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SUMMARY

Contingency, the persistent influence of past random
events, pervades biology. To what extent, then, is
each course of ecological or evolutionary dynamics
unique, and to what extent are these dynamics
subject to a common statistical structure? Address-
ing this question requires replicate measurements
to search for emergent statistical laws. We establish
a readily replicated microbial closed ecosystem
(CES), sustaining its three species for years. We
precisely measure the local population density of
each species in many CES replicates, started from
the same initial conditions and kept under constant
light and temperature. The covariation among repli-
cates of the three species densities acquires a stable
structure, which could be decomposed into discrete
eigenvectors, or ‘‘ecomodes.’’ The largest ecomode
dominates population density fluctuations around
the replicate-average dynamics. These fluctuations
follow simple power laws consistent with a geometric
randomwalk. Thus, variability in ecological dynamics
can be studied with CES replicates and described by
simple statistical laws.

INTRODUCTION

Biology has an important historical component. Individual

events can often influence the course of biological phenomena

in a crucial, lasting way. For example, it has been argued that

the impact of a giant meteorite or a series of volcanic eruptions

could have modified our environment and led to massive ex-

tinctions, suggesting that the Earth’s biome could have been

influenced by random geophysical or astrophysical events.

Such historical contingency does not have to be due only to

such extrinsic influences. Stochastic intrinsic events, from

molecular noise leading to genetic mutations to random in-

teractions between different organisms in an ecosystem, can
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change the detailed history of biological evolution (Blount

et al., 2008).

This historical nature of evolution was summarized in a now

famous question: would intelligent humans evolve again if the

tape of evolution could have been rewound and played again

(Gould, 1989)? Because such an experiment is obviously out of

reach, this question quickly became the subject of lively

arguments, with proponents of pure contingency opposing

scientists who point to many cases of evolutionary convergence,

in which different paths, influenced by random events, still lead

to similar outcomes (Morris, 2010). This type of issue seems

to emerge in many sciences, such as ecology, geology, or

economics, that deal mostly with unique temporal progressions

that are impossible to reproduce or observe all over again in

detail. It is possible that, despite all efforts to make these

sciences mathematical, our description of observed long-term

ecological, geological, or economic phenomena will remain

largely narrative, evoking many detailed events that influenced

each particular history (Mrozek, 1968).

There remains, however, the possibility that, even in these

complex systems involving many interacting components,

simple quantitative laws can emerge at some spatial and tem-

poral scales (Bak and Paczuski, 1995). The Gutenberg-Richter

law in geology, which shows that the distribution of earthquakes

follows a simple power-law or scale-free behavior, is a powerful

exampleof suchemergent laws.Accordingly, although theoccur-

rence of an earthquake of a given magnitude at a given time and

place depends on an enormous number of unknown and largely

historical details, the statistical law describing its occurrence is

simple and universal (Carlson and Langer, 1989). Even if detailed

prediction of earthquakes remains beyond reach (especially for

longer time intervals), one can still use this law to prepare for likely

future events. Importantly, the Gutenberg-Richter law has also

been reproduced in laboratory experiments studying ‘‘stick-slip

phenomena,’’ (Bretz et al., 2006) thus contributing to better

understanding of the mechanical origins of earthquakes. Simi-

larly, a seriesof experimentsonchargeddensitywaves,Barkhau-

sen noise in magnets, and other systems leads to the emergence

of a more unifying view of so-called ‘‘crackling noise,’’ of which

earthquakes are only one ofmany examples (Sethna et al., 2001).
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Box 1. The Advantage of Replicate Time Series

Imagine a set of time series for two interacting, hypothetical species S1 and S2 (panel A; for this example, we use n = 19 artificial time series with

known dynamics; for details, see Supplemental Information). Their true density dynamics are stochastic, and they have a slowly changing average.

A central difficulty in ecology is that most time series are unique; they are acquired under conditions that are not readily replicated. Fluctuations,

however, are only well defined with respect to a reference. For example, the so-called interaction matrix B, which describes the correlations in

the density fluctuations of the two species, can be estimated by regression of log(n/nref) at time t + Dt onto log(n/nref) at time t, with n = (nS1
;nS2

)

and nref(t) the reference dynamics (Ives, 1995). For unique time series, one is thus forced to make a guess about nref(t). Common choices include

nref(t) = constant or an exponential trend nref(t) = nref(0)$e�t/t fitted to each time series. We illustrate this usual approach by treating each pair of time

series (nS1
;nS2

) as unique while estimating B (panel B) for the two-species artificial data. Fluctuations of S1 around its fitted exponential trend are

plotted against those of S2 (shown in detail for one pair of time series as the black ‘‘trajectory’’; for other pairs of time series, we only show time points

as gray dots). It is clear that the estimated eigenvectors of B and the corresponding eigenvalues lB deviate substantially from the known true values

(the directions of estimated eigenvectors are shown as brown lines, and 1�lB, which measure the degree of reversion to the mean, are depicted as

brown arrows. The gray lines and arrows correspond to true eigenvectors and eigenvalues).

