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By considering the behaviour as N -+ co of the ratio of L,[O, N] norms of 
solutions of -d%/dr’+ V(r) U= XU, 0 <r < CCJ, YE [w, a characterisation of the 
absolutely continuous and singular spectra of one-dimensional Schrodinger 
operators is deduced. The analysis is applicable to all operators for which 
L = -d*/dr* + V(r) is regular at 0 and in the limit point case at infinity, with V(r) 
locally integrable. ( 1987 Academic Press, Inc. 

1. INTRODUCTION 

The theory of the subordinacy presented in this paper enables a detailed 
and rigorous characterisation of the spectrum of one-dimensional 
Schrodinger operators on [0, co) to be established. It is shown that when 0 
is a regular endpoint, the absolutely continuous, singular continuous, and 
pure point spectra may be identified in terms of the relative asymptotic 
behaviour of certain linearly independent solutions of the corresponding 
Schrddinger equation 

Lu=xu 

L= --g+ V(r) O<r<cn (1.1) 

at each real point x. This provides a new and systematic method of spectral 
analysis for Schrodinger operators which is advantageous in several 
respects. In the first place, the theory is independent of detailed properties 
of the potential V(r); only very general requirements, as, for example, that 
V(r) be locally integrable and that L be in the limit point case at infinity, 
need to be met. Moreover, the information which is needed to apply the 
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theory to particular cases should be comparatively easy to obtain. It is only 
necessary to determine for each real x whether a solution of Lu = xu exists 
which is “smaller” than all other linearly independent solutions at infinity, 
and if so, whether this solution satisfies the boundary condition at 0. The 
usefulness, in practice, of a method which characterises the spectrum in 
terms of the behaviour of solutions of the Schriidinger equation is already 
well known to physicists, who customarily identify the spectrum with the 
set of real x for which the solution of Lu = xu satisfying the boundary con- 
dition at 0 is bounded [ 1, Chap. 10, Section 16; 2, pp. 71, 821. This charac- 
terisation of the spectrum is not, in general, correct (see, e.g., [3, p. 6481); 
however, the general belief on which it is based, viz. that a correlation 
exists between the behaviour of solutions and the spectrum, is corroborated 
by the results of this paper. Finally, it seems likely that considerable 
generalisation of the theory is possible, and extension to a wide class of 
Schrodinger operators where 0 may be a singular endpoint will be con- 
sidered in a subsequent paper. 

After summarising some relevant results from existing theory in Sec- 
tion 2, we explain what is meant by a minimal support of a measure and 
describe a decomposition of the spectrum in terms of minimal supports of 
the absolutely continuous, singular continuous, and pure point parts of the 
spectral measure ~1 and a generalised derivative dp/dK. We then indicate 
how an analogous decomposition of the spectrum, featuring the boundary 
behaviour of an analytic function m(z), may be derived using a known 
relationship between m(z) and the spectral function p(1) (cf. [4, Sec- 
tion 23). This material is treated more fully in [S, Chap. II]. 

Analysis of the spectrum using the boundary behaviour of analytic 
functions was extensively studied by Titchmarsh, and successfully applied 
to a number of standard cases [6, Chap. V]. In theory this approach 
provides the solution to the problem; from prior knowledge of the potential 
and the boundary condition at 0, the function m(z) can be obtained from 
properties of solutions of Lu = zu for z in C\R. In practice, the method is 
frequently inoperable owing to the difficulty of obtaining sufficiently 
detailed information about the solutions to derive m(z) explicitly. 

We shall use the systematic correlation between the boundary behaviour 
of m(z) and the spectrum to obtain an equally systematic correlation 
between the asymptotic behaviour of solutions of the Schrijdinger equation 
at real energies and the spectrum and, in so doing, obviate the need to 
determine m(z) explicitly. Only relatively crude information about the 
asymptotic behaviour af solutions of Lu = xu for x in R will then be 
required to obtain a complete analysis of the spectrum. 

In Section 3 we introduce the idea of subordinacy and derive some 
straightforward continuity properties of the L,[O, N] norms of solutions of 
Lu = zu as z varies in C. In Sections 4 and 5 we deduce necessary and suf- 
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licient conditions for the existence of subordinate solutions of Lu = xu in 
terms of the boundary behaviour of m(z) as z approaches the real axis at x 
normally. These necessary and sufficient conditions enable a complete 
description of the spectrum in terms of the existence or otherwise of sub- 
ordinate solutions to be established in Section 6. To illustrate the force of 
these ideas, we conclude by showing that some well-known results in spec- 
tral theory and analysis are immediate consequences of our theory; we 
hope to apply the theory to some hitherto unsolved problems in a sub- 
sequent publication. 

2. ANALYSIS OF THE SPECTRUM USING BOUNDARY PROPERTIES 
OF ANALYTIC FUNCTIONS 

We are concerned with the spectral analysis of self-adjoint operators aris- 
ing from the differential expression (l.l), where V(r) is integrable on every 
finite subinterval of [0, co). L is then a differential expression of the 
Sturm-Liouville type with a regular endpoint at 0. According to the well 
known “Weyl Alternative” [7], L must satisfy one or the other of the 
following conditions: 

(a) for each z in C, every solution of Lu = zu is in L, [0, 00); in this 
case L is said to be in the limit circle case at infinity. 

(b) for each z in @, no more than one linearly independent solution 
of Lu = zu is in L,[O, co); in this case L is said to be in the limit point case 
at infinity and for each z in @\R, precisely one solution is in L,[O, 00). 

We shall only consider the second alternative, since in almost all cases of 
physical and mathematical interest L is of the limit point type. 

Let an operator H(U) be defined by 
Hu=Lu for ~159 

where u E 9 if 

(i) U, LMEL* [0, co) 
(ii) U, U’ are absolutely continuous in every closed subinterval of 

co, 00). 
(iii) cos au(O) + sin au’(O) = 0 for some fixed c( in [0, n). 

Then if L is regular at 0 and in the limit point case at infinity, H(a) is self- 
adjoint for each CI in [0, rc) [8, Chap. X, Section 31. 

Associated with each such operator H(a), there exists a monotonically 
increasing spectral function p,(n) which is unique up to an additive con- 
stant [9, Chap. 9, Section 31. The spectrum of H(u.) is the complement of 
the set of points in a neighbourhood of which p,(n) is constant [lo, 
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Chap. 43, and the unique decomposition of p,(A) into absolutely con- 
tinuous, singular continuous, and pure point parts [ 11, Theorem 19.611 
enables the absolutely continuous, singular continuous, and point spectra 
to be defined similarly. It may be shown that these definitions are in 
agreement with the more usual descriptions in terms of resolvent operators 
[5, P. 561. 

Intimately related to the spectral function p,(A) is a complex valued 
function m(z, IX) which is defined and analytic in C\R and has a positive 
imaginary part in the upper half plane. m(z, LX) may be defined for all z in 
C\ R by the condition 

I ,r I u,(r, z, alI’ dr < m, (2.1) 

where %?A~, z, CL) = u2(r, z, a) + m(z, a) ui(~, z, c1), and u~(Y, z, IX) and 
u~(Y, z, c() are those solutions of Lu = zu which satisfy 

u,(O, z, a)= -sin 51 240, z, a) = cos a 
(2.2) 

u;(O,z,a)=cosa u;(O, z, a) = sin c(. 

