Q , (2.10)

then all X(k), generated by Algorithm 1 satisfy

vec(X(k)) ∈ R

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H1

H2

H3

H4

...

H2m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

H
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

From Lemma 2.6, the solution X∗ obtained by Algorithm 1 with such initial matrix X(1) (2.10) is the

least Frobenius norm generalized reflexive solution. �
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Similarly to the above results, we can obtain the following theorem.

Theorem 2.4. Assume that Problem 1.3 is consistent. If we take the initial generalized anti-reflexivematrix

X(1) = F∗
1 (K1) − PF∗

1 (K1)Q + F∗
2 (K2) − PF∗

2 (K2)Q + · · · + F∗
m(Km) − PF∗

m(Km)Q , (2.11)

where K1, K2, . . . , Km are arbitrary, or more especially X(1) = 0, then the generalized anti-reflexive so-

lution X∗ obtained by Algorithm 2 is the least Frobenius generalized anti-reflexive solution of Problem 1.3.

3. The solution of Problems 1.2 and 1.4

In this section, we study Problems 1.2 and 1.4. Now suppose that the system of linear matrix equa-

tions (1.5) is consistent over the generalized reflexive (generalized anti-reflexive) matrix X . Obviously,

the solution set Sr is nonempty. For a given generalized reflexive generalized anti-reflexive matrix

X̂ ∈ Cn×n
r (P;Q) (X̂ ∈ Cn×n

a (P;Q)), we can get⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F1(X) = A1,

F2(X) = A2,

...
...

...

Fm(X) = Am,

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F1(X − X̂) = A1 − F1(X̂),

F2(X − X̂) = A2 − F2(X̂),

...
...

...

Fm(X − X̂) = Am − Fm(X̂).

. (3.1)

Set X1 = X − X̂ and Âi = Ai −Fi(X̂) for i = 1, 2, . . . ,m, then thematrix nearness problem 1.2 (1.4) is

equivalent to find the least Frobenius norm generalized reflexive (generalized anti-reflexive) solution

X∗
1 of the following system of matrix equations⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F1(X1) = Â1,

F2(X1) = Â2,

...
...

...

Fm(X1) = Âm,

(3.2)

which can be obtained using Algorithm 1 (2) and the initial the generalized reflexive (generalized

anti-reflexive) matrix

X1(1) = F∗
1 (K1) + PF∗

1 (K1)Q + F∗
2 (K2) + PF∗

2 (K2)Q + · · · + F∗
m(Km) + PF∗

m(Km)Q ,(
X1(1) = F∗

1 (K1) − PF∗
1 (K1)Q + F∗

2 (K2) − PF∗
2 (K2)Q + · · · + F∗

m(Km) − PF∗
m(Km)Q

)
,

where K1, K2, . . . , Km are arbitrarymatrices, and the solution of thematrix nearness problem 1.2 (1.4)

can be obtained as

X̃ = X∗
1 + X̂.

4. Illustrative examples

In this section, two numerical examples are presented to illustrate the validity and the merits of

the presented methods. We have implemented the algorithms in MATLAB and run the programs on a

Pentium IV.

Example 4.1. In this example, we consider the pair of Sylvester matrix equations

A1XB1 + A2XB2 = C, and D1XE1 + D2XE2 = F, (4.1)
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where

A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 + 1.0000i 2.0000 − 1.0000i 3.0000 1.0000 2.0000 1.0000

1.0000 −1.0000 1.0000 1.0000 1.0000 1.0000

2.0000 + 4.0000i 3.0000 1.0000 −1.0000 −2.0000 1.0000

3.0000 2.0000 4.0000 3.0000 1.0000 −1.0000

0 + 1.0000i 2.0000 2.0000 3.0000 5.0000 + 1.0000i 3.0000

1.0000 2.0000 3.0000 −1.0000 − 1.0000i −2.0000 0 + 1.0000i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.0000 − 2.0000i 3.0000 + 2.0000i −1.0000 6.0000 5.0000 3.0000 − 1.0000i