If, instead, the same data are considered to come from replicate ecosystems, one can properly estimate the reference dynamics, log nref(t), as the

replicate-average dynamics, h log n(t) i (thick red and blue lines, C; shown here with ±1 SD colored areas), yielding much better estimates of the

eigenvectors and eigenvalues of B (green lines and arrows in D). Similar considerations hold true for other dynamical properties, such as the Hurst

exponent (Figure 5A).

Moreover, creating replicate ecosystems offers an alternative perspective on the biological constraints governing ecological dynamics. Variation

between replicates at a single point in time (E) permits estimation of a covariance or correlation matrix (F). For our experimental data, we show

that the eigenvectors of the correlation matrix (which we call ecomodes; Figure 4) stabilize over time and approximate the eigenvectors of the

interaction matrix B (compare, for illustration, the structure of E and F). The corresponding eigenvalues of B closely resemble autoregressive

coefficients, b, describing fluctuations along the ecomodes (Figure 4C).
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The study of the statistical properties of population dynamics

is a good starting point for the search for such emergent laws in

ecology. Time series for populations of interacting species in an

ecosystem often exhibit large temporal variations. Separating

the average behavior from random fluctuations is simply impos-

sible for any single time series (Box 1). Quantitative laboratory

experiments are thus required because they can be performed

in replicate under the same controlled conditions. This type of

experiment, measuring microbial population dynamics in many

replicates of the same ecosystem under well-controlled external

conditions, is the focus of the present work.

Ecosystems that were closed to material transport but open to

energy flow (in particular, illumination allowing for photosyn-

thesis) were first developed as part of space programs with the
goal of providing self-contained and self-sustaining environ-

ments for space travel (Gitelson et al., 2003). For quantitative

laboratory studies of ecological dynamics, microbial closed

ecosystems (CESs) present two main advantages. First, they

can sustain diverse microbial populations for years (Brittain,

1993; FolsomeandHanson, 1986)without the need for continued

supply of nutrients. Supply of nutrients, such as in conventional

chemostat (Becks et al., 2005; Yoshida et al., 2003), periodic

refreshment (Price andMorin, 2009;Warren et al., 2003), or serial

transfer (Buckling and Rainey, 2002) experiments, necessarily

entails the distortion of chemical and spatial interactions, often

at a frequency comparable to the measurement frequency.

Thus, CESs afford the possibility of unperturbed, long, high-

resolution population dynamics measurements under constant
Cell 149, 1164–1173, May 25, 2012 ª2012 Elsevier Inc. 1165
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Figure 1. A Synthetic Closed Ecosystem

(A) Example of a closed ecosystem, held in a fluorimetric cuvette.

(B) Density measurements by selective plane illumination microscopy: combined and expanded blue and green laser beams are focused horizontally by

a cylindrical lens, producing a thin vertical excitation sheet within the (�53 13 1 cm) cuvettes in which CESs are enclosed. Fluorescence emission is collected

from a central part of the light sheet by long working distance objectives (403, E. coli; 103, C. reinhardtii and T. thermophila). Using a dichroic mirror, images of

yellow and far-red emission in the same field of view are obtained to improve discrimination of (A) C. reinhardtii and (C) T. thermophila (top inserts, false colors).

E. coli (B; arrowheads in lower insert) andC. reinhardtii are distinguished by size and brightness in the red emission channel. Direct counting of individuals ensures

linearity between culture density and measured cell numbers averaged over a sliding time window.

See also Figure S1 and Table S1.
external conditions. Second, for closed ecosystems, many

replicate copies can be readily created with the same initial

concentration of nutrients and the same external conditions,

permitting accurate separation of population fluctuations from

average dynamics and the characterization of these fluctuations

in statistical detail (Box 1). Experiments performed for many

copies of microbial closed ecosystems have led us to simple

quantitative laws describing the nature of random fluctuations

in population density.