If II .I\ denotes the L,[O, co) norm, u,(T, z, a) also satisfies the relationship 

II u,(r, z, ax)ll 2 = 
Im m(z, ~1) 

Im z (2.3) 

for all z in C\R [9, Chap. 9, Section 21. If c(,, cz2 E [0, rc) are two distinct 
boundary conditions, then the corresponding functions m(z, rxr ) and 
m(z, ~1~) are related by 

m(z, a2) = 
1 + cot y m(z, Ml) 
coty-nz(z,a,) ’ (2.4) 

where y = (aI - a2) [9, Chap. 9, Problem 81. Let z = x + iy, where x, y E R. 
Formulae connecting p,(A) and m(z, a) are 

(2.5) 

for all p, VE R which are points of continuity of p,(A) [9, Chap. 9, 
Theorem 3.11, and, inversely, 

44 a) = jTm & dp,( A) + cot a (2.6) 

which holds for all a E (0, rc); if a = 0, a slightly different formulation of 
(2.6) is required [ 12, Section 2.31. 
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Where there is no ambiguity, we shall henceforth omit the a-dependence 
of p(A), m(z), ui(r, z), u~(Y, z), and a,,,(~, z). Let p denote the Borel-Stieltjes 
measure generated by p(A), let K denote Lebesgue measure and define 

~(x)=,rrnJy: Z, is an interval of R containing x 
x 1 

whenever this limit exists. We shall briefly summarise some relevant 
properties of m(z) and (&l&)(x). m(z) is said to have normal limit at the 
point XE U&’ if m(z) converges to a finite limit or to infinity as z approaches 
x from above along the normal to the real axis at x. The following result 
may be deduced from some theorems of Plessner [ 13, Satze I, IV] using 
properties of conformal mappings. 

LEMMA 1. m(z) has a finite normal limit Lebesgue almost everywhere 
on R. 

The next lemma is essentially contained in [ 14, Chap. IV, Theorem 9.11. 

LEMMA 2. Let S denote 

{XE R: (dp/drc)(x) d oes not exist finitely or infinitely} 

Then p(S) = K(S) = 0. 

Let m+(x) denote lim,I, m(x + iy) for each x in R for which this normal 
limit exists, and let Im m,(x) be defined similarly. Using integration by 
parts on the imaginary part of (2.6), it may be shown that 

LEMMA 3. If (dp/du)(x) exists finitely or infinitely, then Im m+(x) also 
exists and (dp/dJc)(x)= (l/n) Im m+(x). 

Lemma 3 is a variant of the well-known Fatou theorem (see, e.g., [ 15, 
Chap. IV; 16, Section 31. 

Our analysis of the spectrum will be in terms of minimal supports of the 
spectral measure ~1 and of its absolutely continuous, singular continuous, 
and pure point parts which we denote by P~,~., ps,,,, and pp., respectively. 
Minimal supports of a Borel-Stieltjes measure I on iw are defined as 
follows: 

DEFINITION 1. A subset S of R is said to be a minimal support of a 
measure z on R if the following conditions are satisfied: 

(i) 2 (R\S)=O 
(ii) If S, is a subset of S with i(S,) = 0, then K(S,) = 0. 
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A minimal support of a measure I gives an indication of where the 
measure is concentrated and is uniquely determined up to sets of K- and 
z-measure zero. Indeed, it may be shown that the set of all minimal 
supports of a given measure z is an equivalence class under -, where if 
S a S’ denotes the symmetric difference (S\S’) u (S’\S), the relation - is 
defined by 

S-S’oK(S n S’)=z(S a s’)=O (2.8) 

for S, S’ G aB [S, Lemma 2.203. 
The following classification of the spectrum in terms of minimal supports 

may be deduced using de la Vallee-Poussin’s decomposition theorem 
[ 14, Chap. IV, Theorem 9.61, the Lebesgue-Radon-Nikodym theorem 
[ 17, Theorem 6.91, and Lemma 2: 

LEMMA 4. Minimal supports A, JK.,., J&., -J%.,., and J$. ofp, A,., ru,, 
Pi.,, and pp., are as follows, where E = {x E R: (dp/drc)(x) exists} : 

(i) A!={x~E:O<(dp/drc)(x)6co} 

(ii) A~,c,={x~E:O<(d,u/d~)(x)<~} 

(iii) J&= {xeE: (dp/dic)(x)= CD} 

(iv) JZ&, = {x~ E: (dp/drc)(x) = co, p(x) = 0) 

(v) A$,, = {XE E: (dp/dK)(x) = co, p(x) > O}. 

Let &’ denote {x~E’:O<Imm+(x)dco}, where E’=(xER: 
Im m+(x) exists}. Then A E JZ’ by Lemma 3. Moreover, if 

U = {x E EJ! : Im m+(x) exists finitely or infinitely, 

but (dp/dic)(x) does not} 

then J?‘\& c U c S, where S is defined as in Lemma 2. Since 
K(S) = p(S) = 0, A’ N & so that &!’ is a minimal support of ,u. Analogous 
results for p,,,,, p,,, etc. follow in the same way, and we have 

PROPOSITION 1. Minimal supports AT!‘, A&, A’:,, A’:.,. and A$. of p, 
/*a.c., p,,, pS.,., and pp. are as follows, where E’ = {x E R: Im m+(x) exists}: 

(i) A’= {x~E’:O<Imm+(x)~co} 
(ii) AL.,.= {xEE’:O<Imm+(x)<co} 
(iii) A:,={x~E’:Imm+(x)=co} 
(iv) A;.,.= {xEE’:I mm+(x)=CO,~(x)=O} 
(v) ~~~=(x~E’:Imm+(x)=oo,~(x)>O}. 
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Conventionally, spectral analysis is concerned with identification of the 
spectrum rather than with minimal supports of the spectral measure. The 
relationship between the set of minimal supports and the spectrum is to 
some extent clarified by the following: 

LEMMA 5. Let a(H), p denote the spectrum and the spectral measure 
respectively of a Schriidinger operator H. Then there exists a minimal sup- 
port A%?~ of p such that cl(A$) = o(H). 

Proof: Let A(H) be a minimal support of p and define 
A$, = A’(H)n a(H). Since A%?~G A(H) and p(A(H)\A”) =0 (see, e.g., 
[ 14, Chap. IV, Lemma 9.4(i)]), J%” is also a minimal support of p by 
Definition 1. Moreover, A,, s B(H) and a(H) is a closed set, so 
cl(j&l,) s a(H). 

Now consider W(cl(A~,)) = [w\cl(.~Y~). Clearly V(cl(A~)) is open, and, 
since A” is a minimal support of p, p(%? cl(~Y~)) 6 p(Iw\J,) =0 by 
Definition 1. It follows that p(A) is constant on %?(cl(~.G!~)), so that 
cl(A!,,) 1 a(H) by the definition of the spectrum. This completes the proof 
of the lemma. 

