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Urbanisation, environmental risks and resource scarcity are but three ofmany challenges that citiesmust address
if they are to become more sustainable. However, the policies and spatial development strategies implemented
to achieve individual sustainability objectives frequently interact and conflict presenting decision-makers a
multi-objective spatial optimisation problem. This work presents a developed spatial optimisation framework
which optimises the location of future residential development against several sustainability objectives. The
framework is applied to a case study overMiddlesbrough in theNorth East of theUnitedKingdom. In this context,
the framework optimises five sustainability objectives from our case study site: (i) minimising risk from heat
waves, (ii) minimising the risk from flood events, (iii) minimising travel costs to minimise transport emissions,
(iv) minimising the expansion of urban sprawl and (v) preventing development on green-spaces. A series of
optimised spatial configurations of future development strategies are presented. The results compare strategies
that are optimal against individual, pairs and multiple sustainability objectives, such that each of these optimal
strategies out-performs all other development strategies in at least one sustainability objective. Moreover, the
resulting spatial strategies significantly outperform the current local authority strategy for all objectives with,
for example, a relative improvement of up to 68% in the performance of distance to CBD. Based on these results,
it suggests that spatial optimisation can provide a powerful decision support tool to help planners to identify
spatial development strategies that satisfy multiple sustainability objectives.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Urban planning is being challenged by multiple drivers, including
rising populations, increased frequency of extreme events and actions
to decarbonise economies to mitigate against a changing climate. By
2030 it is estimated that 60% of the world's population will reside in
urban areas, up from just over 50% at present (UNFPA (United Nations
Population Fund), 2011). This increased urban population will increase
risks to natural hazards over the next century and these will be
compounded by extreme events that are expected to increase in
frequency as a result of changes in sea level, precipitation, temperature
and other climate phenomena (Dawson, 2007; Hunt & Watkiss, 2011;
IPCC (International Panel on Climate Change), 2013). However, urban
areas are major drivers of climate change, directly or indirectly produc-
ing 71% of global carbon emissions (IEA (International Energy Agency),
2008) and are seen as ‘first responders’ at reducing energy and resource
usage to mitigate further climatic change (Reckien et al., 2014;
Rosenzweig, Solecki, Hammer, & Mehrotra, 2010).

Addressing these drivers of change, and other issues of sustainability
more generally, has potential to lead to conflicts and trade-offs as even
. This is an open access article under
well intended interventions in one sector can have undesirable impacts
on other sectors (Dawson, 2011;Mcevoy, Lindley, &Handley, 2006). For
example in the last decade the paradigm for spatial planning policy in
Europe has focused almost exclusively on mitigation of GHG emissions
through urban intensification (Biesbroek et al., 2010) as denser cities
are typically associated with lower transport energy use (Newman &
Kenworthy, 1989; Williams, Burton, & Jenks, 2000). However urban in-
tensification has been found to exacerbate urban heat islands, increase
flood risk by reducing surface permeability and lead to poor health out-
comes for residents (Dawson, 2007; Holderness, Barr, Dawson, & Hall,
2013; Hunt &Watkiss, 2011;Melia, Parkhurst, & Barton, 2012). Further-
more, analysis by Echenique, Hargreaves, Mitchell, and Namdeo (2012)
suggest that compact city development results in onlyminor reductions
in travel distances and that these benefits were often outweighed by
loss of housing choice, increased crowding and congestion. It is there-
fore essential that spatial planners avoid making assumptions about
the relativemerits of compaction and dispersion, and consider evidence
about the performance of multiple sustainability objectives, over short
and longer timeframes (Campell, 1996; Dawson, 2011).

In the UK, andmany other countries, sustainability appraisals within
the planning process typically consider these issues in a highly subjec-
tive manner with little analytical consideration of the evidence,
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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trade-offs and potential synergies between objectives (Gibson, 2006).
Traditionally spatial planning decisions have been taken on the basis
of ‘satisficing’ (Simon, 1996) i.e. selectingplanswhich exceed an accept-
ability threshold for planning objectives. However, there is a growing
body of work that has demonstrated the effectiveness of spatial optimi-
sation techniques to plan infrastructure, such as water distribution
networks (Fu, Kapelan, Kasprzyk, Reed, & Asce, 2013; Keedwell & Khu,
2005; Prasad & Park, 2004; Vamvakeridou-Lyroudia, Walters, & Savic,
2005), and transport networks (Bielli, Massimiliano, & Carotenuto,
2002; Delme, Li, & Murray, 2012; Shimamoto, Murayama, Fujiwara, &
Zhang, 2010) as well as within land use planning applications (Balling,
Taber, Brown, & Day, 1999; Liu et al., 2015; Loonen, Heuberger, &
Kuijpers-Linde, 2007; Stewart & Janssen, 2014). Indeed at the scale on
entire urban systems, spatial optimisation has been employed to success-
fullymaximise land use compatibility (Cao et al., 2011; Khalili-Damghani,
Aminzadeh-Goharrizi, Rastegar, & Aminzadeh-Goharrizi, 2014;
Ligmann-zielinska et al., 2005) and in design spatially optimal compact
cities (Ligmann-zielinska, Church, & Jankowski, 2005).