RESULTS

Our synthetic closed ecosystems consisted of a mixture of three

motile microbial species living in a milliliter-size sealed container

(Figure 1A) kept at a controlled temperature, and they interacted

with the outside environment through absorption of light. The

three species were: (1) the green alga Chlamydomonas rein-

hardtii, (2) the Gram-negative bacterium Escherichia coli, and

(3) the ciliate Tetrahymena thermophila. Inspired by previously

developed laboratory systems (Kawabata et al., 1995; Nakajima

et al., 2009), we chose these three well-studied unicellular

species because each of them is motile, can be grown in defined

axenic media, is genetically tractable, and does not form spores

or cysts. In addition, differences in their sizes, together with the

possibility of introducing genes coding for fluorescent proteins

into their chromosomes, allowed us to image and automatically

count individuals using selective plane illumination microscopy

(Huisken et al., 2004) (Figure 1B). Local densities of the three

species weremeasured accurately and noninvasively for months

with high temporal resolution in a small, nanoliter-size region

inside these containers (see Experimental Procedures; because

the measurements are made on an open subsystem of the larger
1166 Cell 149, 1164–1173, May 25, 2012 ª2012 Elsevier Inc.
CES, ‘‘growth’’ can be a consequence of division, death, and

migrationwithin the CES). Ecosystemswere kept under constant

illumination and temperature and required no further mainte-

nance. Under these conditions, the three species successfully

coexisted in a majority of replicates examined after more than

1,000 days (Figure S1 available online).

A standard view of the ecological interactions taking place in

each CES would be to consider the algae as photosynthetic

biomass ‘‘producers’’ and the ciliates as ‘‘consumers’’ feeding

on bacteria, which, in turn, are ‘‘decomposers’’ of organic debris

(Kawabata et al., 1995). Inspection of CES replicates showed,

however, that this standard view is rather simplistic. First, in

the presence of gravity and thermal convection, each CES

quickly became a heterogeneous ensemble of different ecolog-

ical ‘‘niches.’’ For instance, at the bottom of the containers, we

observed algae living among debris (Figure 2A), or we observed

dense microcolonies of nonswimming bacteria (Figure 2B).

Other population heterogeneities were observed on the con-

tainer walls and at the air-liquid interface. Second, strong pheno-

typic changes were spontaneously taking place in many CESs.

The most notable changes were the appearance of unusually

large T. thermophila, which were able to ingest algae (Figure 2C;

see also Nakajima et al., 2009), and the appearance of filamen-

tous phenotypes of E. coli (Figure 2D), which, similarly to the

microcolonies, escaped predation by ciliates.

Suchphenotypic changes, spontaneousmutations, stochastic

divisions, deaths and disintegrations of cells, as well as chemical

interactions, through which all three species can affect the

growth of others (Matsui et al., 2000; D.R.H. and S.L., unpub-

lished data), are important sources of biological complexity.

Replicate CESs differ qualitatively from each other in the range

and detailed appearance of these events. For each of the
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Figure 2. Idiosyncratic Dynamics in a Complex Ecosystem

(A) Live algae (A; C. reinhardtii) living among debris, mostly algal cell wall residue.

(B) Large, phase-dense T. thermophila (top) eat C. reinhardtii, whereas small ones (bottom) do not.

(C) An E. coli microcolony (B) next to an individual T. thermophila (C).

(D) A mesh of filamentous E. coli (red fluorescence channel).

(E) Population dynamics in our replicate CESs under constant light and temperature. Shown are themean ±bootstrap standard deviation over ecosystemswith at

least weekly measurements (n = 24), as well as data for two replicates (circles and triangles, respectively). Green (A, right axis): C. reinhardtii; red (B): E. coli; and

blue (C): T. thermophila.
systems we could make, at least in principle, a detailed descrip-

tion of the randomevents or fluctuations that are the substrate for

contingency. This historical descriptionwould list eachmicrocol-

ony formation, each phenotypic switching event, or each muta-

tion sweeping the population. Then each of these events could

be analyzed from a molecular or mechanistic point of view.

Statistical Approach: Replicating Ecosystems
Here, we take a different approach to that of historical descrip-

tion and molecular analysis. By creating many replicates of

a simple synthetic CES, we sought to quantitatively characterize

the structure of variability in population dynamics. Replicates of

ecological systems have rarely been used to this end. In one

example, Ramsayer et al. (2012) related variance in stationary-

phase density among sets of replicate single- and two-species

bacterial ecosystems at different nutrient conditions to the

mean density for each condition. The variance of logarithmic

density across replicates exhibited power-law scaling with loga-

rithmic mean density, a phenomenon known as Taylor’s law (see

below; Taylor, 1961). Melbourne and Hastings (2009) studied

variability in the rate at which flower beetles invaded replicate

laboratory ecosystems, showing that the stochastic compo-

nents of their model were insufficient to describe all variability.

Related questions of historical contingency have received

more attention at the level of species composition; much work

has shown that the temporal order in which species are added

to an ecosystem—its ‘‘assembly sequence’’—can affect its final

species composition, dynamics, and other properties (Sait et al.,

2000; Schröder et al., 2005; Jiang et al., 2011).

