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Abstract-For an ordered set W = (~1, ~2,. , wk} of vertices and a vertex 2) in a connected 
graph G, the (metric) representation of v with respect to W is the /c-vector T(V 1 W) = (d(v,wl), 
d(v, wz), , d(v, wk)), where d(z, y) represents the distance between the vertices z and y. The set IV 
is a resolving set for G if distinct vertices of G have distinct representations. A new sharp lower bound 
for the dimension of a graph G in terms of its maximum degree is presented. 

A resolving set of minimum cardinality is a basis for G and the number of vertices in a basis is 
its (metric) dimension dim(G). A resolving set S of G is a minimal resolving set if no proper subset 
of 5’ is a resolving set. The maximum cardinality of a minimal resolving set is the upper dimension 
dim+(G). The resolving number res(G) of a connected graph G is the minimum k such that every 
k-set W of vertices of G is also a resolving set of G. Then 1 5 dim(G) 5 dim+(G) 5 res(G) 5 n - 1 
for every nontrivial connected graph G of order n. It is shown that dim+(G) = res(G) = TZ - 1 if and 
only if G = Kn, while dim+(G) = res(G) = 2 if and only if G is a path of order at least 4 or an odd 
cycle. 

The resolving numbers and upper dimensions of some well-known graphs are determined. It is 
shown that for every pair a, b of integers with 2 5 a 5 b, there exists a connected graph G with 
dim(G) = dim+(G) = a and res(G) = b. Also, for every positive integer N, there exists a connected 
graph G with res(G) - dim+(G) 1 N and dim+(G) - dim(G) 2 N. @ 2000 Elsevier Science Ltd. 
All rights reserved. 
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1. INTRODUCTION 

A basic problem in chemistry is to provide mathematical representations for a set of chemical 
compounds in a way that gives distinct representations to distinct compounds. As described in [l], 
the structure of a chemical compound can be represented by a labeled graph whose vertex and 
edge labels specify the atom and bond types, respectively. Thus, a graph-theoretic interpretation 
of this problem is to provide representations for the vertices of a graph in such a way that distinct 
vertices have distinct representations. This is the subject of the papers [l-6]. 

The distance d(u,v) between two vertices u and v in a connected graph G is the length of a 
shortest u - v path in G. For an ordered set W = {WI, ~2,. . , wk} 2 V(G) and a vertex v of G, 
we refer to the k-vector 

r(v I W) = (d(v, 4, d(v,w), . . . , d(v, w/c)) 
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as the (metric) representation of v with respect to W. The set W is called a resolving set for G if 
distinct vertices have distinct representations. A resolving set containing a minimum number of 
vertices is called a minimum resolving set or a basis for G. The (metric) dimension dim(G) is the 
number of vertices in a basis for G. A resolving set W of G is a minimal resolving set if no proper 
subset of W is a resolving set. We refer to the maximum cardinality of a minimal resolving set 
as the upper dimension dim+(G) and a minimal resolving set of cardinality dim+(G) is called an 
upper basis for G. If G is a nontrivial connected graph, then dim(G) I dim+(G). 

For example, the graph G of Figure 1 has the basis W = {u,z} and so dim(G) = 2. The 
representations for the vertices of G with respect to W are 

r(u I W) = (0, I), T(V I W) = (2,1), e I W) = (L2), 

dY I W) = (l,l), ?-(z I W) = (1,O). 

U 

EI 

.z 
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Y 
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Figure 1. A graph G. 

When determining whether a given set W of vertices of a graph G is a resolving set for G, 
we need only investigate the vertices of V(G) - W since w E W is the only vertex of G whose 
distance from w is 0. 

Certainly, every minimum resolving set of a graph is a minimal resolving set, but the converse 
is not true. To illustrate these concepts, consider the graph G = l’s x PA of Figure 2 and let 
W = (~1, WI}. The representations for the vertices of V(G) - W with respect to W are 

T(U2 I w> = (1,3), 7.(U3 I w = (2,4), 7-(U4 I w = (3,5), T(‘ul I w> = (l,l>, 
T(‘u2 I w> = (W), 9-(7J3 I w> = (3,3), r(v4 I W) = (4,4), 7-(w2 I W) = (3, I), 

T(W3 I w = (4,2), 7-(w4 I W) = (573). 