Analogous results hold with respect to the absolutely continuous and 
singular spectra of H, which are closed sets. However, it should be noted 
that, in general, the sets J&, ,=,, A’:.,., and A$, Ai,, of Lemma 4 and 
Proposition 1 are not contained in the respective spectra [S, Exs. 2.10, 
2.113. 

Let &J., ~61) denote the absolutely continuous and singular parts of the 
Borel-Stieltjes measure generated by p,(A), and let E,,,,(a), E,(a) denote 
the equivalence classes of minimal supports of p!&’ and pz;‘, respectively. 
The striking contrast between the behaviour of E,,(a) and E,,(a) as a 
varies is demonstrated in the following lemma. 

LEMMA 6. (i) E,.,(al) = ~%,.,(a~).~ or all boundary conditions a, and a,. 

(ii) If piplo( ,~@~)(iw)>O then E,.(a,)#E,(a,) for any a2#c(, 
(mod 7~); moreover, for each pair of distinct boundary conditions {a,, a*} 
there exist A(aI)EE,,(al) and Af(a,) such that A(a,) n 
&(a21 = 0. 

Proof From (2.4) 

Im m(z, al)( 1 + cot’ y) 
Irn m(z’ a2)= (cot y - Re m(z, a,))’ + (Im m(z, a,))2’ 

(2.9) 

where y = (a1 - a2). Using the notation of Proposition 1 we have 
(i) K(Af;,C,(a,) A .A!~.,.(a2))=0 by (2.9) and Lemma 1. 
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Since p$,) and &;.) are absolutely continuous with respect to Lebesgue 
measure, it follows that ,!&,(a,) = &(a,). 

(ii) Jc.(a,) i-l Jc(a,) = 63 (2.10) 

by (2.9) where ~@:.(a~) E E,(cl,), ~Yi.(a~) E E,,(cQ). It follows from (2.10) and 
Definition 1 that 

so if &“l)(rW), @*J(R) > 0, then &!:.(a,) $ E,(LQ) and Jz’~.(Q) $ E,,(a,). This 
proves all our assertions and completes the lemma. 

We deduce from Lemma 6 that, whereas the absolutely continuous parts 
of the respective spectral measures are equivalent under two distinct boun- 
dary conditions, the singular parts are orthogonal; this fact has already 
been noted by Aronszajn [4, Theorem 11. In Sections 3 and 4 we shall 
relate the boundary behaviour of Im m(z) as z approaches x E R normally 
to the nature of solutions of Lu = xu. The crucial distinction will be 
between those x for which Im m + (x, a) exists finitely and is nonzero for all 
a, and those x for which there is a boundary condition a1 such that 
Im m+(x, a,) exists and is zero; with this in mind, we deduce the following 
corollary to Lemma 6. Since E,,=,(a) is independent of a, it will be referred 
to simply as E,,C,. 

COROLLARY 1. The set S = {x E R : there is no boundary condition a for 
which Im m + (x, a) exists and equals zero) is in E,,, . 

Proof By Lemma 6, it suffices to prove that S is a minimal support of 
pa.Ja, ) for some fixed boundary condition a, ; this will be achieved if we 
show that S-Ai.,( where - is the equivalence relation of (2.8) with 
1 = ,F;,’ . 

Now for Lebesgue almost all x in A’~,,,(al), Im m+(x, al) exists finitely 
and is strictly greater than zero for every a2 # a, (mod n) by Lemma 1 and 
(2.9). Hence 

K(Jcx.(aI )\S) = 0. (2.11) 

Moreover, by Lemma 1 and the definition of S, 0 < Im m + (x, al) < co 
Lebesgue almost everywhere on S. That is, 

K(S\Je.c.(al)) = 0. (2.12) 

Since &,.) is absolutely continuous with respect to K, (2.11) and (2.12) 
together imply that S- Ag,,(a,), which proves the corollary. 
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3. THE CONCEPT OF A SUBORDINATE SOLUTION 

A consideration of the relative size of solutions of Lu = xu at infinity is 
more problematic when solutions are oscillatory. The definition of sub- 
ordinacy which is introduced in this section avoids the drawbacks of a 
pointwise comparison of solutions and enables the boundary behaviour of 
m(z) at each x in R to be related to the relative asymptotic size of certain 
linearly independent solutions of Lu = xu. 

A solution U(Y, x) of Lu = xu is said to be oscillatory on [0, co) if for 
every RE~W+ there exists R, > R such that u(r, x) vanishes at r = R,; 
solutions which are not oscillatory are said to be nonoscillatory. By 
Sturm’s separation theorem, whenever one solution of Lu = xu is 
oscillatory, every solution of Lu = xu is oscillatory [ 18, Chap. XI, 
Corollary 3.11; as appropriate, therefore, we may refer to Lu = xu as being 
oscillatory or nonoscillatory at x. A simple consequence of Sturm’s com- 
parison theorem [ 18, Chap. XI, Theorem 3.11 is that p E R always exists 
such that Lu = xu is nonoscillatory for x <p and oscillatory for x > p, 
where the possibility that p = f cc is not excluded; p is known as the 
parabolic point [3, p. 6371. A further consequence of Sturm’s comparison 
theorem is that Lu=xu is always nonoscillatory for x<lim inf V(r), and 
oscillatory for x > lim sup V(r). Hence p must lie in the interval 
[lim inf V(r), lim sup V(r)], its precise location depending on properties of 
V(r). 

The relationship of solutions to the spectrum has for some time been 
more clearly understood where solutions of Lu = xu are nonoscillatory. If 
x <p, then there always exists an L,[O, co) solution [3, (v)]; if, in addition 
V(r) is semi-bounded, the L,[O, co) solution converges to zero as r --f a 
[ 19, Chap. V, Theorem 2; 20, Section 21. Since Lu = xu is oscillatory at x if 
and only if the restriction of the spectrum to ( - co, x) is an infinite set [ 19, 
Chap. I, Theorem 311, the spectrum on ( - co, p) consists of isolated eigen- 
values with, possibly, an a&umulation point at p. The eigenvalues 
corresponding to distinct boundary conditions interlace [Zl], with every 
point in ( - 00, p) being an eigenvalue for some boundary condition tl [22]. 
An interesting result due to Hartman and Wintner is that if Lu = xu is non- 
oscillatory, then there always exists a principal solution u(r, x) which is 
unique up to scalar multiples and for which 

lim u(r, x) -=O 
r-JJ u(r, x) (3.1) 

for each linearly independent solution u(r, x) [ 18, Chap. XI, Theorem 6.41; 
note that u(r, x) need not be bounded as r + 00 unless V(r) is semi- 
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bounded [3, (v)]. The restriction of the spectrum to ( - cc, p) may there- 
fore be identified as 