Variability in population dynamics originates from random

fluctuations around the average population dynamics, which

are in general time dependent. It is important to distinguish the

question of the variability in population dynamics from the usual

issue of reproducibility of experiments. We assessed reproduc-

ibility by comparing the averaged dynamics of different data

sets. Here, local microbial densities in >50 independent repli-

cates of the CES were measured during two independent
experiments, lasting �100 days each, at six measurement

frequencies ranging from nearly daily to once every 8 weeks (Fig-

ure 3). Densities, averaged over systems measured at least

weekly, were found to be almost fully reproducible between

the two experiments within the error of the mean (Figure 3).

But, while different sets of CES replicates exhibit reproducible

average dynamics, the local densities of all three species in indi-

vidual ecosystems fluctuated widely around their slowly varying

replicate averages (Figure 2E), resulting in strong variation from

one replicate to another.

Do the large fluctuations away from the average dynamics

imply that each CES behaves in an idiosyncratic way and that

its dynamics do not share common features with other repli-

cates? Possibly not; common ecological interactions could

affect the dynamics of all replicate ecosystems, leading to statis-

tical structure in the density fluctuations. In order to uncover

such structure, one needs to measure statistical quantities

such as covariance, correlation, and scaling exponents. These

quantities are of fundamental interest and are not the usual ‘‘error

bars.’’ Instead, they describe biological variability, which we

carefully distinguish from the effects of measurement error

and limited sampling (e.g., Figures 3, 4, 5, S2, and S3; Hekstra,

2009).

Variability across Replicate Ecosystems
The availability of detailed time series for replicate systems

allows us to characterize the resulting pattern of variability in

two ways: by studying variation with time and across replicates

(as illustrated in Box 1). To examine the structure of the covaria-

tion across replicates first, we examined the behavior of the

(3 3 3) correlation matrix of logarithmic densities,

Cij
SðtÞ=

CovSðlog ni; log njÞ
sSðlog niÞ$sSðlog njÞ;

in which ni = ni(t) is the density of species i (i = A, B, and C) at

time t and log denotes the natural logarithm. The subscript S is
Cell 149, 1164–1173, May 25, 2012 ª2012 Elsevier Inc. 1167
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Figure 3. Mean Logarithmic Densities Are

Reproducible over Replicate CESs

Shown are mean logarithmic densities per set for

experiment 1 (filled circles; one set of nine repli-

cate CESs measured 4–7 times per week) and for

experiment 2 (open symbols: five sets of eight to

nine systems each, measured at 2 [7], 1 [6], 1/2

[8], 1/4 [9], and 1/8 [>] week�1), with 90%

bootstrap confidence intervals for the mean

(Experimental Procedures).

At the p = 0.05 significance level (not adjusted for

multiple testing, by two-sided test), for 3 out of

36 comparisons (12 time points 3 3 species),

the mean logarithmic densities differ significantly

between the two experiments (n = 9, 15 systems

tested by bootstrapping; time points before

10 days were excluded).
a reminder that we are considering the statistics over replicate

systems. The composition of the three eigenvectors of CS(t)

stabilizes over time (Figure 4A) and is reproducible between the

two experiments (compare circles, triangles, and squares in Fig-

ure 4A). In addition, the corresponding eigenvalues of CS(t) are

stable and well separated after �3 weeks (Figure 4B). In other

words, we can represent observations of log(nA, nB, nC) as clouds

of points, which have their ‘‘orientation axes’’ and their rela-

tive sizes along these orientations, stable in time (cf. Box 1,

panel F). Given this separation and relative stability, we propose

to refer to these eigenvectors, or axes, as ecomodes and classify

them according to their eigenvalues (Figure 4): small (S), medium

(M), and large (L).Wecan nowexamine fluctuations along each of

these ecomodes. The L ecomode represents collective fluctua-

tions of the three species, likely a commonoccurrence in ecosys-

tems (Houlahan et al., 2007). TheM ecomode shows fluctuations

of E. coli opposite to fluctuations of the other two species. The

S ecomode, necessarily, describes the remaining fluctuations,

mostly between C. reinhardtii and T. thermophila.

The L ecomode describes �60% of correlation in logarithmic

population densities (Figure 4B). Because of this dominance of

the L ecomode, species densities in the same ecosystem tend,

at any given moment, to be on the same side of their respective

replicate averages (for example, see Figure 2E). If the L ecomode

had represented all correlation and variance, one would have

seen the densities of the three species in individual CESs fluc-

tuate in lock-step relative to their respective replicate averages.

However, consistent with the nonzero contribution of the M

ecomode (20%–30% of correlation), independent fluctuations,

especially of E. coli, do occur (e.g., in Figure 2E over days

30–60). Interestingly, in a series of independent, exploratory

experiments, we observed that both T. thermophila and

C. reinhardtii strongly suppressed E. coli average densities

in two-species systems relative to single-species systems

(D.R.H. and S.L., unpublished data).