Since these representations are distinct, W is a resolving set. Moreover, G contains no singleton 
resolving sets and so dim(G) = 2. Now let W’ = {VI, ‘~3, ~3, ~4). The representations for the 
vertices of V(G) - W’ with respect to W’ are 

r (w I W’) = (1,3,4,5), r (U2 I W’) = (T&3,4), r (U3 I W’) = (3, I, 2,3), 

r(u4 I W’> = (4,2,3,2), r(v2 I w’) = (1,1,2,3), r (v4 I W’) = (3,1,2, l), 

T(Wl I W’> = (1,3,2,3), f (w2 I W’) = (2,2,1,2). 

Thus, W’ is a resolving set as well. For WI = W’ - {VI}, W2 = W’ - {v3}, W3 = W’ - {w3}, 
and W4 = W’ - {wJ}, we have T(UZ I WI) = T(VI I WI), r(v3 I W2) = T(WS I WZ), r(v4 I W3) = 
~(w3 I W3), and ~(2~3 I W4) = T(V~ I W4). Thus, Wi is not a resolving set for 1 < i < 4, so W’ 
is a minimal resolving set. Certainly, W’ is not a basis as dim(G) = 2. Thus, dim+(G) > 4. 
By a case-by-case analysis, one can show that there is no minimal resolving sets of cardinality 5. 
Hence, W’ is an upper basis and dim+(G) = 4. 
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Figure 2. A basis and an upper basis for G. 
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For a nontrivial connected graph G of order n, the resolving number res(G) of G is the mini- 

mum k such that every k-subset W of V(G) is a resolving set of G. Since every (n - I)-element 

subset of V(G) is a resolving set of G and every resolving set contains a minimal resolving set, 

I 5 dim(G) 5 dim+(G) 5 res(G) 5 n - I. (I) 

In this paper, we study the resolving sets described above and investigate the relationships 
among the corresponding parameters. 

The following two theorems (see [1,4-61) g ive the dimensions of some well-known classes of 
graphs. 

THEOREM A. Let G be a connected graph of order n 2 2. 

(a) Then dim(G) = 1 if and only if G = P,. 
(b) Then dim(G) = n - 1 if and only if G = K,. 
(c) For n > 3, dim(&) = 2. - 
(d) Forn>4,dim(G)=n-2ifandonlyifG=K,,,(r,s>l),G=K,+K,(r>l,sL2), 

or G = K,. + (KI U K,) (r, s > 1). 

A vertex of degree at least 3 in a tree T is called a major vertex. An end-vertex u of T is 
said to be a terminal vertex of a major vertex w of T if d(u, v) < d(u, W) for every other major 
vertex w of T. The terminal degree ter(v) of a major vertex II is the number of terminal vertices 
of vu. A major vertex v of T is an exterior major vertex of T if it has positive terminal degree. 
Let a(T) denote the sum of the terminal degrees of the major vertices of T and let ex(T) denote 
the number of exterior major vertices of T. 

THEOREM B. If T is a tree that is not a path, then 

dim(T) = a(T) - ex(T). (2) 

Next, we present a lemma that appeared in [l]. The diameter of G is the maximum distance 
between any two vertices of G and is denoted by diam G. 

LEMMA C. For positive integers d and n with d < n, define f(n, d) as the least positive integer k 
such that k + dk 2 n. Then for a connected graph G of order n 2 2 and diameter d, 

dim(G) > j(n,d). 

The lower bound in Lemma C is only attainable for graphs of diameter 2 or 3. We now 
present a sharp lower bound for the dimension of a connected graph G in terms of its maximum 
degree A(G). 

THEOREM 1.1. Let G be a nontrivial connected graph. Then 

dim(G) 2 [log, (A(G) + l)] . (3) 

PROOF. Let dim(G) = k and o E V(G) with degv = A(G). Moreover, let N(v) be the neigh- 
borhood of v and let B = {u~,zLz,. . . ,uk} a basis of G. Observe that if ‘LL E N(w), then d(u,Ui) 
is one of d(v, ‘Eli), d(v, ui) + 1, or d(v,ui) - 1 for all i with 1 5 i 5 k. Moreover, since B is a 
basis, r(u 1 B) # r(v ) B) for all ‘ZL E N(v). It follows that there are at most 3” - 1 distinct 
representations of the vertices in N(v) with respect to B. Therefore, IN(v)1 = A(G) 5 3k - 1, 
which implies that dim(G) 2 log,(A(G) + 1). I 