1.0000 + 1.0000i 2.0000 2.0000 2.0000 4.0000 4.0000

−1.0000 − 1.0000i −2.0000 −3.0000 1.0000 2.0000 2.0000

1.0000 2.0000 − 1.0000i 3.0000 0 − 1.0000i 1.0000 2.0000

3.0000 5.0000 4.0000 + 1.0000i 2.0000 1.0000 2.0000

−1.0000 −1.0000 −1.0000 + 1.0000i 2.0000 1.0000 1.0000 + 1.0000i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 + 1.0000i 1.0000 0 + 1.0000i 0 + 1.0000i 0 + 1.0000i 1.0000

1.0000 −1.0000 1.0000 −1.0000 2.0000 2.0000

2.0000 + 1.0000i 2.0000 + 1.0000i 2.0000 − 1.0000i 3.0000 − 1.0000i 2.0000 1.0000

1.0000 + 1.0000i 1.0000 + 1.0000i 2.0000 2.0000 0 3.0000

3.0000 + 3.0000i 2.0000 2.0000 2.0000 1.0000 1.0000

4.0000 3.0000 4.0000 + 1.0000i 3.0000 − 1.0000i 3.0000 3.0000 + 1.0000i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 + 2.0000i 2.0000 − 1.0000i 1.0000 2.0000 1.0000 2.0000

−1.0000 −1.0000 −1.0000 + 2.0000i 2.0000 2.0000 2.0000

3.0000 − 2.0000i 4.0000 1.0000 2.0000 1.0000 2.0000

−1.0000 −1.0000 + 4.0000i −1.0000 −1.0000 2.0000 1.0000

1.0000 2.0000 1.0000 2.0000 − 5.0000i 3.0000 1.0000

0 + 1.0000i 1.0000 2.0000 0 + 1.0000i 1.0000 2.0000 − 1.0000i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

D1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.0000 + 2.0000i 2.0000 + 1.0000i 1.0000 2.0000 0 0

0 + 1.0000i 0 + 1.0000i 0 + 1.0000i 2.0000 2.0000 2.0000

1.0000 2.0000 3.0000 + 1.0000i 0 + 1.0000i 0 0

2.0000 3.0000 4.0000 2.0000 + 2.0000i 0 2.0000

3.0000 4.0000 + 1.0000i 4.0000 3.0000 2.0000 2.0000

0 1.0000 0 + 1.0000i 1.0000 0 2.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

E1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 + 1.0000i 2.0000 1.0000 2.0000 3.0000 4.0000

1.0000 − 1.0000i 1.0000 1.0000 2.0000 + 4.0000i 1.0000 2.0000

−1.0000 −1.0000 + 1.0000i 2.0000 1.0000 2.0000 1.0000

2.0000 3.0000 1.0000 5.0000 + 1.0000i 3.0000 1.0000

1.0000 2.0000 −2.0000 1.0000 − 1.0000i 2.0000 3.0000

4.0000 + 4.0000i 1.0000 2.0000 − 1.0000i 3.0000 2.0000 − 1.0000i 3.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

D2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.0000 + 1.0000i 1.0000 2.0000 1.0000 2.0000 − 1.0000i 1.0000

1.0000 − 1.0000i 2.0000 3.0000 1.0000 2.0000 − 1.0000i 1.0000

0 + 1.0000i 1.0000 + 1.0000i 1.0000 2.0000 1.0000 2.0000

1.0000 2.0000 1.0000 − 1.0000i 2.0000 1.0000 + 1.0000i −1.0000

0 + 1.0000i 1.0000 1.0000 + 1.0000i 2.0000 1.0000 + 1.0000i 2.0000

1.0000 + 2.0000i 2.0000 1.0000 2.0000 1.0000 1.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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E2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.0000 + 3.0000i 2.0000 1.0000 2.0000 + 1.0000i 1.0000 2.0000