Over several decades a number of optimisation algorithms have
been adapted and developed for use in the spatial design and planning
of infrastructure and urban systems, ranging from the use of relatively
simple approaches such as gradient-based and Tabu local search
methods (Costamagna, Fanni, & Giacinto, 1998; Jaeggi, Parks,
Kipouros, & Clarkson, 2008), through to more complex approaches
such as genetic algorithms, which mimic evolutionary operators over
a set of solutions to search for optimal solutions to a problem (Konak,
Coit, & Smith, 2006; Xiao 2008), particle swarm optimisation which
guides a series of solutions through the variable space mimicking the
way organisms naturally swarm (Coello, Pulido, & Lechuga, 2004; Poli,
Kennedy, & Blackwell, 2007) and ant colony optimisation, which iden-
tifies best paths to optimal solutions (Dorigo & Blum, 2005; Yu, Yang,
& Xie, 2011); approaches that have been applied to land use allocation
studies (Aerts, Eisinger, Heuvelink, & Stewart, 2003; Arthur & Nalle,
1997; Cao, Huang, Wang, & Hui, 2012; Chuvieco, 1993; Liu, Li, Shi,
Huang, & Liu, 2012; Liu et al., 2015; Masoomi, Mesgari & Hamrah,
2013; Qian, Pu, Zhu, & Weng, 2010; Stewart, Janssen & Herwijnen,
2004).

However, to date the use of spatial optimisation to tackle multiple
real world sustainability objectives from a broad spectrum of long-
term sustainability issues (risk prevention, mitigation of transport
Fig. 1. The case study area of Middle
emissions etc.) in applications that closely resemble the planning deci-
sions faced in the future with regard to sustainable development of
urban systems has been somewhat limited (Keirstead& Shah, 2013). In-
deed previous research has primarily focused on obtaining optimal land
use allocations (Cao et al., 2012; Qian et al., 2010), but in the absence of an
appreciation of real-world risks faced byurban systems in the future, such
as climate change induced heat and flood hazards (Reckien et al., 2014).

To address this sparsity in the evaluation of multiple real world sus-
tainability objectives within the spatial planning of new development
this work develops a spatial optimisation framework based around
resource allocation; an approach that complements the ‘evolutionary’
approach ‘to planning sustainable urban areas’ (Ligmann-zielinska
et al., 2005). The framework is novel in that it couples simulated anneal-
ing, an approach that has been found to be computationally efficient for
high-dimensional spatial optimisation problems (Duh & Brown, 2007)
and a proven ability in resource applications (Aerts & Heuvelink,
2002; Sidiropoulos & Fotakis, 2009), with Pareto-optimisation (Xiao,
Bennett, & Armstrong, 2007), such that comparisons can be undertaken
rapidly and in a straight forward manner between the optimal spatial
solutions found for different combinations of multiple sustainability ob-
jectives. A case study, applied toMiddlesbrough Borough Council a local
authority area in the North East of England (Fig. 1), demonstrates how
spatial Pareto-optimisation based on a simulated annealing framework
(Kirkpatrick, Gelatt, & Vecchi, 1983) can be employed to derive spatial
development patterns that are sensitive to climate induced hazards
such as heat and flood whilst accounting for current planning policies
that seek to avoid fragmented urban growth and development on
green space. This multi-objective spatial Pareto-optimisation approach
comprises three main steps:

(i) Define the set of sustainability objectives that are to be optimised
within the framework (Section 2.1);

(ii) Apply a simulated annealing algorithm to generate spatial
configurations of new development that meet the sustainability
objectives (Section 2.2);

(iii) Use a sorting procedure to extract the Pareto-optimal sub-set of
solutions that perform better than all tested solutions in at least
one of the sustainability objective outlined (Section 2.3).