The lower bound in Theorem 1.1 is sharp. In fact, for each pair k, A of integers such that 
3” = A + 1, there exists a connected graph Gk>A such that dim(Gk,A) = k and A(Gk,A) = A, as 
we show next. 
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For (k, A) = (1,2), the graph G = P, has the desired properties by Theorem A(a). For 
(k, A) = (2,8), we consider the graph Gs,s of Figure 3. The maximum degree of G2,s is 8 with 
degue = 8 and iV(uo) = (~1, ~2,. . . , ug}. Let W = {WI, ~2). Then the representations of vertices 
of V(Gs,s) - W with respect to W are 

T(Ul I W) = W), T(U2 I W) = (L2), r(u3 I W = (1,3)7 

rb4 I w = (2,3), 7-(u5 I W) = (2, I), T(u6 I w = (3,3), 

rb7 I w) = (3,2), r(us I w> = (3,1), T(UO I w = (27% 

which are distinct. Therefore, W is a resolving set of G2,s and so dim(Gz,s) = 2 by Theorem 1.1. 

Figure 3. The graph &,8. 

For (k,A) = (3,26), we construct the graph Gs,2s based on Gs,s in two steps. 

Step 1. Replace each vertex U$ by a path ZL~, , ui, uiz, where 0 5 i 5 8, such that 
1. us is adjacent to all vertices ui, and uiz with 0 5 i 5 8 and all Uj with 1 < j < 8, 
2. usI and ~0~ are adjacent, respectively, to all vertices uil , uiz, where 1 5 i < 8, 
3. 1-j is adjacent to ui, uil, and uia if and only if v.j is adjacent to ui in Gs,s, where 

O<i<8andj=1,2. 
Step 2. Add a new vertex 21s such that 21s is adjacent to every vertex uil for all 1 5 i < 8. 

Certainly, G2,s is a subgraph of G 3,26. Observe that A(Gs,ze) = degus = 26 as 

N(Uo) = {Uol, 210~) U {uil, ‘w, I& : 1 5 i 5 8). 

Next we show that dim(Gs,ss) = 3. Let W = {WI, 212, ‘us}. By the structure of G, we have that 
the representations of uil, ui, ui2 with respect to the subset {VI, ~2) of W are distinct from those 
of Ujl, Uj, Uj2 for all i, j with 0 5 i # j 5 8. Hence, the representations of uiI, ui, uiz with respect 

to W are distinct from those of uj,, Uj, Ujz (0 5 i # j 5 8) as well. Moreover, since 

for all 0 5 i 5 8, it follows that the representations ui, , ui, and uiz with respect to W are distinct. 
So the representations of the vertices of G 3,26 with respect to W are distinct. Therefore, W is 
a resolving set of Gs,ss. Since there are no 2-element resolving sets in Gs,ss by Theorem 1.1, it 
follows that dim(G 3,26) = 3. Repeating this procedure, we have the desired result. 

As a result of Theorem 1.1, we can now add another inequality to (1) for a nontrivial connected 
graph G of order n: 

[log,(A(G) + 1)1 < dim(G) < dim+(G) 5 res(G) 5 n - 1. (4 
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2. THE UPPER DIMENSION OF A GRAPH 

Since dim(G) 5 dim+(G) 5 res(G) for every nontrivial connected graph G, it follows that 
dim+(G) is bounded above by res(G) and below by dim(G). Thus, to determine the upper 
dimension of a graph G, it is useful to know its resolving number. First, we present the resolving 
numbers of some well-known graphs in the next two propositions. Since the proof of the first 
proposition is routine, we omit it. 

PROPOSITION 2.1. Let n 2 3 be an integer. Then 

(a) res(K,) = n - 1 and res(P,) = 2; 
(b) res(C,) = 2 if n is odd, res(C,) = 3 if n is even; 
(c) for integers k, 721,722,. . . , nk withkL2andlLnl~n:!I...Ink, 

res(&,,n,,..+, ) = (nl + 722 $ ... $ nk) - 1. 

The following theorem was presented in [7]. 

THEOREM D. Let T be a nonpath tree of order n 2 3 having p exterior major vertices ~1, ~2, 

. . . 7 up. For 1 5 i 5 p, let ui,l, UQ, . . , ?Li,k, be the terminal vertices of vi, and let Pij be the 
vi - uij path (1 5 j 5 ki). Suppose that W is a set of vertices of T. Then W is a basis of T if and 
only if W contains exactly one vertex from each of the paths Pij - Vi (1 5 j 5 ki and 1 < i 5 p) 
with exactly one exception for each i with 1 5 i 5 p and W contains no other vertices of T. 