−1.0000 − 1.0000i 2.0000 −1.0000 − 1.0000i 2.0000 1.0000 2.0000

2.0000 + 3.0000i 3.0000 3.0000 3.0000 − 1.0000i 1.0000 2.0000

4.0000 + 1.0000i 2.0000 + 1.0000i 1.0000 2.0000 4.0000 4.0000

1.0000 2.0000 − 1.0000i 3.0000 − 1.0000i 1.0000 3.0000 1.0000

−1.0000 + 1.0000i −1.0000 + 1.0000i −1.0000 2.0000 + 1.0000i 2.0000 2.0000 + 1.0000i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C = 103

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2400 − 0.0160i 0.2500 + 0.0640i 0.2060 + 0.0800i 0.5180 + 0.0940i 0.4140 + 0.1940i 0.4840 + 0.1540i

0.1460 + 0.0220i 0.2480 − 0.0080i 0.1980 + 0.0880i 0.3440 − 0.0760i 0.4280 − 0.0100i 0.4780 − 0.0540i

−0.0160 + 0.0060i −0.1800 + 0.3000i −0.2840 − 0.0720i 0.1560 − 0.0700i 0.3640 + 0.1640i 0.2220 + 0.1060i

0.3740 − 0.0620i 0.4620 + 0.1320i 0.2760 + 0.1500i 0.5540 + 0.0020i 0.6300 − 0.0080i 0.7380 − 0.0780i

0.6020 + 0.1960i 1.0200 + 0.3400i 0.7440 + 0.3760i 0.8540 − 0.0660i 0.9940 + 0.0780i 1.1300 + 0.2280i

0.0600 − 0.1220i 0.1740 + 0.2520i −0.1680 + 0.0280i 0.3240 − 0.2360i 0.6040 − 0.0580i 0.4780 − 0.1320i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

F = 103

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2500 + 0.2380i 0.4160 + 0.0440i 0.2580 − 0.0120i 0.6740 + 0.0980i 0.6560 − 0.0060i 0.6060 + 0.0480i

0.6080 + 0.3080i 0.5600 − 0.0440i 0.2900 − 0.1420i 0.8940 + 0.2060i 0.7760 − 0.0680i 0.8060 − 0.0160i

0.1040 + 0.2260i 0.2200 + 0.1560i 0.0960 + 0.0220i 0.3460 + 0.1420i 0.4700 + 0.1240i 0.4800 + 0.1400i

0.5220 + 0.3160i 0.4500 + 0.1720i 0.4660 − 0.0360i 0.5620 + 0.3020i 0.7200 + 0.1800i 0.6620 + 0.1120i

0.3640 + 0.4520i 0.5860 + 0.2520i 0.3100 + 0.0160i 1.0660 + 0.4120i 0.9780 + 0.1720i 0.9720 + 0.2080i

0.1820 + 0.3060i 0.2700 + 0.1360i 0.2220 + 0.0360i 0.4500 + 0.2360i 0.4260 + 0.0660i 0.4340 + 0.1320i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

We define two operators F1 : X → A1XB1 + A2XB2 and F2 : X → D1XE1 + D2XE2, so the pair of

Sylvester matrix equations (4.1) is equivalent to pair of matrix equations

F1(X) = E, and F2(X) = F. (4.2)

We can also defineF∗
1 andF∗

2 asF∗
1 : Y → AT

1YB
T
1+AT

2YB
T
2 andF∗

2 : Y → DT
1YE

T
1 +DT

2YE
T
2 respectively.

We can verify that the pair of Sylvester matrix equations (4.1) is consistent over generalized reflexive
matrices and has a generalized reflexive solution as follows:

X∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.0000 + 2.0000i 0 12.0000 0 0 0

0 −4.0000 0 4.0000 4.0000 4.0000

8.0000 − 2.0000i 0 4.0000 0 0 0

0 8.0000 − 2.0000i 0 12.0000 4.0000 −4.0000

0 8.0000 − 2.0000i 0 12.0000 + 2.0000i 20.0000 12.0000

0 8.0000 − 2.0000i 0 −4.0000 + 2.0000i −8.0000 12.0000 + 2.0000i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈C6×6

r (P, P),

(4.3)

where

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

If we let the initial matrix X(1) = 0, applying Algorithm 1, we obtain the sequence {X(k)} that after
35 steps, we have√

‖R1(35)‖2 + ‖R2(35)‖2 = 4.8609 × 10−13.