{XE (-co,p): there exists an &CO, co) solution of Lu=xu 
satisfying the boundary condition at 0} (3.2) 

or equivalently as 

(x E (-co, p): there exists a principal solution of Lu = XZJ 
satisfying the boundary condition at 0} (3.3) 

and its nature is isolated pure point. 
No such simple generalisations have been available for that part of the 

spectrum where solutions of the corresponding Schriidinger equation are 
oscillatory. Possible types of spectrum on (p, co) include absolutely con- 
tinuous, singular continuous, dense point, isolated point, and nowhere 
dense essential spectra; these can occur in almost every conceivable com- 
bination, at least on finite subintervals. That such spectra can arise from 
Schrodinger operators follows from the inverse method of Gel’fand and 
Levitan [23, see especially p. 2571; for some interesting cases see [4, Sec- 
tion 51. Some connections between the behaviour of solutions and the 
spectrum on [p, co) have been noted; for example, a sufficient, but not 
necessary condition for x to lie in the essential spectrum is the absence of 
an L,[O, co) solution of Lu = xu [24, Korollar 3.2, Anhang zu Teil3]. 
However, if such relationships as are already known are insufficient to 
identify the essential spectrum on [p, co), still less do they discriminate 
between its constituent parts. 

The definition of a subordinate solution given below extends the idea of 
a principal solution in such a way that it can have meaning where solutions 
are oscillatory and even where no solutions are in L,[O, co). This will 
enable us to deduce a complete classification of the spectrum on R (or, 
more precisely, of minimal supports of 11, pL, .=., pL,,, pL,,,,, and pL,.on R) in 
terms of the existence or otherwise of certain types of solutions of Lu = xu 
at each point x. 

Let II f(r)llN denote (St If(r dr)1’2. 

DEFINITION 2. If L is regular at 0 and limit point at infinity, then a 
solution u,(r, z) of Lu = zu is said to be subordinate at infinity if for every 
linearly independent solution u( r, z) 

lim II UAr, z)llN= o 
~-rm I14r,z)llN ’ (3.4) 

It is trivial to observe that for each fixed z in C there can be no more 
than one linearly independent solution of Lu=zu which is subordinate at 
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infinity. Moreover, if for fixed z in @ there exist solutions u,(T, z) and U(Y, z) 
which satisfy (3.4), then 

for every solution u,(T, z) which is not a scalar multiple of u~(T, z). 
We remark that, when x E R! and ZA = xu is nonoscillatory, Definition 2 

and (3.1) identify the same sets of solutions. The reason the L,[O, co) norm 
has been chosen in the definition is that the formula (2.3) will be used to 
establish a relationship between the boundary behaviour of m(z) as zlx 
normally and the existence or otherwise of a subordinate solution of 
Lu = XU. Since the continuity behaviour of L,[O, N] norms of solutions is 
of central importance in this connection, we begin by establishing a few 
elementary properties. 

Let b(r, z, ) and tj(r, z, ) be linearly independent solutions of Lu = z1 u 
and suppose the solution 0(r, z,) of Lu=z,u satisfies QO, z,)= <, 
13’(0, z,) = r]. Then, by the variation of constants formula [9, Chap. 3, 
Theorem 6.41, the solution Qr, z2) of Lu = z2u satisfying 0(0, z2) = r and 
O’(0, z2) = ty is given by 

x (z* -z, ) e(t, z*) dt. (3.5) 

The Wronskian W(q5(r, z,), $(r, z,)) is independent of r [18, Chap.XI, 
Section 2(v)], and is readily evaluated at r = 0. 

For each fixed z in C, define unique solutions ul(r, z), uz(r, z), and 
u&r, z) of Lu=zu to satisfy 

u,(O, z) = -sin ct ui(O, z) = cos a 

u,(O, z) = cos a u;(O, z) = sin c1 

+)(r, z) = dr, z) + h(r, 2) kEC. 

For each fixed z in C\R, define 

u,(r, z) = uh, z) + m(z) ul(r, z), 

where m(z) = m(z, a) (cf. (2.1)). For those x in R for which m+(x) exists 
finitely define 

umc(r, x)= dr, x) +m+(x) ul(r, x). 
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If m+(x) exists finitely and is real, define 

m(x) = m + (4 
u,(r, xl = u2(r, x) + m(x) u,(r, xl. 

In the following lemma, we examine the behaviour of (1 ui(~, z)llN, 
II u(k)(rY ZNl NY and 11 u,(r, z)ll N when both x E R and N < GO are fixed. Since 
z = x + iy, these norms are functions of y, defined on ( - co, cc) in the case 
of /I u,(r, z)ll N and II z.+)(T, z)ll,,,, and, in general, on R\ (0) in the case of 
II %n(Y> z)ll N. 

LEMMA 7. Let x E [w and NE 08 + be fixed. If 

Y(k) = 
4y 11 u(k)(r9 z)ll N 11 &try z)ll N 

Ik-m+(x)l ’ 

wherez=x+iy, zl=x+iy,, andz,=x+iy,, then 

0) ifvl >O, 

If m +(x) exists finitely and y, is suitably adjusted, then this inequality also 
holds for y, = 0. 

(ii) Ifyl,y2>0, 

If m+(x) exists finitely and y1 is suitably adjusted, then this inequality also 
holds if y, or y, = 0. 

(iii) If m+(x) exists linitely and k E C is such that k # m+(x), 

1 11 qk)tr3 x)l\ N - 11 u(k)(r, z)ll N I d Y(k) iI u(k)(r, x)li N 

whenever y > 0 is sufficiently small. 
(iv) With the hypothesis of (iii), if y > 0 is sufficiently small 

1 11 %k, z)llN- 11 um+(rT x)ll N 1 

G Y(,) 11 %+k? x)ll N 

+2l+)-m(xY 
Im+(x)--kl [IIU(k)(ryZ)IIN+ IIum+(ry z)llNl. 
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ProojI (i) Setting q5(r, z,) = O(r, z,) = ul(r, z,), e(r, ZJ = ul(r, zd, 
$(r, z,)=u,(r, z,) in (3.5), we have for y, >O, 

where we note that ul(r, zi) and u,(r, z,) are linearly independent and 
W(u,(r, zl), uI(r, z,)) = 1. Hence for r < N, 

lu,(r, zJ-U1(rr z,)l 6 I Y,-y,I lu,(r,z,)l joN Idt, zl)u,(t, z2)l dt 

+ I Y, -yl I I u,,Ar, zl)l JON I u,(t, zl) ul(t, z2)l dt 

Taking L,[O, N] norms of both sides and using the Minkowski and 
Cauchy-Schwarz inequalities, we deduce that 

and a further application of Minkowski’s inequality gives the result. If 
m+(x) exists finitely, the argument applies equally to z1 = x. 