Section 3 presents the results of a case study inMiddlesbrough in the
UK, identifying optimal locations of development before outlining the
sbrough within the Tees Valley.
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main conclusions and implications of the work. Lastly Section 4
concludes the paper and summarises the findings.
2. Methodology

2.1. Selection and parameterisation of sustainability objectives

An extensive review was undertaken of the spatial planning and
urban sustainability academic literature (for example Melia et al.,
2012, Carter, 2011; Hunt & Watkiss, 2011), sustainability appraisals
and the approaches employed for development plans within the UK
(including DCLG (Department for Communities and Local Government),
2008 and GLA (Greater London Authority), 2011) and internationally
(including American Planning Association, 2000 and City of Sydney,
2011). From this review, five sustainability objectives were selected
on the basis that they (i) they were frequently used, (ii) covered a
wide range of sustainability issues, including risk prevention as well
as typical energy mitigation objectives, and (iii) data was available for
spatial parameterisation within the optimisation framework. The
selected objectives are:

1. Minimising risk from future heat waves: Policy appeared in 40% of
sustainability appraisals reviewed, and is prioritised by national
governments, including the UK (Defra, 2012).

2. Minimising the risk from future flood events: Avoiding appropri-
ating new development in areas that are at risk of future flooding
was highly prioritised by 70% of sustainability appraisals reviewed
and a priority policy for the UK government (Defra (Department
for Environment, Flood and Rural Affairs), 2010).

3. Minimise travel costs to minimise transport emissions: All
sustainability appraisals reviewed stated this as a high priority
sustainability objective, which in turn reflects the high priority of
Fig. 2. Input datasets for the parameter
mitigating emissions from private transports (GLA (Greater London
Authority), 2011).

4. Minimise the expansion ofurban sprawl: Expansion of urban limits
has been found to increase travel costs and its prevention is a nation-
al priority through policies encouraging development of previously
developed sites within existing urban areas (DCLG, 2012).

5. Preventing development of green-space: Appears as a sustain-
ability objective in 80% of sustainability appraisals reviewed,
which include the protection of biodiversity and urban
greening.

Fig. 2 presents the input raster datasets for the parameterisation of
the sustainability objectives outlined which are at a 100 metre spatial
resolution and were pre-processed using the ArcMap 10.1 software
package. Objective 1 is achieved by preventing high densities of popula-
tion in areas expected to have high incidences of heat waves in the
future. The framework intends to minimise the objective function fheat
characterised by the increase in heat risk in the future relative to the
baseline date:

Minimise f heat ¼
X

HFuture
ij −

X
HCurrent

ij

where Hij
Future and Hij

Current are defined as being the cross product of the
probability of a heat hazard event (hij) occurring at a particular location
(i , j) and its corresponding population vulnerability,vij, expressed
in terms of population density (people per-hectare). As development
sites, dij, are assigned spatially, the calculation of Hij

Future is updated
at each iteration of the optimisation to account for the new calculation
of vij due to the increase in population density associated with the
spatial arrangement of dij∈D, where D is a collection of dij constituting
a development plan. Heat hazard, hij, in Fig. 2a was sourced from
spatially disaggregated 2020 heat wave frequency projections using
medium emission UKCP09 climate projections (Jones, Kilsby, Harpham,
Glenis, & Burton, 2009), whilst vulnerability, vij, in Fig. 2b was
isation of sustainability objectives.



Fig. 3. Flow diagram of the simulated annealing approach to spatial optimisation.
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represented by population density (per-hectare) derived from England
and Wales (UK) 2011 census data (ONS (Office of National Statistics),
2012) at the lower super output area level (a spatially variable census
zonal geography that represents on average 309 people). Objective 2
was optimised on the basis of minimising the objective function
fflood which is characterised by a proportional risk assessment of
developmentwithin 1 in 100 and 1 in 1000yearflood zones represented
as:

Minimise f flood ¼ 100
X

dij ¼ Zij
� �þ 10−1

X
dij ¼ zij
� �

where Z and z are spatial grids representing 1 in 100 and 1 in 1000
flood zone extents respectively. Flood zones shown in Fig. 2c were
sourced from the UK's Environmental Agency's (EA) Flood zone maps.
Objective 3 was realised through optimising an accessibility measure
to areas of employment and services, namely distance of new develop-
ment to the current Central Business District (CBD) with the reduction
of commuting acting as a proxy for reducing transport emissions. An ac-
cessibility measure is used as they have been reported to be more
strongly related to vehicle miles travelled than other measures such as
compaction (Ewing&Cervero, 2010). The optimisation attempts tomin-
imise the objective function fdist which is expressed by the average
shortest path, P( ), between proposed development sites, dij, and a
point designated as a CBD centroid, cij, over a road network, R:

Minimise f dist ¼ Min P dij; cij;R
� �

∀cij∧dij∈D
� �

:

Middlesbrough's CBD, cij , was represented by centroid of
Town Centre Boundary as defined by Middlesbrough Council's
Local Development Framework whilst the road network was
represented by all major roads in the Ordnance Survey (the
UK's national mapping agency) Meridian 2 dataset (Fig. 2d). Ob-
jective 4 was optimised on the basis of ensuring that new devel-
opment is within existing urban borders,uij, and characterised
by the objective function fsprawl:

Minimise f sprawl ¼
X

dij≠uij∀dij∈D :

The current urban extent, Fig. 2e, was extracted and rasterised
from Ordnance Survey Meridian 2 Developed Land Use Areas
(DLUA). Lastly objective 5 was achieved through imposition of a spa-
tial constraint on the selection of solutions in the form of
dij≠gij∀dij∈D, where gj are the spatial locations (cells) of green
space (see Fig. 2f). Greenspace in Middlesbrough,gij, was extracted
from Ordnance Survey MasterMap topographic data with Natural
theme.

2.2. Simulated annealing approach to spatial optimisation

Simulated annealing is a probability approach that intelligently
searches iteratively for optimal solutions for a particular acceptance
criteria (Kirkpatrick et al., 1983). It has been used for several spatial op-
timisation problems, including resource allocation, (Aerts & Heuvelink,
2002), ground water allocation (Sidiropoulos & Fotakis, 2009) and
spatial allocation (Duh & Brown, 2007). Fig. 3 shows the structural
components of the simulated annealing algorithm used in this study
to simultaneously optimise the outlined objectives and generate the
list of potentially optimal solutions (Sb). The procedure begins with an
assumed initial spatial configuration of new development, D (in this ex-
ample the current development plan, Fig. 4a, is used). Each configura-
tion, Dn, is evaluated against the objective functions outlined in the
previous sections to give associated performance scores, fn (which com-
prises fheat, fflood, fdist, fsprawl) and the best score at thenth simulation, fb. To
generate a new spatial development configuration, Dn+1, an existing
development site dij∈Dn is moved randomly within an 8-cell Moore
neighbourhood. All superior solutions, Db, are added to the solution
list, Sb, but inferior solutions can be accepted on the basis of the
Thermopolis equation:

e−Δ=T N R 0;1ð Þ ð1Þ

where Δ is the difference between fn and fn+1, whilst ℝ represents a
real number between 0 and 1. This prevents the algorithm converging
on local optima by encouraging the evaluation of a wide range of spatial
development patterns. At the end of each iteration the temperature
variable, T, is decreased by a cooling factor C:

Tiþ1 ¼ Ti � C ð2Þ

where 0bCb1 (in many simulated annealing applications C is set
between 0.8 and 0.98 (Aerts & Heuvelink, 2002)). As T decreases,
Eq. (1) restricts the acceptance of solutions to help convergence on
a global optimal solution across the entire range of possible spatial de-
velopment patterns. The algorithm is repeated until T Tend, and this
process is then repeated for a user defined number of iterations, m.
Throughout the operation a best performing development pattern and
associated performance score is retained as Db, fb which replaces Dn

and fn at the start of each iteration. This aids convergence to a globally
optimum best performing spatial configuration as the algorithm can
move from an already known optimal spatial layout. For the application



Fig. 4. a) Middlesbrough Council's own development plan (Middlesbrough Council, 2013) and b) optimised spatial plan of residential development found by the simulated annealing
algorithm.
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the framework was run with the following parameters: T = 1.0100,
Tend = 0.01, C = 0.85 and m=150, and took 5 h and 12 min to run.

Fig. 4 demonstrates the best performing optimised spatial
plan based on normalised objective functions (b) compared with
Middleborough Councils' own development plan (a); in this case the
spatial optimised solution performed better in all 4 objectives than the
council plan (for instance reducing fsprawl from 29.6 to 13.0).