2804 M. Dehghan, M. Hajarian / Linear Algebra and its Applications 437 (2012) 2793–2812

0 5 10 15 20 25 30 35
-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

k (iteration number)

rk
δk

Fig. 1. The obtained results for Example 4.1.

The obtained results are presented in Fig. 1, where

δk = log10(
‖X(k) − X∗‖

‖X∗‖ ) and rk = log10

√
(‖R1(k)‖2 + ‖R2(k)‖2).

From Fig. 1, we can see that Algorithm 1 is effective.

Example 4.2. Assume that Sr denote the set of generalized reflexive solutions to the pair of Sylvester
matrix equations (4.1), where the matrices A1, B1, A2, B2,D1, E1,D2, E2, C and F are mentioned in
Example 4.1. For

X̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 + 2.0000i 0 0 + 2.0000i 0 0 0

0 −2.0000 0 −2.0000 4.0000 4.0000

4.0000 + 2.0000i 0 4.0000 − 2.0000i 0 0 0

0 2.0000 + 2.0000i 0 4.0000 0 6.0000

0 4.0000 0 4.0000 2.0000 2.0000

0 6.0000 0 6.0000 − 2.0000i 6.0000 6.0000 + 2.0000i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ C6×6

r (P, P),

we find solution of Problem 1.2. By computing Ĉ = C − A1X̂B1 − A2X̂B2 and F̂ = F −D1X̂E1 −D2X̂E2,

we can get the least-norm generalized reflexive solution X̂∗ of new matrix equations

A1X1B1 + A2X1B2 = Ĉ, and D1X1E1 + D2X1E2 = F̂. (4.4)

By Algorithm 1 with X1(1) = 0, we can obtain

X∗
1 = X1(35) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.0000 + 0.0000i 0 12.0000 − 2.0000i 0 0 0

0 −2.0000 + 0.0000i 0 6.0000 + 0.0000i −0.0000 + 0.0000i −0.0000 − 0.0000i

4.0000 − 4.0000i 0 −0.0000 + 2.0000i 0 0 0

0 6.0000 − 4.0000i 0 8.0000 + 0.0000i 4.0000 + 0.0000i −10.0000 + 0.0000i

0 4.0000 − 2.0000i 0 8.0000 + 2.0000i 18.0000 + 0.0000i 10.0000 + 0.0000i

0 2.0000 − 2.0000i 0 −10.0000 + 4.0000i −14.0000 + 0.0000i 6.0000 − 0.0000i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

√
‖R1(35)‖2 + ‖R2(35)‖2 = 4.6637 × 10−13,
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Fig. 2. The results obtained for Examples 4.2.

and

X̃ = X∗
1 + X̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 − 1.0000i 1.0000 − 0.0000i 0 0 0

2.0000 + 2.0000i 1.0000 + 0.0000i 0 0 0

0 0 1.0000 + 1.0000i 2.0000 − 0.0000i 1.0000 + 0.0000i

0 0 2.0000 − 0.0000i 2.0000 + 1.0000i 1.0000 − 0.0000i

0 0 1.0000 − 0.0000i 1.0000 + 2.0000i 1.0000 − 5.0000i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The obtained results are presented in Fig. 2. The results show that Algorithm 1 is quite efficient.