Underlying these ecomodes is an accumulation of variance

across systems, resulting from instantaneous growth rate fluctu-
1168 Cell 149, 1164–1173, May 25, 2012 ª2012 Elsevier Inc.
ations of individual species in individual

ecosystems. To understand this accumu-

lation, we asked how fast density fluctua-
tions along each ecomode tend to revert to the replicate average

(‘‘revert to the mean’’), hlog ni, by calculating autoregressive

coefficients b along each ecomode (Supplemental Information

and Box 1). We found that fluctuations along the S and M ecom-

odes revert to the mean on a timescale t z Dt/(1�b) z 3 and

6 weeks, respectively. For the largest ecomode, b z 1 and t is

very large, allowing variance along the L ecomode to accumulate

throughout each 3 month long experiment. The inclusion of

delayed-interaction terms in thedatadescriptiondoesnot change

our conclusions (see Extended Experimental Procedures).

The ecomode structure in the covariance across replicates

shows a striking and nontrivial relationship with the covariation

of species densitieswith time. Covariation across time is conven-

tionally analyzed by estimating the species interaction matrix, B

(Ives et al., 2003), which describes the short-term (here, weekly)

structure of simultaneous growth rate fluctuations of the different

species (illustrated in Box 1). Remarkably, for our data, the

ecomodes resemble the eigenvectors of the interaction matrix

quite accurately, and the ecomode autoregressive coefficients b,

considered above, accurately match the eigenvalues of the

interaction matrix, B (Figure 4C). In other words, one could,

surprisingly, learn about the interactions between the species

within ecosystems by studying the differences in observed

species densities among replicates at a single point in time or

vice versa. This is by no means a necessary outcome. For

example, long-term correlations or periodicity in growth rate fluc-

tuations could have dominated the long-term covariance across

replicates and led to a different outcome (for more detail, see the

Extended Experimental Procedures). The possibility of a close

correspondence between ecomodes and the eigenvectors of

the interaction matrix is implied by previous theoretical work

(Ives, 1995; Ives et al., 2003). However, to our knowledge, this

is the first experimental demonstration of this correspondence.

Properties of Temporal Fluctuations
The fact that, on the timescale of the experiments, the fluctua-

tions along the L ecomode do not revert back to the mean is
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(A) Composition of ecomodes, the eigenvectors of the correlation matrix CS, was determined at weekly time points and associated between subsequent time

points based on similarity (inner products). Shown for experiments 1 (circles: n = 9) and 2 (triangles: measured once or twice per week, n = 15; squares at day 62:

for CESs measured once per 4 or 8 weeks, n = 17). Ecomodes are labeled L, M, and S according to their corresponding eigenvalues in (B). Within the shaded

areas, eigenvalues are not clearly separated and ecomodes are hence poorly defined. Green, C. reinhardtii; red, E. coli; blue, T. thermophila; species names

added for clarity.

(B) Dynamics of the eigenvalues ofCS in experiments 1 and 2 (symbols as in A). Eigenvalues are labeled L (large, black), M (medium, cyan), and S (small, magenta).

Error bars indicate bootstrap standard errors.

(C) Autoregressive coefficients bmeasured along ecomodes closely match the eigenvalues of the interaction matrix B. Estimation of B (here with Dt = 1 week) is

illustrated in Box 1 and explained in the Supplemental Information. Shown are isoprobability contours as well as means and SEs, all obtained by bootstrapping.

See also Figure S2 and Table S2.
a telltale sign of nonstationarity. Such nonstationarity can limit

the long-term predictability of ecological dynamics. Character-

izing this nonstationarity, we found that growth rate fluctuations

of each species display little memory and have fairly stable vari-

ance (Figure S3). These observations imply that the population

dynamics of all three species in individual ecosystems should

approach a ‘‘geometric random walk’’ (log n presents random

walk behavior) around the replicate-average dynamics (Herrn-

dorf, 1984; Niwa, 2007).

For such random walks, one also expects that the size of log-

arithmic density fluctuations, sðDlog n� Dhlog niÞ, as a function

of time interval Dt, should grow as a power law DtH, with the so-

called Hurst exponent (Feder, 1988) H = 1/2 in the absence of

measurement error. Thus, a plot of the logarithm of the size

of fluctuations, logðsðDlog n� Dhlog niÞÞ, against the logarithm

of Dt should yield a straight line with slope H. From Figure 5A

we can see that, indeed, each species quite closely follows

power-law behavior expected for random walks (estimated

exponents are somewhat smaller than 1/2 in the presence of
measurement error; see Extended Experimental Procedures).

In addition, we confirmed this geometric random walk behavior

by performing high temporal resolution density measurements

on a single replicate CES over an extra 8weeks (data not shown).

The power spectrum, S, of the acquired logarithmic density time

series exhibited a power-law decay with temporal frequency f,

i.e., SðfÞff�a, with the exponent a close to 2, as expected for

random walks (Figure 5B).