2.3. Pareto-optimal extraction

Once Sb has been populatedwith an extensive and diverse collection
of configurations (s∈Sb), a non-dominated sorting based onMishra and
Harit (2010) was applied to extract the set of Pareto-optimal solutions;
an approach that has been used extensively in the engineering opti-
misation, including water distribution systems (Fu et al., 2013;
Vamvakeridou-Lyroudia et al., 2005) land use allocation (Cao et al.,
2011; Jiang-Ping & Qun, 2009) and risk mapping (Woodward,
Kapelan, & Gouldby, 2013). The strength of this approach is that it pro-
vides planners with a wide choice of known best trade-off solutions to
choose from, as opposed to a single optimal solution based on a set of
pre-defined priorities or weights (Jiang-Ping & Qun, 2009). This has
the advantage that the results are independent of any prior subjective
preferences which have the potential to be error prone and lead to erro-
neous conclusions. Rather, the Pareto-optimal results provide optimal
quantitatively characterised result-set vectors from which particular
solutions can be objectively selected (Deb, 2001).

For a set of objective functions, F, Sb is sorted according to the first
objective function, f1∈F. The top solution is popped and recorded in a
non-dominated list, N. Pareto-optimal solutions are determined based
on the concept of domination. For F objective functions a solution s(1)

is said to dominate solution s(2) if:

1. The solution s(1) is no worse than s(2) in all objectives;
f(s(1)) ≤ f(s(2))∀ f ∈ F;

2. The solution s(1) is strictly better than s(2) in at least one objective;
f(s(1))b f(s(2)) for at least one f ϵ F (Deb, 2001).

If a solution, sn, is found to be non-dominated by all solutions in the
non-dominated list p ∈N, it is added to the list. Moreover, if the solution
is found to dominate any p ∈N, the dominated element ofN is removed.
To ensure computational efficiency the procedure is initiated using the
most probable non-dominated solution so that dominated solutions
are realised quicker (Mishra &Harit, 2010). Here, Pareto-optimal spatial
configurations are those where no other spatial configuration performs
better with regard to a combination of frisk, fflood, fsprawl and/or fdist.
Several sets of N were derived. The first set contains multi-objective
Pareto-optimal (MOPO) solutions where F = {fheat, fflood, fdist, fsprawl}, to
identify the best overall set of trade-off configurations that can be
achieved. Further sets of Pareto-optimal spatial configurations were
extracted for different sub-sets of sustainability objectives in order
to demonstrate trade-offs between each combination of pairs of
objectives:

E:g: f heat ; f flood
n o

⊆ F; f heat; f distf g⊆ F…

where, for the example set of { fheat, fflood}, all the solutions contained
within it outperform all other found solutions in at either fheat or fdist
or both. The entire framework was developed using the Python
scripting language whilst the results are visualised in ArcMap 10.1.

3. Results and discussion

3.1. Pareto-optimal fronts between pairwise sustainability objectives

Fig. 5 presents the results of the optimisation framework and shows
the normalised performances of Pareto-optimal fronts and the sub-set
of solutions that are optimal for multiple sustainability objectives
(MOPO). The performance of the current development plan
(Middlesbrough Council, 2013) is highlighted for comparison. Table 1
summarises the statistical properties of each Pareto front, whilst
Table 2 compares the performance of the current development proposal
against optimised solutions, demonstrating the far superior perfor-
mances for sustainability objectives achieved by the Pareto-optimal
spatial configurations. For each objective the optimisation algorithm
is able to find many strategies that improve upon each objective
against the current development plan; the current development
plan is outperformed by 85% of solutions found by the framework
in fheat, 68% in fdist and 88% in fsprawl. Notably, the algorithm is also
able to identify strategies that improve upon the current plan across
all sustainability objectives including a 6% reduction in fheat and 37%
reduction in fdist, whilst not adding further flood risk or encroaching
upon green space. Our results suggest that there is potential to sig-
nificantly improve upon the current plan in the context of these sus-
tainability objectives.

The results demonstrate that there is a clear conflict between fheat
and both fdist and fsprawl whilst planning new residential development
in Middlesbrough. The best performance for fheat, min (fheat)∈Sb,



Fig. 5. Pareto-optimal solutions between sustainability objectives.
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Table 1
Pareto-front statistics.