5. Concluding remarks

The linear matrix equations have numerous applications in control theory, signal processing, de-

coupling techniques for ordinary and partial differential equations. By extending the CGLS method,

two iterative algorithms have been constructed to solve the system of matrix equations (1.5) over the

generalized reflexive (generalized anti-reflexive) matrix X . With Algorithm 1 (2), the solvability of

Problem 1.1 (1.3) can be judged automatically. When Problem 1.1 (1.3) is consistent, its generalized

reflexive (generalized anti-reflexive) solution can be obtained within a finite number of iterations in

the absence of roundoff errors, and its least Frobenius norm generalized reflexive (generalized anti-

reflexive) solution can be obtained by choosing a suitable initial generalized reflexive (generalized

anti-reflexive)matrix. In addition, by Algorithm 1 (2) we have obtained the generalized reflexive (gen-

eralized anti-reflexive) solution of Problem 1.2 (1.4). The numerical results in Section 4 show that the

proposed algorithms may be applied to solve several matrix equations. It is interesting to develop the

introduced algorithms for solving another matrix equation. We leave it as a topic for further research.
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Appendix.

The proof of Lemma 2.1

Because 〈R(i), R(j)〉r = 〈R(j), R(i)〉r and 〈S(i), S(j)〉r = 〈S(j), S(i)〉r , we only need to prove

m∑
r=1

〈Rr(i), Rr(j)〉r = 0, 〈S(i), S(j)〉r = 0 for 1 � i < j � v. (5.1)

We prove (5.1) by induction. Also we do it in two steps.

Step 1.We show that

m∑
r=1

〈Rr(i), Rr(i + 1)〉r = 0, 〈S(i), S(i + 1)〉r = 0 for i = 1, 2, . . . , v. (5.2)

Let i = 1, we can write

m∑
r=1

〈Rr(1), Rr(2)〉r =
m∑

r=1

〈
Rr(1), Rr(1) −

∑m
t=1 ‖Rt(1)‖2

‖S(1)‖2
Fr(S(1))

〉
r

=
m∑

r=1

〈Rr(1), Rr(1)〉r −
∑m

t=1 ‖Rt(1)‖2

‖S(1)‖2

m∑
r=1

〈Rr(1),Fr(S(1))〉r

=
m∑

r=1

‖Rr(1)‖2 −
∑m

t=1 ‖Rt(1)‖2

‖S(1)‖2

〈
m∑

r=1

F∗
r (Rr(1)), S(1)

〉
r

=
m∑

r=1

‖Rr(1)‖2 −
∑m

t=1 ‖Rt(1)‖2

‖S(1)‖2

[〈 ∑m
r=1 F∗

r (Rr(1)) + ∑m
r=1 PF∗

r (Rr(1))Q

2
, S(1)

〉
r

+
〈 ∑m

r=1 F∗
r (Rr(1)) − ∑m

r=1 PF∗
r (Rr(1))Q

2
, S(1)

〉
r

]

=
m∑

r=1

‖Rr(1)‖2 −
∑m

t=1 ‖Rt(1)‖2

‖S(1)‖2

[〈 ∑m
r=1 F∗

r (Rr(1)) + ∑m
r=1 PF∗

r (Rr(1))Q

2
, S(1)

〉
r

+ 1

2

〈
m∑

r=1

F∗
r (Rr(1)), S(1)

〉
r

− 1

2

〈
m∑

r=1

F∗
r (Rr(1)), PS(1)Q

〉
r

⎤⎦

=
m∑

r=1

‖Rr(1)‖2 −
∑m

t=1 ‖Rt(1)‖2

‖S(1)‖2

〈 ∑m
r=1 F∗

r (Rr(1)) + ∑m
r=1 PF∗

r (Rr(1))Q

2
, S(1)

〉
r

=
m∑

r=1

‖Rr(1)‖2 −
∑m

t=1 ‖Rt(1)‖2

‖S(1)‖2
〈S(1), S(1)〉r

= 0. (5.3)
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Also it is not difficult to get

〈S(1), S(2)〉r =
〈
S(1),

∑m
t=1 F∗

t (Rt(2)) + ∑m
t=1 PF∗

t (Rt(2))Q

2
+

∑m
t=1 ‖Rt(2)‖2∑m
t=1 ‖Rt(1)‖2

S(1)