PROPOSITION 2.2. Let T be a nonpath tree of order n > 3 having p exterior major vertices 

VlrV2,...,Vp. For 1 5 i 5 p, Jet u~,~,uQ,.. . , Ui,ki be the terminal vertices of vi and let Pij be 
the vi - Uij path of length Cij (1 < j < ki) with & 5 &a 5 .. . 5 k&. For 1 < i < p, let 
ei = &I + &, and let e = min{& : 1 < i 5 p}. Then 

res(T) =n-e+l. 

PROOF. We first show that res(T) 2 n - e + 1. Assume, without loss of generality, that C = Cl. 
Let 

Wo = {V(T) - [(V(Pll) U V(Pll)]} U {VI}. 

Then IWol = n - e. Since WO contains neither a vertex of V(Pll) - {VI} nor a vertex of 
V( Pl2) - {VI}, it follows by Theorem D that WO is not a resolving set and so res(T) > n - C + 1. 
Next we show that res(T) 5 n - e + 1. Let W C V(T) with [WI > n - e + 1. Then W contains 
at least one vertex from each of the paths Pij - vi (1 5 j 5 ki and 1 5 i < p) with at most one 
exception for some Pij. Again, it follows by Theorem D that S is a resolving set of T. Therefore, 
res(T) = n - C + 1. I 

Since nontrivial paths are the only connected graphs with dimension 1, it follows by Theo- 
rem A(a) and Proposition 2.1(a) that there are no graphs of order n > 3 with dim(G) = 1 and 
res(G) 2 3. Hence, for integers a and b with a = 1 and b 2 3, there is no connected graph 
with dimension a and resolving number b. However, we show that every pair a, b of integers with 
2 5 a 2 b is realizable as the dimension and resolving number, respectively, of some connected 
graph. 

THEOREM 2.3. For every pair a, b of integers with 2 5 a 5 b, there exists a connected graph G 
with dim(G) = a and res(G) = b. 

PROOF. For a = b, let G = &+I, which has the desired properties by Theorem A(b) and 
Proposition 2.1(a). So we may assume that 2 5 a < b. Let G be the graph obtained from 
the path P : UI,UZ,..., u&,+1 by adding a new vertices ~1, ~2, . . , v, and the a edges viu1 
(1 2 i 5 a). Then G is a tree of order b + 1. Since G has only one exterior vertex, namely ~1, it 
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follows that ex(G) = 1 and g(G) = ter(ul) = a + 1. By Theorem B, dim(G) = (a + 1) - 1 = a. 
Since the order of G is b+l and e = 2, it follows by Proposition 2.2 that res(G) = (b+l)-2+1 = b, 
as desired. I 

We now determine the upper dimensions of some well-known graphs, starting with paths and 
cycles. It was shown in [7] that a vertex q of the path P, : ~1,212,. . . , v, is a basis for P, if 
and only if vi is an end-vertex of P, and so dim+(Pz) = 1. For n 2 3, since res( Pn) = 2 by 
Proposition 2.1(a), it follows that dim+(P,) I 2 for all n 2 3 by (1). If n = 3, then every 
two-element subset S of V(P ) 3 contains an end-vertex of Ps and so S contains a proper resolving 
subset, implying that S is not a minimal resolving set. Hence, dim+(P3) = 1. For n 2 4, the 
two-element resolving set (212, us} contains no proper resolving subset and so dim+(P,) = 2 for 
all n 2 4. Therefore, 

dim+(P,) = 
{ 

1, nI3, 
2 

otherwise. 
(5) 

, 

Since nontrivial paths are the only graphs with dimension 1, it follows by (5) that dim+(G) 2 2 
for all connected graphs of order n > 4. 

Let C, be a cycle of order n 2 3. If n is odd, then dim+(&) = 2 by (l), Theorem A(c), 
and Proposition 2.1(b). If n is even, then every three-element subset S of V(Cn) contains two 
vertices that are not antipodal. Hence, these two vertices form a proper resolving subset of S. 
This implies that S is not minimal and so dim+(C,) < 2. Therefore, 

dim+(&) = 2, for n > 3. (6) 

We have seen for paths of order at least 4 and all odd cycles that the upper dimension and 
resolving number are both 2. In fact, these are the only connected graphs having this property. 