(ii) Define u&r, zi) = u2(r, z,) + m(zJ u,(r, z,). By Minkowski’s 
inequality 

I Il~,(~,~2)llN- II~m(~~~l)IINI 

< 11 %(r? z2) - %tr, zI )I/ N 

6 11 %(r, d - um2(ry zl )I1 N + 11 Um2(ry ‘1) - um(ry z1 )[I N 

Q II u,,,(r, .4-Um2(r, zl)llN+ IW2)-m(zI)l Ilul(rT ZI)IIN. (3.6) 

If y, > 0, u,(r, z2) and umZ(r, z,) are defined and satisfy the same boundary 
conditions at r = 0. Hence, as in the proof of (i), 

hh-, ZJ = u,Jr, z,) + jr Cu,(t, zl) ul(r, zl)-u,(r, zl) h(C zl)l 
0 

x 4y,-Y,) K,,(G z2) dl 

whenever y, > 0. This yields 

II dr, 4 - h2(r, z,)ll,G y1 II hAr, AN 
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which together with (3.6) gives the result. If m+(x) exists finitely the 
argument applies equally to z, = x or z2 = x. 

(iii) From the definitions of u&r, z) and u,(r, z), 

W+Jr, zh u,(r, 2)) = m(z) - k. 

Now k # m +(x), and m(z), regarded as a function of y, is continuous; 
hence for sufficiently small y 

lk-m(z), > ‘k-Ti(X)’ >O (3.7) 

is satisfied, so that uckj(r, z) and u,(r, z) are linearly independent solutions 
of Lu = xu [ 18, Chap. XI, Section 2(vii)]. 

If we now set z, =z, zz=x, t9(r, zl)=fj(r, z,)= uckj(r, z), Qr, z2) = 
u&r, x), and $(r, z,) = u,(r, z) in (3.5) we obtain for y > 0, 

q&, x) = u&r3 z) 

+.I 
r CqkJt, z) dry z) - qk)(r, z) ~,(t, z)l( -@I u&4 x1 dt 

0 (m(z)-k) 

Taking L,[O, N] norms as before, this together with (3.7) yields the result. 
(iv) Define u,Jr, z) = uz(r, z) + m, (x) u,(r, z). By Minkowski’s 

inequality 

I II~,(r, ~)/I.A- IIu,+(r, xNNl 

Q ll~,,Jr~ z)--Um+(r, x)llN+ Im(z)-m+(x)l II ul(r, z)llN (3.8) 

(cf. (3.6)). For sufficiently small y 

u,(r, z) = 
hh-, z) - u~p~(r~ z) 

m(z) - k 

so that by (3.7) and Minkowski’s inequality 

II U1(rr z)llN d Ik-~+cx)l (Ildr, z)IIN+ II u&r, z)llN). (3.9) 

Setting z,=z, z*=x, 0(r,z,)=2dm,(r,z), 8(r,z,)=u,+(r,x), 4(r, z,)= 
uckj(r, z), and t+h(r, zl) = u,(r, z) in (3.5), we have for y > 0 

u,+(r, x) = hJr, z) 

+I 
r Cud& z) dr, z) - qkj(r, z) ~,(t, z)l(--i~) h+(t, x) dt 

0 (m(z) - k) 
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Taking L,[O, N] norms as before, this together with (3.7), (3.8), and (3.9) 
gives the result. 

By setting Qr, zr) = c++( r, z,) = ul(r, zlL e(r, z2) = u,(r, z2), and Il/(r, zl) = 
ZQ(T, zl) in (3.5) we obtain for all y,, y, E R 

where Y~=~IY~-Y~/ II ( u1 r,z,)llN [luZ(r,z)IIN. Hence if N<cc and XER 
are fixed, II ul(r, z)ll N is a continuous function of y on all of If% irrespective 
of whether m(x) is defined; similarly /I +)(r, z)lI N is a continuous function 
of y on R. We have therefore: 

LEMMA 8. Zf N < cc and x E IR are fixed, then II ul(r, z)ll N and 
11 uCkj(r, z)ll N are contirzuous functions ofy on R. 

Lemmas 7 and 8 will be used in the following sections where we deter- 
mine necessary and sufficient conditions for the existence of a subordinate 
solution of Lu = xu at the real point x. 

4. SUFFICIENT CONDITIONS FOR THE EXISTENCE OF 
SUBORDINATE SOLUTIONS 

We now show that if m + (x) exists finitely and is real, or if I m(z)1 + 00 as 
y JO, then the subordinacy of the L,[O, co) solution u,(r, z) of Lu = zu for 
y > 0 is reflected in the subordinacy of corresponding solutions of Lu = XX 

For fixed x E R, let E, y’ > 0 be related by 

g= sup Im(z)-m+(x)1 +y’ 
0 < J’ c .1.’ 

and define N( y’) by 

I Y’ I ‘I2 II ul(ry Z’)IIN(.~~ = 1, 

(4.1) 

(4.2) 

where z =x + iy and z’ = x + iy’. Note that y’ is a continuous monotonic 
function of E, and that y’ 10 as E 10; observe also that for each y’ > 0, N( y’) 
exists satisfying (4.2) since ul(r, z’) is not in L,[O, co), and that N( y’) is a 
function of E. 

We investigate the relationship between N(y’) and E when m(z) con- 
verges to a finite real limit and E is small in the following lemma. 

LEMMA 9. Let x E R be fixed and suppose that m(z) converges to a finite 
real limit m(x) as ~10. If&, y’, and N( y’) are related as in (4.1) and (4.2), 
then 
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0) II u,(r, x)lIN(,s)/II ul(rv x)llN(,f) < E whenever E is sufficiently small. 

Moreover, 

(ii) N( y’) depends continuously on E. 

(iii) N( y’) + cc as ~10. 

Proof (i) Suppose E < 1. Using the hypothesis and (4.1), we have 

1 m(z’) - m(x)1 <s/4 (4.3) 

I Im m(z’)I ‘I2 < s/2. (4.4) 

From (2.3), (4.2), and (4.4) 

II u,(r, z’)ll N(.~‘) <f 
II ul(r, z’)IIN(~,) 2 (4.5) 

and 

yI = 2~’ II ul(r, z’)ll N(ys) II u,(r, z’)ll N(.vo < 8. (4.6) 

Let z’ and x be identified with z, and z2 respectively in parts (i) and (ii) of 
Lemma 7. Then by (4.6) 

II ul(ry XIII N(yf) >(I +&I-’ II~l(r,z’)IIN~~~~ 

and 

II dr, XIII N(.V’) <(l--~)-’ Cllu,(r,z’)llN~,~~ 

+ I m(z’) - m(x)l II u,(r, ~‘HN~,d~ 

respectively. Hence 

II u,(r, XIII N(y,~ < 1 + 6 
II ulb-, XIII ~(~7 (-I 1 - 8 

II u,(r, Z’NINW) + I mcz,J _ mcxjl 
II u,(r, z’)ll Ncy,j 1 

from which the result now follows by (4.3) and (4.5). 
(ii) We first show that for each y” > 0, N( y’) is a continuous function 

of y’ at y”. Let 6 > 0 be given and y” > 0 be fixed. Since ul(r, z”) cannot 
vanish on a nontrivial r-interval, 

I ~“1”~ II 4(r, z”NI~~,~~~-~< 1 

by (4.2). This, together with the continuity of 11 ul(r, z’)ll,,, in y’ which was 
proved in Lemma 8, implies that 