Conflict No. of pairwise
Pareto-optimal

Min
()

Min
(normalised)

Max Median

55a fheat v
fflood

10 fheat 3574.9 (0) 3737.6 (0.26) 3642.4 (0.11)
fflood 0 (0) 416 (0.46) 288 (0.32)

55b fheat v
fdist

23 fheat 3574.9 (0) 3967.9 (0.63) 3742.9 (0.27)
fdist 2900.5 (0) 4556.6 (0.59) 3487.7 (0.2)

55c fheat v
fsprawl

12 fheat 3574.9 (0) 3879.3 (0.49) 3668.8 (0.15)
fsprawl 3.7 (0) 25.9 (0.5) 14.81 (0.25)

55d fflood v
fdist

10 fflood 0 (0) 512 (0.57) 128 (0.14)
fdist 2900.5 (0) 4084.2 (0.42) 3096.7 (0.01)

55e fflood v
fsprawl

3 fflood 0 (0) 128 (0.14) 96 (0.11)
fsprawl (0) 9.3 (0.13) 5.5 (0.04)

55f fdist v
fsprawl

8 fdist 2900.5 (0) 3827.6 (0.33) 2960.9 (0.02)
fsprawl 0 (0) 18.5 (0.33) 11.1 (0.17)
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comes at a compromise of a normalised value of 0.59 for fdist and 0.5 for
fsprawl. Whilst min(fdist)∈Sb andmin (fsprawl)∈Sb come at a compromise
for fheat with normalised values of 0.63 and 0.49 respectively. The con-
flict occurs because areas close to the CBD and within the current
urban extent have higher population densities, which in turn lead to
higher heat risk. As the CBD is located within the urban extent it is per-
haps surprising that our analysis highlight a conflict between fdist and
fsprawl, with fsprawl = 0.33 for min(fdist)∈Sb whilst fdist = 0.33 for
min (fsprawl)∈Sb. This is caused by the spatial layout of Middlesbrough,
where there are undeveloped areas west of the CBD which are not
within the current urban extent. As a result of these conflicts there are
numerous Pareto-optimal solutions found between these pairs of
sustainability objectives with an outstretched Pareto front showing a
diverse range of possible optimal solutions potentially representing
different priorities (see Fig. 5b, c and f).

In addition,minimising fflood conflictedwithminimising fheat and fdist.
The conflict with fheat occurs as low density areas coincide with flood
risk areas in the north of the study area, whilst the conflict with fdist oc-
curs against due to the presence of several flood zones in close proxim-
ity to the CBD. The conflict between fflood and fsprawl is minor as there are
many areas within the urban extent which are away from flood zone
areas. The periodicity apparent in Fig. 5a, d and e is because flood risk
is parameterised in three discrete values: 1 in 100 floodplain, 1 in
1000 year floodplain and areas of no flood risk. The trade-off curve
that emerges from the optimisation allows a planner to explore the
costs of improving a particular objective. Table 1 compares the extremes
of these trade-offs, for example achieving min (fheat)∈Sb leads to nor-
malised performance in fflood of 0.46.

Interestingly, as shown in Fig. 5 and Table 1, solutions that are opti-
mal for more than one objective seem to generally perform reasonably
well against others. This is especially true in the trade-off curve between
fheat vs fdist and fheat vs fsprawlwith 23 and 12 Pareto-optimal solutions on
their Pareto fronts respectively. For example a spatial configuration is
found which manages to achieve relatively good normalised values of
0.27 and 0.2 for fheat and fdist respectively. Thus, planners selecting any
Pareto-optimal solution would be close to the best trade-off in terms
Table 2
Performance of the best un-weighted Pareto-optimal result against Middlesbrough
Council's development plan.

Middlesbrough
Development
Plan

Best un-weighted
Pareto-optimal
spatial plan (Fig. 3b) % improvement

% solutions found
outperform plan
for objective

fflood 88.0 96 0 0
fheat 3991.8 3777.4 6 85
fdist 4679.3 3407.8 37 68
fsprawl 29.6 13.0 230 88
Green
space

24 0 Na 100
of many other objectives. Although the spread is greater for fheat vs fdist
the majority of these multi-objective Pareto-optimal solutions outper-
form the councils' own development plan.

3.2. Multi-objective Pareto-optimal solutions

Fig. 6 shows the spatial development strategy of the best performing
configurations for each individual sustainability objective in the Pareto-
optimal set, whilst Table 1 shows the performance of each configuration
against the other sustainability objectives. In order to achieve the
best performance in fheat the spatial configuration for min (fheat)∈Sb
(Fig. 6a) is achieved at the expense of locating development outside
the urban extent (negatively affecting fsprawl) and within flood zones
in the north of the study area. Moreover, many optimal solutions have
development sites in the southeast of the study area which significantly
worsens the performance of the configuration in fdist (normalised
performance of 0.59).