〉
r

=
〈
S(1),

∑m
t=1 F∗

t (Rt(2)) + ∑m
t=1 PF∗

t (Rt(2))Q

2

〉
r

+
∑m

t=1 ‖Rt(2)‖2∑m
t=1 ‖Rt(1)‖2

‖S(1)‖2

= 1

2

〈
S(1),

m∑
t=1

F∗
t (Rt(2))

〉
r

+ 1

2

〈
PS(1)Q ,

m∑
t=1

F∗
t (Rt(2))

〉
r

+
∑m

t=1 ‖Rt(2)‖2∑m
t=1 ‖Rt(1)‖2

‖S(1)‖2

=
m∑

t=1

〈Ft(S(1)), Rt(2)〉r +
∑m

t=1 ‖Rt(2)‖2∑m
t=1 ‖Rt(1)‖2

‖S(1)‖2

= ‖S(1)‖2∑m
t=1 ‖Rt(1)‖2

m∑
t=1

〈Rt(1) − Rt(2), Rt(2)〉r +
∑m

t=1 ‖Rt(2)‖2∑m
t=1 ‖Rt(1)‖2

‖S(1)‖2

= ‖S(1)‖2∑m
t=1 ‖Rt(1)‖2

m∑
t=1

〈Rt(1), Rt(2)〉r − ‖S(1)‖2∑m
t=1 ‖Rt(1)‖2

m∑
t=1

‖Rt(2)‖2

+
∑m

t=1 ‖Rt(2)‖2∑m
t=1 ‖Rt(1)‖2

‖S(1)‖2 = 0. (5.4)

Now assume that conclusion (5.2) holds for 0 < i � l − 1 < v, then

m∑
r=1

〈Rr(l), Rr(l + 1)〉r

=
m∑

r=1

〈
Rr(l), Rr(l) −

∑m
t=1 ‖Rt(l)‖2

‖S(l)‖2
Fr(S(l))

〉
r

=
m∑

r=1

‖Rr(l)‖2 −
∑m

t=1 ‖Rt(l)‖2

‖S(l)‖2
〈

m∑
r=1

F∗
r (Rr(l)), S(l)〉r

=
m∑

r=1

‖Rr(l)‖2 −
∑m

t=1 ‖Rt(l)‖2

‖S(l)‖2

〈 ∑m
r=1 F∗

r (Rr(l)) + ∑m
r=1 PF∗

r (Rr(l))Q

2
, S(l)

〉
r

=
m∑

r=1

‖Rr(l)‖2 −
∑m

t=1 ‖Rt(l)‖2

‖S(l)‖2

〈
S(l) −

∑m
t=1 ‖Rt(l)‖2∑m

t=1 ‖Rt(l − 1)‖2
S(l − 1), S(l)

〉
r

=
m∑

r=1

‖Rr(l)‖2 −
∑m

t=1 ‖Rt(l)‖2

‖S(l)‖2
〈S(l), S(l)〉r

+ (
∑m

t=1 ‖Rt(l)‖2)(
∑m

t=1 ‖Rt(l)‖2)

‖S(l)‖2
∑m

t=1 ‖Rt(l − 1)‖2
〈S(l − 1), S(l)〉r = 0. (5.5)

Also we have

〈S(l), S(l + 1)〉r
=

〈
S(l),

∑m
t=1 F∗

t (Rt(l + 1)) + ∑m
t=1 PF∗

t (Rt(l + 1))Q

2
+

∑m
t=1 ‖Rt(l + 1)‖2∑m

t=1 ‖Rt(l)‖2
S(l)

〉
r

=
〈
S(l),

∑m
t=1 F∗

t (Rt(l + 1)) + ∑m
t=1 PF∗

t (Rt(l + 1))Q

2

〉
r

+
∑m

t=1 ‖Rt(l + 1)‖2∑m
t=1 ‖Rt(l)‖2

‖S(l)‖2
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= ‖S(l)‖2∑m
t=1 ‖Rt(l)‖2

m∑
t=1

〈Rt(l), Rt(l + 1)〉r − ‖S(l)‖2∑m
t=1 ‖Rt(l)‖2

m∑
t=1

‖Rt(l + 1)‖2

+
∑m

t=1 ‖Rt(l + 1)‖2∑m
t=1 ‖Rt(l)‖2

‖S(l)‖2 = 0. (5.6)

Hence, (5.2) holds by the principle of induction.