I Y’ I l’* II ul(r, z’N~~~~~~-~ < 1 (4.7) 
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for y’ sufficiently close to y”. Similarly 

I Y’l”2 lluI(r, Z’)llN(,~~),6> 1 (4.8) 

for y’ sufficiently close to y”. Since II u,(Y, z’)llN is strictly increasing with N 
for each fixed z’, it follows from (4.2), (4.7), and (4.8) that 

N(y”)-h<N(y’)<N(y”)+6 

for y’ sufficiently close to y”; hence N( y’) is continuous in y’ at y”. 
The continuous dependence of N( y’) on E now follows since y’ is a con- 

tinuous function of E by (4.1). 
(iii) Since ~‘10 as E JO by (4.1), it suffices to prove that N(y’) + co 

as y’ JO. Suppose that N( y’) f-+ co as y’ JO. Then ME R! + and a sequence 
( y;} exist such that y;J 0 as k -+ cc and N( y;) CM for each k. It then 
follows from (4.2) that for each y; 

so that /I u,(r, x + iyb)ll M -+ co as yb JO. This is impossible since II ul(r, z)ji M 
is a continuous function of y on IR by Lemma 8. 

We have therefore shown by contradiction that N( y’) + co as E JO, and 
the proof is complete. 

Since N( y’) is primarily of interest as a function of E, we shall relabel 
N( y’) as n(s). As a result of Lemma 9, it is now straightforward to obtain 
sufficient conditions for the existence of a subordinate solution of Lu = xu 
at the real point x. 

COROLLARY 2. Let x E R be fixed. Then 

(i) if m(z) converges to a finite real limit as y JO, u,(r, x) is a sub- 
ordinate solution of Lu = xu; 

(ii) if Im(z)l -+ 00 as ~10, ul(r, x) is a subordinate solution of 
Lu = xu. 

Proof: (i) By Lemma 9 there exists an interval (0, a] such that n(E) is a 
continuous function of E on (0, a] satisfying 

II u,(r, x1 II ncEJ < E 
II ul(r, x)ll.~,~ ’ 

(4.9) 

Let q such that 0~ q < a be given, and let K,, denote the least upper 
bound of n(E) on [q. a]. By Lemma 9(iii), n(E) + co as E JO; it therefore 
follows from the continuity of n(E) that n(E) takes every value in [K,, 00) 
as E ranges over (0, a]. Moreover, if E is in (0, a], then whenever n(E) > K,,, 
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E is in (0, q) by the definition of K,. We may therefore deduce from (4.9) 
that for E in (0, a] 

whenever n(c) > K,. Since n(s) takes every value in [K,, 00) when E is in 
(0, a], it follows that 

lim II h(r, x)ll N = o. 
N-m 11 uI(rT x)11 N 

Therefore u,(r, x) is a subordinate solution of Lu = xu. 

(ii) The hypothesis means that I m(z, cr,)l -+ cc as y JO for some given 
real boundary condition CI,. If a2 E [0, 7~) is a distinct boundary condition, 
it follows from (2.4) that m+(x, az) = -cot(a, -a*) which is finite and 
real. Hence by (i) 

u,(r, .x3 ad = 4, x, ad + m(x, a2) u,(r, x, a*) 

is a subordinate solution of Lu = xu. Since 

cos a, u,(O, x, a*) + sin a, z&(0, x, az) = 0, 

u,(r, x, aa) is a scalar multiple of u, (r, x) = U, (r, x, a, ). This completes the 
proof of the corollary. 

Remark 1. Suppose that a sequence { y,} exists such that y, JO and 
m(x+iy,)-+gE[W as n--+co. Then by modifying the arguments of 
Lemma 9 and Corollary 2(i), it may be shown that a sequence {N,} exists 
for which N, -P co as n --f cc and 

11 u(g)(rv x)ll N, 

Lf I/ uI(r, x)llN, =O’ 
(4.10) 

where uCgj(r, x) = uz(r, x) +gu,(r, x). Note that when (4.10) is satisfied, we 
have also 

II U(g,(C X)IIN. 
At )I u(r, x)llNn =O 

(4.11) 

for every solution u(r, x) which is independent of UcnJ(r, x). 

Significant implications for the spectrum are now almost immediate. 
Since the set 

S= (xER: [m(z)1 +co,Imm(z)+ooasy~O} 

409/128/l-4 
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has Lebesgue measure zero by Lemma 1, and p-measure zero by 
Proposition 1, we have 

~~={xE[W:Im(z)I--,coasy10}-~~. 

d5qci,.= {XE lx: Im(z)l ~~asy~O,~(~)=O}~~~,~, (4.12) 

-“I;.= (xElJ-8: /m(z)/ -+coasyJO,~(x)>O}=A!~., 

where N is the equivalence relation defined in (2.8) with r =p. By 
Corollary 2(ii), if x E Ai:, then a subordinate solution of Lu =xu exists 
which satisfies the boundary condition at 0. However, if such a solution is 
in L,[O, co), x must be an eigenvalue and hence an element of A%‘;.. 
Therefore, a nonsquare integrable subordinate solution of Lu = xu always 
exists satisfying the boundary condition at 0 when XE A%‘::~,. Subordinate 
solutions which are not in L,[O, co) are thus of crucial importance when 
there is singular continuous spectrum; indeed, a remarkable correspon- 
dence will emerge once a converse to Corollary 2 is proved in the following 
section. 

5. NECESSARY CONDITIONS FOR THE EXISTENCE OF 
SUBORDINATE SOLUTIONS 

Can a subordinate solution of Lu = xu exist if m(z) converges to a finite 
limit at x which is not real or if m(z) fails to converge finitely or infinitely 
as z +x? The answer to both questions turns out to be no, so that a sub- 
ordinate solution of Lu = xu can only exist if one or other of the sufficient 
conditions of Corollary 2 is satisfied. To substantiate this claim, we need 
some further estimates of solutions, and in the following lemma we apply 
the methods of Lemma 9, with revised definitions of y’ and N( y’), to the 
case where m+(x) exists finitely but is not real. 

LEMMA 10. Let x E R and k E 62 be fixed and suppose that m(z) converges 
to a finite limit m+(x) as ~10. Suppose also that k #m+(x) and Im 
m +(x) = 1, > 0. Then for sufficiently large N 

(i) there exists KE If3 + which is independent of x such that 

II u,+(r, XIII N 
II ul(r, x)llN ’ K1-y 

(ii) there exists ME lR+ which depends on k and x such that 

IIu,+(r, x)IINcMI 
II u&r, x)ll N 1 x 

where uCkj(r, x) = uZ(r, x) + ku,(r, x). 



SUBORDINACY AND SCHRijDINGER OPERATORS 49 

Proof: (i) Let E, y’ > 0 satisfy 

E < 1.x 

E2 
-= sup Im(z)-m+(x)l +y’ 
2’Ol 0 < y 5 .b,’ 

1 ,y,1-2 IIl$(r, z’)II,(.,,)=1,“2/23. 