Remarkably, temporal dynamics of population densities dis-

played an additional type of scaling. Density fluctuations, Dn,

themselves scale with mean density with an exponent, b, close

to 1, providing a dynamical example of Taylor’s law (Figure 5C;

Eisler et al., 2008; Taylor, 1961). This implies that the size of fluc-

tuations in log n depends only very weakly on density (to see

this, note that Dlog(n) z Dn/n, so fluctuations in log n scale as

nb�1 z n0). This observation suggests that it is the growth rate

fluctuations of the whole measured population that dominate

variability, rather than the combination of many individual-level

fluctuations (which would lead to an exponent, b = 1/2, as
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Figure 5. Scaling of Density Fluctuations with Time and Density

(A) The size of density fluctuations scales with time lag Dt as sðDlog n� Dhlog niÞfDtH, with Hurst exponent H. Scaling is compared to synthetic random walks

with the same observed growth rate fluctuations, measurement schedule, and measurement error (colored areas, ±1 SE of the least-squares fit). Scaling in the

absence of growth rate fluctuations is indicated in gray for T. thermophila (not shown forC. reinhardtii and E. coli, for which it is smaller). Estimates ofH are 0.45 ±

0.03 for C. reinhardtii, 0.34 ± 0.06 for E. coli, and 0.28 ± 0.06 for T. thermophila. Deviations from 0.50 are due in large part to their sensitivity to measurement error

(Supplemental Information).

(B) Power spectra for log n in a single closed ecosystem during days 122–175, based on continuous density measurements. Where power exceeds counting

noise, it scales with frequency (black regression lines, 1/4 SðfÞff�a). Gray lines: 95% level and median measurement error. Estimates of a are 1.95 ± 0.08 for

C. reinhardtii, 2.27 ± 0.13 for E. coli, and 1.78 ± 0.30 for T. thermophila.

(C) Density fluctuations scale with density. Mean (linear) density, n= 1=2ðnðt +DtÞ+ nðtÞÞ, and change in density,Dn= nðt +DtÞ � nðtÞ, were determined for pairs of

density measurements Dt = 1 week apart (n = 279, first week excluded) and binned by n. Shown is sðDnÞ, with SE, versus n, before (open circles) and after (filled

circles) correction of Dn for the change in replicate average, Dhni. Gray lines: expected contribution of measurement error.

Green,C. reinhardtii; red, E. coli; and blue, T. thermophila. Estimates of the scaling exponent, b, are 1.03 ± 0.06 forC. reinhardtii, 0.99 ± 0.06 for E. coli, and 0.79 ±

0.05 for T. thermophila. See also Figure S3.
seen in the addition of independent random variables). We

emphasize the difference with the common ‘‘static’’ version of

Taylor’s law, which describes the scaling of the variance of

density or abundance, rather than that of density fluctuations,

with mean density (Eisler et al., 2008).

Without the possibility of creating and controlling ecosystem

replicates, it is difficult to quantitatively address fundamental

questions, for example, the question about the relative role of

endogenous and exogenous factors (Ives et al., 2003;Melbourne

and Hastings, 2009) (often, for instance, the weather). In our

CESs, differences in seal quality between replicate ecosystems

unexpectedly already provided a hint of such an approach.

Residual gas exchange through the seal resulted in a tiny but

measurable loss of water (<0.1 mg/day; Figure S2A), explaining

some variation in species densities across CESs (Figure S2B).

Resulting variation among replicates aligns mainly with the large
1170 Cell 149, 1164–1173, May 25, 2012 ª2012 Elsevier Inc.
ecomode (L; Figure S2C). Although more systematic studies

are needed, this observation suggests that variation along the

large ecomode reflects variation in the availability of a resource

affected by residual gas exchange (e.g., carbon dioxide).

Removal of this exogenous factor in the statistical analysis did

not significantly change the nature and dynamics of the

observed three ecomodes (Figures S2D and S2E).

DISCUSSION

It is difficult to imagine how ecological observations and

measurements performed outside of the laboratory could allow

us to systematically address the problem of contingency, i.e.,

long-lasting dependence on past random events. Even for mea-

surements performed in conditions carefully selected for their

similarity (e.g., on islands with similar biogeographical and



climatic conditions), one can never be sure that the observed

variability did not originate in interactions with an unknown

component or in some extrinsic perturbations that were present

for some of the measurements and not for the others. (We note

that this makes observed cases of ecological convergence

[Losos and Ricklefs, 2009] all the more striking.)

On the other hand, creation of easily replicated microbial

closed ecosystems with well-controlled initial and external

conditions allowed long-term measurements of the dynamics

of interacting populations with reproducible average dynamics.

This led us to establish two simple statistical results describing

the nature of random fluctuations around the average dynamics.