Step 2. Suppose that

m∑
r=1

〈Rr(i), Rr(i + l)〉 = 0, 〈S(i), S(i + l)〉 = 0 for 1 � i � v and 1 < l < v.

Now we will show

m∑
r=1

〈Rr(i), Rr(i + l + 1)〉r = 0, 〈S(i), S(i + l + 1)〉r = 0.

By using the above results, we can get

〈S(1), S(l + 2)〉 = 0.

We can write

m∑
r=1

〈Rr(i), Rr(i + l + 1)〉r

=
m∑

r=1

〈
Rr(i), Rr(i + l) −

∑m
t=1 ‖Rt(i + l)‖2

‖S(i + l)‖2
Fr(S(i + l))

〉
r

=
m∑

r=1

〈Rr(i), Rr(i + l)〉r −
∑m

t=1 ‖Rt(i + l)‖2

‖S(i + l)‖2
〈

m∑
r=1

F∗
r (Rr(i)), S(i + l)〉r

= −
∑m

t=1 ‖Rt(i + l)‖2

‖S(i + l)‖2

〈 ∑m
r=1 F∗

r (Rr(i)) + ∑m
r=1 PF∗

r (Rr(i))Q

2
, S(i + l)

〉
r

= −
∑m

t=1 ‖Rt(i + l)‖2

‖S(i + l)‖2

〈
S(i) −

∑m
t=1 ‖Rt(i)‖2∑m

t=1 ‖Rt(i − 1)‖2
S(i − 1), S(i + l)

〉
r

= −
∑m

t=1 ‖Rt(i + l)‖2

‖S(i + l)‖2
〈S(i), S(i + l)〉r

+ (
∑m

t=1 ‖Rt(l)‖2)(
∑m

t=1 ‖Rt(i + l)‖2)

‖S(i + l)‖2
∑m

t=1 ‖Rt(l − 1)‖2
〈S(i − 1), S(i + l)〉r

= · · · = α〈S(1), S(l + 2)〉 = 0, (5.7)

for certain α. From the above results, we can obtain

m∑
r=1

〈Rr(i), Rr(i + l + 1)〉r = 0 and

m∑
r=1

〈Rr(i + 1), Rr(i + l + 1)〉r = 0.

Therefore

〈S(i), S(i + l + 1)〉r =
〈
S(i),

∑m
t=1 F∗

t (Rt(i + l + 1)) + ∑m
t=1 PF∗

t (Rt(i + l + 1))Q

2

+
∑m

t=1 ‖Rt(i + l + 1)‖2∑m
t=1 ‖Rt(i + l)‖2

S(i + l)

〉
r
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=
〈
S(i),

∑m
t=1 F∗

t (Rt(i + l + 1)) + ∑m
t=1 PF∗

t (Rt(i + l + 1))Q

2

〉
r

+
∑m

t=1 ‖Rt(i + l + 1)‖2∑m
t=1 ‖Rt(i + l)‖2

〈S(i), S(i + l)〉r

= ‖S(i)‖2∑m
t=1 ‖Rt(i)‖2

m∑
t=1

〈Rt(i), Rt(i + l + 1)〉r

− ‖S(i)‖2∑m
t=1 ‖Rt(i)‖2

m∑
t=1

〈Rt(i + 1), Rt(i + l + 1)〉r

= · · · = β〈S(1), S(l + 2)〉 = 0, (5.8)

for certain β . From Steps 1 and 2, conclusion (5.1) holds by the principle of induction.