From (5.1) and (5.2) 

Im(z’)-m+(x)1 <E/210 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

and from (5.2) and the hypothesis, 

I Im m(z’) - I,1 I” < 61.; ‘j2/2’. 

Hence 

/ Im m(z’)l ‘I* < 1:” + ~1; ‘/2/25 

which together with (2.3) (5.1) and (5.3) implies 

yI =2y’ IIu,(r, z’)/IN~~r.~I Iludr, z’)II~(,~~)< l/3; 

z’ and x are now identified with z, and z2 respectively in Lemma 7(i), (ii), 
and the remainder of the proof follows a pattern similar to that of 
Lemma 9 and Corollary 2(i). 

(ii) Let E, y’ > 0 satisfy 

~<rnin{l,I,,I,~rn+(x)-k~~“~/2~} (5.5) 

c4 [m+(x)-kl I;‘= sup Im(z)-m+(x)1 +y’ (5.6) 
O<,v<.v’ 

and suppose also that y’ is sufftciently small to satisfy the estimate of 
Lemma 7(iii). Define N( y’) by 

I Y’ I ‘I2 II qkj(r, ~‘111 N(y.)=(lm+(x)--kl ~.;L/2)/24. (5.7) 

From (5.5) and (5.6) 

Im(z’)-m+(x)1 <E’I.;’ Im+(x)-kl (5.8) 
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and, using the hypothesis, 

I Im m(z’)l ‘I2 < 1:” + E’/, ‘I2 / m +(x) - k ( ‘/2. (5.9) 

It now follows from (2.3), (5.5), (5.7), and (5.9) that 

II %n(r, z’)ll N(>‘) P4+ 1)l.t 
II q&9 4 N(.v’) <lm+(x)-kl’ 

4Y’ II q/Jr? z’)ll ‘v(y) II %?A~, ~‘h(,~) 1 
Y(k) = 

Im+(x)--kl 
<--. 

3 

(5.10) 

(5.11) 

Identifying z’ with z in Lemma 7(iii), (iv) yields 

II %?l+k XIII Ivy’) 
11 u(k)(r> x)ll N( f) 

2(1 +Y(k)) im(z’)-m+(x)i 

’ t1 -Y(k)) Im+(x)--kl 

+(‘+Y(k)) 2 Im(z’)-m+(x)l + 1 IIUm(ryZ’)IIN(y’) 

(I -Y(k)) L Im+b-kl 1 11 u(k)(r> z’)ll N(.,,‘) 

Applying (5.8), (5. lo), and (5.11) to this inequality, the remainder of the 
proof is completed as in Lemma 9 and Corollary 2(i). 

Lemma 10 remains valid in a modified sense if there exists a sequence 
{ Y, } in R + such that Y,, -+ 0 and m(x + iY,,) converges to a finite limit g 
as n + co. In this case sequences { MP} and {NY} exist such that M,, 
N,-+ cc and 

II qg,(y, XIII Mp 
= OUm gX 

/I U(g)(r~ x)ll Nq 

11 qk)tr? x)il Nq 

= O(Im g) (5.12) 

as p, q -+ co, where uR(r, x) = u2(r, x) +gu,(r, x), k #g. Since this is easily 
verified by making suitable minor adjustments to the arguments of 
Lemma 10, we omit a detailed proof. 

Remark 2. Suppose that a subordinate solution of Lu = xu is known to 
exist for some x E OX. Then the set of scalar multiples of 

u(r, x) = au,(r, x) + bu,(r, x), 

where a E IR, b E C, and u(r, x) is subordinate, is the set of all subordinate 
solutions at x. Now I/ u(r, x) II N = II U(T, x)11 N for all NE R +, so u(T, is a 
subordinate solution and hence a scalar multiple of u(r, x). It follows that if 
a #O, then b is real, so that a subordinate solution at a real point x is 
always a scalar multiple of a real solution. 
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The following corollary to Lemma 10 establishes necessary conditions for 
the existence of subordinate solutions, and provides a converse to 
Corollary 2. 

COROLLARY 3. If a subordinate solution of Lu = xu exists at the real 
point x then, as y JO, either m(z) converges to a finite real limit or 
Im(z)l + 03. 

Proof: Suppose first that a subordinate solution of Lu = xu exists and 
that m(z) converges to a finite limit at x. Then, using the notation and con- 
clusions of Lemma 10, 

II u,+(r, x)ll N 
11 uI(ry -“)ll N 

= O(L), (5.13) 

as iV-+co, where ~EC is such that k#m+(x). If u,+(r,x) is not sub- 
ordinate, there exists a solution u(r, x) which is independent of u,+(r, x) 
such that 

I/ u(r3 x)/l N 

?FL jlu,+(r, x)I~,‘~ 
(5.14) 

by Definition 2. However, since u(r, x) is a scalar multiple of some element 
of the solution set {u,(r, x)} u {uCkI(r, x): kE@, k#m+(x)}, (5.14) is 
incompatible with (5.13). The supposition that u,+(r, x) is not subordinate 
must therefore be false, so that by Remark 2, u,+(r, x) is a scalar multiple 
of a real solution. It follows that m(z) converges to a finite real limit at x. 

Now suppose that m(z) does not converge finitely or infinitely as ~10. 
Then there exist sequences { y,}, { Y,} in [Wf and g, h in C u {cc } with 
g#h such that y,, Y,+O and m(x+iy,)+g, m(x+iY,)-+h ass, t-co. 
We shall prove by contradiction that no subordinate solution of Lu = xu 
can exist. 

Consider first the case / g/, ) hl < co. Define z&r, x) = uz(r, x) + 
gu,(r, x), u(,,)(r, x) = u2(r, x) + huI(r, x) and suppose that a subordinate 
solution of Lu = xu exists. If uCg,(r, x) is not subordinate, then there exists a 
solution u(r, x) which is independent of u(,)(r, x) such that 

II dry x)ll N 
J’t”, (IuC,)(r, x)/IN=’ 

by Definition 2. Arguing as above, we see that (5.15) conflicts with (5.12) 
(or (4.11) if Im g = 0); hence uCgj(r, x) must be subordinate, and, similarly 
q,,)(r, x) must be subordinate. However, uCg,(r, x) and z+,)(r, x) are linearly 
independent solutions of Lu = xu, so they cannot both be subordinate. This 
contradiction shows that no subordinate solution can exist if 1 g 1, I h I < 00. 
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If 1 g 1 = cc, then by (2.4) a boundary condition ~1~ exists such that the 
sequence {m(x + iyS, a,)} converges to a finite real limit -cot (a, - cz,), 
where we have taken m(z) = m(z, ct,). We may then infer from Remark 1 
that a sequence {M,} exists such that M, -+ cc as p + cc and 

so that the existence of a subordinate solution implies u,(r, x, ~1~) is sub- 
ordinate. Now u,(T, x, ~1~) is a scalar multiple of u,(r, x) = u,(r, x, aI) (see 
proof of Corollary 2(ii)), so if a subordinate solution exists and I g I = co 
and lhl < co, both ul(r, x) and uthJ(r, x) must be subordinate. This is 
however impossible, so no subordinate solution can exist in the case 
Igl=cf4 lhl<a. 