THEOREM 2.4. For a nontrivial connected graph G, dim+(G) = res(G) = 2 if and only if G is a 
path of order at least 4 or G is an odd cycle. 

PROOF. It suffices to show that if dim+(G) = res(G) = 2, then G is a path of order at least 4 
or G is an odd cycle. First, we verify that A(G) 5 2. Assume, to the contrary, that there exists 
a vertex v of G such that degv > 3. Let ~1, ~2, v3 be three neighbors of v. We consider four 
cases according to the possible number of adjacencies of these vertices. These cases are shown 
in Figure 4. In each of the Figures 4a-4d, the solid vertices indicate a set S of two vertices that 
cannot be a resolving set for G as the remaining two vertices have the same representation with 
respect to S. Therefore, A(G) 5 2, as claimed. 

(4 (b) (cl (4 
Figure 4. The possible number adjacencies of three neighbors of v. 

Since G is connected, G is either a cycle or a path. By (5), (6), and Proposition 2.1(b), G is a 
path of order at least 4 or an odd cycle. I 

By Theorem A(b) and (l), we have dim+(K,) = n - 1 for n 2 2. In fact, if n 2 2, then the 
complete graph K, is the only connected graph of order n with upper dimension n - 1. 

PROPOSITION 2.5. Let G be a nontrivial connected graph. Then dim+(G) = n - 1 if and only 
if G = K,. 

PROOF. Assume, to the contrary, that there exists a connected graph G # K, with dim+(G) = 
n - 1. Let W = V(G) - {z} b e a minimal resolving set of G, where J: E V(G). Since G is 
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not complete, there exists an induced path Ps : u,v, w of length 2 in G. First, assume that 
CC E {u,v, w}. If z = U, then d(v, w) = 1 and d(z, w) = 2 and so W - {v} is also a resolving set, 
which is a contradiction. Similarly, z # w. If 2 = v, then W - {u} is also a resolving set. Hence, 
5 $ {U, 21, w}. If d( x,u)=2,thenW-{v}’ IS a resolving set as d(v, U) = 1. Otherwise, W - {w} 
is a resolving set as d(w, U) = 2. Therefore, W = V(G) - { } 2 is not a minimal resolving set, a 
contradiction. I 

Note that by (l), if G is a nontrivial connected graph of order n with dim+(G) = n - 1, then 
res(G) = n - 1. So Proposition 2.5 implies that if G is a nontrivial connected graph of order n, 
then 

dim+(G) = res(G) = n - 1 if and only if G = K,. 

However, the complete graph K, is not the only connected graph of order n with resolving 
number n - 1 as we have seen in Proposition 2.1(c). By Theorem A(d) and (l), we are able to 
present a characterization of graphs G of order n > 4 with dim+(G) = dim(G) = n - 2. 

COROLLARY 2.6. Let G be connected graph of order n 2 4. Then dim+(G) = dim(G) = n - 2 
ifandonlyifG=K,,,(r,s~l),G=K,+~(r~1,~~2),orG=K,+(K~~K,)(r,s~l). 

We now determine the upper dimension of all complete multipartite graphs and all trees that 
are not paths. 

PROPOSITION 2.7. For integers k > 2 and ni, 122,. . . , nk with 2 5 ni 5 n2 5 ... < nk and 
n = 721 + ns •l- . . . + nk, 

dim+ (K1,n2,...,nk) = n - k. 

PROOF. Let G = &,,n,,...,nk whose partite sets are Vi with jVi[ = ni and 1 2 i 5 k. If W is a 
resolving set for G, then W must contains at least ni - 1 vertices from each set Vi for 1 5 i 5 k. 
Hence, dim+(G) 2 n - k. Next we show that dim+(G) 5 n - k. Assume, to the contrary, that 
there exists a minimal resolving set S of G with ISI > n - k + 1. Since S is a resolving set, S 
contains at least ni - 1 vertices from each set Vi for 1 5 i < k. Since ISI 2 n - k + 1, there 
exists an integer i with 1 2 i 5 k such that Vi C S. Let u E Vi. Then S - {u} contains at least 
ni - 1 vertices from Vi for 1 5 i < k. Hence, S - {u} is a proper resolving subset of G, which is 
a contradiction. I 

PROPOSITION 2.8. If T is a tree that is not a path, then 

dim+(T) = dim(T) = a(T) - ex(T). (7) 