First, despite wide variations of the population dynamics in

individual systems around their mean and an increase of vari-

ance with time, the variations of the three species were corre-

lated. Well-defined ecomodes that describe these correlations

emerged and stabilized after an initial period of about 3 weeks.

The existence of these ecomodes reflects the fact that fluctua-

tions of the three species’ densities around the replicate-average

dynamics are coupled through ecological interactions that are

common to all replicates. Second, despite the large complexity

of biological phenomena observed in individual ecosystems, it

was, remarkably, possible to describe the resulting fluctuations

in population dynamics by simple quantitative laws. Specifically,

local population dynamics displayed power-law behavior close

to a geometric random walk around the average dynamics.

Underlying these random walks is a single dominant ecomode,

along which density fluctuations do not revert to the mean.

It would be intriguing to see whether these results are of

a general nature. For instance, geometric random walks and

dominant collective modes have been observed in historical

time series generated by multiplicative, noisy processes, such

as finance (Laloux et al., 1998; Mantegna and Stanley, 1999),

which suggests the possibility of common underlying mecha-

nisms and the development of ecological theory. In particular,

a system undergoing a random walk is clearly contingent; the

effects of some random events do not die away exponentially

fast, as in stationary processes, but instead they persist. At the

same time, these effects are not amplified exponentially, as is

the case for chaotic systems (Kantz and Schreiber, 2004).

Ecological and evolutionary dynamics can take place on similar

timescales (Yoshida et al., 2003). It is tempting to speculate

that contingency is a consequence of underlying genetic and

phenotypic change in a multispecies ecosystem and, in turn,

affects these processes, as populations modify each other’s

environment.

On the other hand, recently observed extreme repeatability of

temporal dynamics and spatial patterns in similar experiments

involving long-term single-species dynamics (Frentz et al.,

2010) shows that the number of interacting components, the

nature of their interactions, or the details of starting or external

conditions may play a crucial role (cf. Jiang et al., 2011). It is

very likely that emergent ecological laws will not be as simple

as the Gutenberg-Richter law that describes the distribution of

earthquakes. However, it is our view that, by introducing and

quantitatively analyzing the effects of physical and genetic

perturbations and by modifying the composition of the CESs,

one should be able to probe the underlying sources and conse-
quences of contingency and determine to what extent the

uncovered quantitative laws for ecological fluctuations are

universal.

EXPERIMENTAL PROCEDURES

Strain Construction

E. coli MG1655 Dflu DfimA attHK022::(cat PlR-dTomato) hsdR514 was con-

structed in two steps. (1) flu, the gene for the Ag43 cell-cell adhesion protein

(Hasman et al., 2000) and fimA, encoding the structural unit of fimbriae

(Hasman et al., 2000), fimA, were deleted by P1 transduction from Keio-

collection deletion strains (Baba et al., 2006) to an MG1655 recipient. After

the first transduction, the kanamycin marker was removed (Baba et al.,

2006). hsdR514 was cotransduced from the donor strain and retained as

a marker. (2) pZS* (attHK022) 3R dTomato was constructed by insertion of the

dTomato open reading frame (ORF) (Shaner et al., 2004) between KpnI and

HindIII restriction sites of a pZS* plasmid (Lutz and Bujard, 1997) containing

a phage HK022 attachment site. After excision of the origin of replication,

a (cat PlR-dTomato) fragment was integrated at the chromosomal att site

(Haldimann and Wanner, 2001) in MG1655. The (cat PlR-dTomato) fragment

was then P1 transduced to the strain resulting from step (1). No loss of fluores-

cent marker was observed after 200 days.

Chlamydomonas reinhardtii strain UTEX 2244 (mt+, UT Austin Cul-

ture Collection) is naturally fluorescent (chlorophyll). Construction of

T. thermophila H3.2-EYFP followed (Liu et al., 2004), except that the somatic

rescue plasmid contained the wild-type HTT2/HHF2 locus with a 6 amino

acid linker (DPPVAT) and the EYFP-coding sequence, derived from pYFP-

URA3 (Gerami-Nejad et al., 2001) and inserted into HHT2 before its stop

codon. The fluorescence marker was stable during 16 months of monthly

subculture.