The proof of Lemma 2.3

First, we show that

〈X∗ − X(i), S(i)〉r =
m∑

r=1

‖Rr(i)‖2, i = 1, 2, .... (5.9)

We prove conclusion (5.9) by induction. If i = 1, we have

〈X∗ − X(1), S(1)〉r =
〈
X∗ − X(1),

∑m
t=1 F∗

t (Rt(1)) + ∑m
t=1 PF∗

t (Rt(1))Q

2

〉
r

= 1

2

〈
X∗ − X(1),

m∑
t=1

F∗
t (Rt(1))

〉
r

+ 1

2

〈
P(X∗ − X(1))Q ,

m∑
t=1

F∗
t (Rt(1))

〉
r

=
m∑

t=1

〈Ft(X
∗ − X(1)), Rt(1)

〉
r =

m∑
t=1

〈At − Ft(X(1)), Rt(1)〉r

=
m∑

t=1

‖Rt(1)‖2. (5.10)

Now assume conclusion (5.9) holds for i = v. For i = v + 1, similarly to the proof of (5.10) we can

obtain

〈X∗ − X(v + 1), S(v + 1)〉r

=
〈
X∗ − X(v + 1),

∑m
t=1 F∗

t (Rt(v + 1)) + ∑m
t=1 PF∗

t (Rt(v + 1))Q

2

+
∑m

t=1 ‖Rt(v + 1)‖2∑m
t=1 ‖Rt(v)‖2

S(v)

〉
r

=
〈
X∗ − X(v + 1),

m∑
t=1

F∗
t (Rt(v + 1)) +

∑m
t=1 ‖Rt(v + 1)‖2∑m

t=1 ‖Rt(v)‖2
S(v)

〉
r
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=
m∑

t=1

〈At − Ft(X(v + 1)), Rt(v + 1)〉r +
∑m

t=1 ‖Rt(v + 1)‖2∑m
t=1 ‖Rt(v)‖2

〈
X∗ − X(v), S(v)

〉
r

−
∑m

t=1 ‖Rt(v + 1)‖2

‖S(v)‖2
‖S(v)‖2

=
m∑

t=1

‖Rt(v + 1)‖2. (5.11)

By the principle of induction, conclusion (5.9) holds for all i = 1, 2, . . ..
We suppose that

〈X∗ − X(i), S(i + r)〉r =
m∑

t=1

‖Rt(i + r)‖2 for r = 0, 1, . . . , k. (5.12)

It is not difficult to get

〈X∗ − X(i), S(i + r + 1)〉r

=
〈
X∗ − X(i),

m∑
t=1

F∗
t (Rt(i + r + 1)) +

∑m
t=1 ‖Rt(i + r + 1)‖2∑m

t=1 ‖Rt(i + r)‖2
S(i + r)

〉
r

=
m∑

t=1

〈At − Ft(X(i)), Rt(i + r + 1)〉r +
∑m

t=1 ‖Rt(i + r + 1)‖2∑m
t=1 ‖Rt(i + r)‖2

〈
X∗ − X(i), S(i + r)

〉
r

=
m∑

t=1

‖Rt(i + r + 1)‖2. (5.13)

By the principle of induction, the conclusion (2.3) holds.

It follows from (2.3) that

〈X∗ − X(i + 1), S(i)〉r = 〈X∗ − X(i) −
∑m

t=1 ‖Rt(i)‖2

‖S(i)‖2
S(i), S(i)〉r

= 〈X∗ − X(i), S(i)〉r −
∑m

t=1 ‖Rt(i)‖2

‖S(i)‖2
‖S(i)‖ = 0. (5.14)

Now we suppose that

〈X∗ − X(i + r), S(i)〉r = 0 for r = 1, 2, . . . (5.15)

By applying (5.1) and (5.15), we can obtain

〈X∗ − X(i + r + 1), S(i)〉r = 〈X∗ − X(i + r) −
∑m

t=1 ‖Rt(i + r)‖2

‖S(i + r)‖2
S(i + r), S(i)〉r

= 〈X∗ − X(i + r), S(i)〉r −
∑m

t=1 ‖Rt(i + r)‖2

‖S(i + r)‖2
〈S(i + r), S(i)〉r

= 0. (5.16)

Therefore the conclusion (2.4) holds by the principle of induction.
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