The spatial configuration for min (fflood)∈Sb (Fig. 6b) avoids all
floodplain development (i.e. fflood =0), and although this configuration
also performs well against fsprawl, it does not perform particularly well
against fdist and fheat (0.66 and 0.41 respectively).

As noted earlier, there is a conflict present between fdist and fsprawl and
optimising either one of these objectives comes at the expense of an
increase in fheat. Therefore min (fdist)∈Sb and min (fsprawl)∈Sb achieve
performances in fheat of 0.63 and 0.49 respectively (Table 1). However,
min (fdist)∈Sb performs much worse against fflood than min (fdist)∈Sb as
the latter spatially assigns sites to areas within flood zones near the CBD.

3.3. Performance of Pareto-optimal sets

Fig. 7 shows the parallel line plot of themedian solution for the pos-
sible pairwise combination of objectives and MOPO solutions. This pro-
vides a visual overview of the pattern of their relative performances. It
demonstrates already known relations as the median for the solution
min (fheat, fflood)∈Sb performs inferiorly against fdist and fsprawl, reflecting
the conflict between risk management sustainability objectives and
those objectives seeking to mitigate carbon emissions. Similarly, the
median solution for min (fsprawl, fheat)∈Sb has an adverse performance
against fheat and fflood. However interestingly the median solution for
min (fflood, fsprawl)∈Sb performs much better in fdist than fheat suggesting
they have an element of corresponding with the former and can be
optimised simultaneously. Plotting additional solutions in this way
would provide an overview of how well they perform across all four
objectives.

Fig. 8 shows a parallel line plot demonstrating the range of multi-
objective Pareto-optimal solutions across the four sustainability objec-
tives along with the best un-weighted Pareto-optimal solution
(presented in Fig. 4b). The figure demonstrates that the best un-
weighted Pareto-optimal solution performs relatively well across all
four objectives. However on close inspection it is outperformed in at
least one objective by all of the other multi-objective Pareto-optimal
solutions. The range of multi-objective Pareto-optimal solutions shows
the range of final solutions which planners can choose from, taking in
their own priorities whilst assured in relatively good performances in
non-prioritised objectives.

3.4. Ranked Pareto-optimal development locations

Fig. 9 presents the ranked Pareto-optimal locations of sites designat-
ed by the MOPO solutions highlighting locales in the study area which
are more suitable for the location of development. Spatially, the results
demonstrate particular patterns of development which are optimal for
the objectives outlined. Areas consistently spatially assigned by the
MOPO solutions include the north and northwest of the study area
due to the proximity of the CBD and heat hazard being smaller in the
northwest. Moreover there is a consistent assignment of sites in areas



Fig. 6. Best performing Pareto-optimal spatial configurations for objective function a) fheat; b) fflood; c) fdist; and d) fsprawl.
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of the southeast and south central of the study areawhich arewithin the
urban extent whilst retaining a lower than average heat risk. The areas
with the highest rank are within the upmost north of study area as well
as central north.
Fig. 7. Parallel line plots of the normalised objective score of the median solution for all the Pa
4. Conclusions

Currently, there is a need to redesign cities in order to increase their
resilience to climate induced hazards, whilst mitigating greenhouse gas
reto-optimal sets in the four objectives (tri-objective solutions are not shown for clarity).



Fig. 8.Parallel line plots of the normalised objective score of theMOPO solutions (F={ fheat,fflood,fdist,fsprawl}) against the best performing un-weighted Pareto-optimal solution (presented
in Fig. 4b).
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emissions. However during this process there needs to be oversight to
ensure that conflicts do not occur between sustainability objectives, or
where they are unavoidable, that their spatial impact is minimised. To
this end, this paper has demonstrated that spatial optimisation has the
potential to provide planners with detailed information on spatial
development patterns that are optimal to one or more objectives,
whilst understanding their sensitivities to other potentially conflicting
long-term sustainability objectives. This analysis, and the diagnostic in-
formation contained within the full set of results, provides an evidence
basis to assist planners and decision makers to better meet sustainabil-
ity objectives and achieve broader sustainable patterns of development.
The application of the spatial optimisation framework demonstrates for
the real-world case study the ability to recognise potential development
patterns that are potentially more sustainable than the planned situa-
tion. The framework achieves this improvement in performance
through considering a wide possible range of solutions before converg-
ing towards most optimal spatial configurations. The results explore
Pareto-optimal spatial configurations which demonstrate that the
best-trade-offs achievable between separate sustainability objectives
before a series of robust spatial development plans that are Pareto-
optimal throughout the entire series of objectives are found. Each of
these Pareto-optimal spatial development plans is better than all the
Fig. 9. Spatial frequency of site assignment based on the MOPO solution.
development plans found by the optimisation algorithm in at least
one of the sustainability objectives outlined.