Ecosystem Construction

Single-species cultures were grown to late exponential phase for C. reinhardtii

in Tris-acetate-phosphate (TAP) (Volvocales Information Project, http://www.

unbf.ca/vip/), T. thermophila in supplemented proteose peptone (SPP) (Asai

and Forney, 2000), and E. coli in 1/23 Taub #36 with 0.03% proteose peptone

number 3 (Taub medium; Taub and Dollar, 1964). Cultures were tested for

purity by visual inspection and plating on four solid media and were washed

twice in Taub medium. Glassware for preparation of Taub medium and fluori-

metric cuvettes (Special Optical Glass, Starna Cells), in which systems were

kept, was cleaned in R10% HNO3 at least overnight, rinsed in ddH2O, rinsed

three times with isopropanol (or kept over boiling 200 proof ethanol), rinsed

with ddH2O, and autoclaved. From a master mix of Taub medium with

5,000 ml�1 C. reinhardtii, 500 ml�1 E. coli, and 50 ml�1 T. thermophila, 3 ml

was pipetted into each cuvette, and cuvettes were sealed by tightening the

screw caps. In the first experiment, 11 systems were constructed, and in 9

of those systems, densities were measured. In the second experiment,

5 sets of 10 ecosystems were constructed (systems losing >0.1 mg/day water

were excluded from analysis; loss rates were stable over time; Figure S2A).

Ecosystems were kept in sample stands at 1,200 lux ± 10% (white BW03

light-emitting diodes [LEDs], Lumileds; temporal variability <1%, homoge-

nized using two diffusive screens), and 23.1�C ± 0.1�C (max. DT <80 mK

within and between sample locations). Long-term coexistence was assessed

visually on an inverted microscope and (experiment 1) by subculturing and

plating on solid media.

Selective Plane Illumination Microscopy

The principle of selective plane illumination microscopy (SPIM) is illustrated in

Figure 1B. Beams from 473 nm (Lasever, 20 mW) and 532 nm (AOTK, 50 mW)

diode-pumped solid state (DPSS) lasers were combined into a single beam

using a 495 nm long-pass dichroic that was expanded by a 103 beam

expander (Newport), constricted using an 8 mm diameter iris, and focused

by a cylindrical lens (f = 80mm, Thorlabs) with antireflective coating. Electronic

shuttering was performed using a Pockels cell with integral polarizer (ConOp-

tics), yielding an extinction ratio of �2003. Fluorescence emission was

collected centrally, 5 mm below the meniscus, by using, for C. reinhardtii
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and T. thermophila, a 103 infinity-corrected CF Plan Mitutoyo objective

(nominal NA = 0.30, working distance = 16.5 mm) and, for E. coli, an M Plan

403 ELWD Nikon objective (nominal NA = 0.5, working distance = 11 mm).

Objective position was controlled using Mitutoyo linear stages. Light from

the 103 objective was split by a 45� 660 nm long-pass dichroic. Objectives

were used at reduced tube length (from base of the objective to camera),

yielding effective magnifications of 153 and 63, respectively. Red fluores-

cence emission was collected on an uncooled Retiga EXi camera (QImaging)

with D620/60 emission filter. Yellow and far-red emissions were collected on

CV-M10SX cameras (JAI) with HQ515/30 and custom 665LP filters, respec-

tively (all filters and dichroics: Chroma Technology).

On measurement days, each cuvette was placed in the SPIM, flow was

allowed to subside for R3 min, and images were taken at �1.2 Hz with an

exposure time of 35 ms (between acquisitions, the sample was illuminated

with white light as in the sample stands). The temperature in the SPIM was

25.5�C. A typical measurement consisted of 2,000–5,000 images (30–60 min).

Image and Statistical Analysis

Objects in images were identified in ImagePro Plus 4.5 (Media Cybernetics),

and object properties were written to file. Additional thresholds were applied

in Matlab 6.1 (Mathworks). Thresholds were validated by inspection of perfor-

mance on images acquired frompure andmixed cultures. All density estimates

are based on averages over thousands of images. When considering log n,

0 counts were replaced by half counts. The null model for measurement error

(dominated by serial correlation between counts [Hekstra, 2009]) assumes that

individuals enter the field of view independently at a rate that is proportional to

their local density and that they leave it at a constant rate. The model (Hekstra,

2009) approaches a Poisson distribution for total counts over time windows

larger than a few seconds for an effective number of samples set by the

average residence time of individuals in the observation volume.

Confidence intervals for most quantities were determined by bootstrapping

(Efron and Gong, 1983) to minimize imposition of statistical structure on the

data. Bootstrapping was performed by resampling with replacement the set

of observed densities at each time point at least 500 (for SE) or 1,000 times

(for 90% confidence intervals). Each bootstrap sample consisted of the

same number of measurements as the data, with measurement error added

by sampling the null model mentioned above. ‘‘Bootstrap standard errors’’

are 15.9%–84.1% confidence intervals and can be asymmetric. To determine

confidence intervals for quantities evaluated over entire time series, the boot-

strapping procedure samples entire time series at once. Exponents were

estimated by ordinary least-squares regression on log-transformed variables

and were corrected for bias where necessary (Sprugel, 1983). All operations

were performed in Matlab by using custom scripts.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, three

figures, and two tables and can be found with this article online at doi:10.1016/

j.cell.2012.03.040.
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