PROOF. Assume, to the contrary, that there exists a tree T that is not a path such dim+(T) > 
dim(T). Then let S be a minimal resolving set of T with ISI = dim+(T). Since S is minimal, S 
does not contain any basis of T as a proper subset. By Theorem D, there exists an exterior major 
vertex v of T and two terminal vertices ~1 and us of v such that S contains no vertex from the 
paths Pi - v, where Pi is the u - ui path for i = 1,2 in T. Let ui and uh be the vertices adjacent 
to v on PI and P2, respectively. Since neither PI - v nor Ps - v contains a vertex of S, it follows 
that T(U~ I S) = r(u& 1 S), contradicting the fact that S is a resolving set for T. Therefore, 
dim+(T) = dim(T) f or all trees T that are not paths. 1 

By Propositions 2.5 and 2.8 and the proof to Theorem 2.3, we have the following. 

COROLLARY 2.9. For every pair a, b of integers with 2 5 a 5 b, there exists a graph G with 
dim(G) = dim+(G) = a and res(G) = b. 

Every graph G encountered thus far has the property that dim+(G) - dim(G) 2 2. This 
might lead one to believe that there is a constant K such that dim+(G) - dim(G) 5 K for every 
connected graph G. However, this is not the case. Indeed, as we next show, every pair of the 
parameters dim(G), dim+(G), res(G) can differ by an arbitrarily large number. 
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THEOREM 2.10. For every positive integer N, there exists a connected graph G with 

res(G) - dim+(G) > N and dim+(G) -dim(G) 2 N. 

PROOF. For each positive integer N, choose k 2 max(4,N + 1). This implies that 2” - k 2 
2’-’ + 2 and k 2 log, N + 1. We construct a graph G of order 2” + k such that 

dim(G) = k, dim+(G) = 2k - 1, and res(G) = 2” + (k - 2), 

which implies that res(G) - d im’(G) = k - 1 2 N and dim+(G) - dim(G) = (2k - 1) - k 2 
2”-l > N, as desired. 

LetV(G)=UUW,whereU={ue,ur ,..., UZ~_1) and the ordered set VI’ = {wk_i,wk_2,. . . , 
wg} are disjoint. The subgraph (U) of G is complete, while W is independent. It remains to 
define the adjacencies between W and U. Let each integer j (0 2 j I 2k - 1) be expressed in its 
base 2 (binary) representation. Thus, each such j can be expressed as a sequence of k coordinates, 
that is, a k-vector, where the rightmost coordinate represents the value (either 0 or 1) in the 2O 
position, the coordinate to its immediate left is the value in the 2l position, etc. For integers i 
andj,withO~iIk-1andOIjI2k-1,wejoinwiandujifandonlyifthevalueinthe2i 
position in the binary representation of j is 1. For each j with 0 5 j 5 2” - 1, we also denote Uj 

by (oj,rc-r,oj,k-2,. . . ,ojo), where oj,m = ejm (0 i m I k - 1) is the value in the 2m position of 
the binary representation of j. This completes the construction of the graph G. For k = 3, the 
edges joining W and U in the graph G just constructed are shown in Figure 5. 

000 001 010 011 100 101 110 111 
210 Ul '1L2 u3 u4 u5 % W 

Figure 5. The edges joining W and U for k = 3. 

We now show that dim(G) = k. Since G has diameter 2 and order k + 2k, it follows by 
Lemma C that dim(G) 2 k. Next we show that W is a resolving set for G. To do this we need 
only show that the vertices of U have distinct metric representations with respect to W. The 
metric representation for each Uj = (aj,k-1, aj,k_2,. . . , ajo) (0 5 j 5 2” - 1) can be expressed as 

T(Uj 1 W)=(2-Uj,k_l,2-Uj,k-2 ,..., 2-Ujo). 

Since the binary representations aj,k-raj,k-2 . . . ajlajo are distinct for the vertices of U, their 
metric representations (2 - aj,k__l, 2 - aj,k_2,. . . (2 - ajo) are distinct as well. Hence, W is a 
resolving set of G and dim(G) I IWI = k. Thus, dim(G) = k. 