Resulting development plans significantly outperform the current
development trend as set out by the local authority. The use of the
Pareto-optimal approach provides a rich set of diagnostic information
on the possible trade-offs, with the potential to constitute a spatial deci-
sion support tool. These optimal spatial plans identify a sub-set of
possible planning objectives that, if considered with other qualitative
planning objectives, can be used to inform final panning decisions. A
major strength of this approach is the ability to present assessments of
each objective alongside the resulting spatial pattern of development.
Extraction of non-dominated Pareto-optimal spatial configurations
between pairs of sustainability objectives provides planners with a
clear quantitative and visual characterisation of the potential conflicts
present between the sustainability objectives investigated. The results
of the Pareto-optimisation over the entire set of objectives provide the
spatial configurations which have the best possible trade-offs across
all objectives, providing planners with a number of best case develop-
ment strategies for the criteria investigated.

It has long been recognised (e.g., Tinbergen, 1956) that there are
both political and analytical aspects to decision making. This work con-
tributes to the latter supporting the use of urban modelling to support
spatial planning. To this end, although this paper has presented a frame-
work that spatially optimises development for a set of 4 sustainability
objectives it has the flexibility to incorporate further sustainability
objectives within such analysis, such as those relating to transport
policy and quality of life. Moreover, result-sets are not intended to be
a ‘final product’ but rather act as an evidence base upon which further
qualitative and quantitative analyses can be applied to develop a final
development plan. This could take the form of multi-criteria decision
making techniques such as weighting or sensitivity analysis on the
results. Although the literature notes that planners are positive to the
use of such modelling tools (Keirstead & Shah, 2013) the high dimen-
sionality of the results presented here would benefit from a user inter-
face in order to facilitate exploration of the results and sustainability
trade-offs. However the work provides valuable knowledge to planners
by pointing towards trends of development optimum in the sense of
minimising sustainability conflicts.

Interest in the role of spatial optimisation can play within urban
system research and spatial planning in particular has resulted, as
noted, in a wide range of multi-objective optimisation approaches
being investigated. In this context, there is a need within the spatial
optimisation community to provide benchmark comparisons of the
relative strengths and weaknesses of these different approaches for
particular applied problems. In the context of spatial multi-objective
urban sustainability analysis. The framework developed in this paper
offers a flexible means bywhich such an appraisal could be undertaken.
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Appendix A

Table A
Notation glossary.
Notation
i ,
d

D
fh
ffl
fd

fsp

Pa

h
vi
H
H
Zi
zi
ci
R
P
u
gi

SA

Sb
s
n
m
fn
fb
D
D

Δ
T
C
Te
ℝ
f
F
p

Description
j
 Location on grid

ij
 Location of a site designated for development with respect to location

on grid

A collection of development sites where dij∈D
eat
 Objective function representing heat risk

ood
 Objective function representing flood risk

ist
 Objective function representing the average distance of development to

CBD

rawl
 Objective function representing urban sprawl
rameterisation
ij
 Heatwave hazard annual frequency raster

j
 Population vulnerability raster

ij
Future
 Future heat risk raster; product of hij and updated vij

ij
Current
 Current heat risk raster; product of hij and vij

j
 Cells within 1 in 1000 flood zones

j
 Cells within 1 in 100 flood zones

j
 CBD centroid
Road network

Shortest path along the road network
ij
 Cells designated as within the current urban extent

j
 Cells designated as greenspace
Algorithm
List of solutions found by the SA algorithm

Solution within Sb

Iterations within entire SA algorithm procedure

Iterations of the application of the SA algorithm

Objective functions of a solution at the nth iteration

Best objective function found throughout the simulated annealing operion
n
 Spatial configuration of the solution at the nth iteration

b
 Best performing spatial configuration found throughout the simulated

annealing operation

Magnitude of difference between fnand fn+1
Temperature variable used by the simulated annealing procedure

Cooling factor applied to temperature variable T
nd
 Ending parameter for T which terminates the algorithm

Real number between 0 and 1

An element of F

Set of objective functions

Non-dominated solution within the non-dominated list

Non-dominated list
N
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