Next, we show that dim+(G) = 2” - 1. Let S = U - {TAO}. We show that S is a minimal 
resolving set. By the construction of G, we have T(UO 1 S) = (1, 1, . . . , 1). Since at least one of the 
coordinates of each r(wi I S) is 2, we have T(UO I S) # T(W( I S) for all i with 0 < i 5 k - 1. Next, 
we show that T(W( 1 S) # r(wj I S) for 0 2 i # j 5 k-l. Recall that wi and Uj are adjacent if and 
only if the value in the 2i position in the binary representation of j is 1. Hence, there are exactly 
2k-2 vertices in U that are adjacent to both wi and wj and exactly 2k-2 vertices in U that are 
adjacent to neither wi nor wj. Since k 2 4, it follows that ISI = 2k - 1 > 2”-l = 2(2k-2). Hence, 
there exists me c S such that ue is adjacent to wi and not adjacent to wj. Hence, T(W( ) S) # 
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r(wj ( S) and S is a resolving set. On the other hand, for each ui E S, where 1 5 i 5 2” - 1, we 

have r(ui 1 S - {ui}) = r(uo 1 S - {zJ~}) = (l,l,. . . , l), implying that S has no proper resolving 
subsets. Therefore, S is minimal resolving set of G and so dim+(G) 2 ISI = 2k - 1. A similar 
argument will show that U - {uj} is a resolving set of G for all j with 0 2 j 5 2” - 1. 

To show that dim+(G) 5 2” - 1, it suffices to show that if S’ is a resolving set of G with 
IS’1 > 2”, then S I is not minimal. Let S’ = W’ U U’, where W’ C W and U’ G U. Since for each 
uj E U (0 5 j L 2” - l), th e set U - {IQ} is a resolving set of G, it follows that IU’I 5 2k - 2 
and IW’I 2 2. Also, IU’I 2 2” - k 2 2k-’ + 2. Let u’ E U’ and let 

s* = S’ - {u’} = W’ I., (U’ - {u’}) . 

We show that S* is a resolving set. For x, y E V(G) - S, we consider three cases. 

CASE 1. x, y E U. Since r(x 1 S’) # r(y I S’) and d(x,u) = d(y,~~) = 1 for all ‘(L E U’, it follows 
that r(z I W’) # r(y I W’) and so T(X 1 S*) # r(y I S*). 

CASE 2. x, y E W. As before, there are exactly 2k-2 vertices in U that are adjacent to both x 
and y and exactly 2k-2 vertices in U that are adjacent to neither x nor y. Hence, there are exactly 
2(2k-2) = 2”-l verticesuinusuchthat d(z,zl) = d(y,u). Since IV’-{u’}l = IU’I-1 >2”-l+l, 
it follows that there exists u* E U’-{u’} such that d(x, u’) # d(y, u”) and so r(x I S*) # r(y I S*). 

CASE 3. One of x and y is in U and the other is in W, say x E U and y E W. Then d(x, u) = 1 
for all u E U’. Since there are exactly 2”-l vertices in U that are adjacent to y and IU’ - {u’}I 2 
2”-’ + 1, there exists u” E U’ - {u’} C S* such that d(y, u”) = 2. So r(x 1 S*) # r(y I S*). 

Thus, S* is a proper resolving subset of S’ and so S’ is not minimal. Therefore, dim+(G) = 

2k -1. 
Finally, we show that res(G) = n - 2 = 2” + k - 2. Let 

where ug = (O,O, . . . (0) and u1 = (O,O, . . . ,O, 1). Since 

r(u0 1 So) = (2,2,. . . ,2,1,1,. . . ,l) = r(u1 I SO), 

where the first k- 1 coordinates are 2 and the remaining 2” -2 coordinates are 1, it follows that SO 
is not a resolving set and so res(G) > ISol + 1 = n - 2. On the other hand, let S = V(G) - {x, y}, 
where x, y E V(G). We consider three cases depending on the location of x and y in W U U. 

(1) If x, y E W, then U c S. Since U is resolving set, S is a resolving set. 
(2) If x, y E U, then W C S. Because W is a basis, S is a resolving set. 
(3) Let one of x and y be in U and the other in W, say x E U and y E W. But then U - {x} 

is a resolving set in S and so S is a resolving set. 

Since every set of n - 2 of vertices in G is a resolving set, res(G) 5 n - 2. Therefore, res(G) = 
n-2=2k+k-2. 1 

There is reason to believe that every pair a, b of integers with 2 5 a 5 b is realizable as the 
dimension and upper dimension, respectively, of some connected graph, but this remains an open 
question. We close with this conjecture. 

CONJECTURE 2.11. For every pair a, b of integers with 2 6 a < b, there exists a connected 
graph G with dim(G) = a and dim+(G) = b. 
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