The conclusions of the corollary now follow, since all other possibilities 
have been eliminated. 

6. SUBORDINACY AND THE SPECTRUM 

Corollaries 2 and 3 form a complete set of necessary and sufficient con- 
ditions for the existence of a subordinate solution of Lu = xu at the real 
point x in terms of the behaviour of the function m(z) as z approaches x 
along the normal to the real axis at x. Combining these two results, we 
obtain the following existence theorem: 

THEOREM 1. A subordinate solution of Lu = xu exists at the real point x 
if and only if as y JO either m(z) converges to a finite real limit, in which case 
u,(r, x) is subordinate, or I m(z)1 -+ co, in which case u,(r, x) is subordinate. 

Further discussion of this theorem is contained in [S, 251. If lim,l, 
1 m(z, cr,)l = co for some boundary condition a,, then it follows from (2.4) 
that for any distinct boundary condition LX*, m + (x, a*) = -cot(ol:, - GL~) 
which is finite and real. This means that Theorem 1 may be expressed in 
the following alternative form: 

THEOREM 2. A subordinate solution of Lu = xu exists at the real point x 
fund only if there exists a boundary condition c( such that m(z, a) converges 
to a finite real limit m(x, CC) as y JO, in which case 

u,(r, 4 a) = u2(r, x, a) +4x, a) u,(r, x, a) 

is subordinate. 

Noting that u, (r, x) is a solution of Lu = xu which satisfies the boundary 
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condition at 0, we shall now derive minimal supports of the decomposed 
parts of the spectral measure p in terms of the subordinacy of solutions. 

THEOREM 3. Minimal supports A!“‘, A?~~,., At.‘, A’$, and A;: of u, 
A.~., P,., A~., and pp. are as follows: 

(i) A!“‘= lR\{xE R: a subordinate solution of Lu = xu exists but 
does not satisfy the boundary condition at 0} 

(ii) &El,.= {xE[w: no subordinate solution of Lu = xu exists} 

(iii) Mz = {x E R: a subordinate solution of Lu = xu exists which 
satisfies the boundary condition at 0) 

(iv) A& = {xE R: a subordinate solution of Lu = xu exists which 
satisfies the boundary condition at 0 but is not in L,[O, a~)} 

(v) A@‘:: = { XE R: a subordinate solution of Lu = xu exists which 
satisfies the boundary condition at 0 and is in L,[O, KI)} 

Proof We need only prove (ii) and (iii) and since (v) is well known, 
(iii) and (v) imply (iv), and (ii) and (iii) imply (i). 

(ii) This is immediate from Corollary 1 and Theorem 2. 
(iii) It is sufficient to prove that A: w Ai., or, equivalently, by 

(4.12) that A?: N A?:,, where N is the equivalence relation defined in (2.8) 
with I = p. By Corollary 2(ii), JK’IG JA?F ; moreover, whenever x E A!:, 
u,(r, x) is a subordinate solution of Lu = xu which implies by Theorem 1 
that x E A!::. Hence A$‘: = .A’& and the result is proved. 

Theorem 3 shows that complexity of spectral behaviour is reflected in a 
very precise way in properties of solutions of the corresponding 
Schrbdinger equations. The result is a natural extension of (3.2) and (3.3) 
which characterise the restriction of the spectrum to (- cc, p), where p is 
the parabolic point; note that whereas subordinate solutions, principal 
solutions, and L,[O, CD) solutions of Lu = xu are indistinguishable when 
x < p, subordinate solutions need not be square integrable when x > p, and 
principal solutions have no meaning when Lu = xu is oscillatory at x. We 
see that in the context of those Schrodinger equations for which L is 
regular at 0 and in the limit point case at infinity, subordinate solutions 
may be regarded as an extension of L,[O, cc) solutions; indeed, sub- 
ordinate solutions bear precisely the same relation to the minimal supports 
of the singular part of the 3pectral measure as do square integrable 
solutions to the minimal supports of the pure point part. 

The most obvious application of Theorem 3 is to the detailed spectral 
analysis of particular Schrodinger operators or, more precisely, to analysis 
of that part of the spectrum for which solutions of Lu = xu are oscillatory, 
since the theorem yields no new information about the spectrum on 
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( - co, p]. In relatively straightforward cases, for example, where the nature 
of the spectrum is known already and only its location needs to be deter- 
mined, it may still be simplest to make use of well-established results. The 
fact that the essential spectrum is the union of the closure of the set of all x 
for which Lu = xu has no L,[O, cc) solution and a nowhere dense set [24, 
Section 31, together with the well-known characterisation of the point spec- 
trum (as listed in Theorem 3), will frequently be sufficient to completely 
determine the spectrum. It is where little is known in advance or where 
the essential spectrum is made up of several types of spectra, that the 
discrimination afforded by Theorem 3 may be most useful. 

Direct application of Theorem 3 will not always be straightforward, 
however, even where there is sufficient information available to determine 
the minimal supports exactly. In theory there is no difficulty in identifying 
the absolutely continuous spectrum; note that this type of spectrum is not 
void if and only if K(&:),) > 0. The presence or absence of a singular con- 
tinuous spectrum may be more difficult to establish, particularly if 
embedding in the absolutely continuous spectrum is a possibility. Although 
a necessary condition for the singular continuous spectrum to be nonempty 
is that A:“,, be an uncountable set, this condition is not sufficient as may 
be deduced using the inverse method of Gel’fand and Levitan [23] 
together with Lemma 3, Corollary 2, and [26, Section 11.82, Lemma 11. 
However, we may assert that if K(&‘::,, n I) = P(~ &‘F n I) = 0 and .&‘;.i. n I 
is an uncountable set for some real interval I, then there is a nontrivial 
singular continuous spectrum on I. Suppose not, then the singular con- 
tinuous spectrum is empty on I; then p < K on I and dp/dti = 0 Lebesgue 
almost everywhere on Z, which together imply that p is a constant function 
on I [26, Section 11.711 and hence that I is in the resolvent set. It follows 
that m(z) may be analytically continued across I [27, Section 5, 
Theorem (i)], and so m+(x) exists finitely and is real at each x in 1. 
Therefore by Theorem 1, &Y~.~ n I= 0, which proves the assertion by 
contradiction. 

As a result of Theorem 3, the proofs of a number of results in spectral 
theory and analysis are now very simply accomplished. We describe some 
examples. 

EXAMPLE 1. It was recognised by Weyl that the essential spectrum is 
preserved under a change of boundary condition, but unclear to him 
whether certain constituent subsets (namely the set of “Haufungspunkten 
des Punktspektrums” and the “Streckenspektrum”) were individually 
invariant under one-dimensional perturbations of this type [7, Section 171. 
This problem was later investigated from a slightly different angle by 
Aronszajn, whose analysis was substantially that of Lemma 6 [4, Section 3, 
Theorem 1). It may be seen that the invariance of minimal supports of the 
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absolutely continuous measure and the contrasting orthogonality of 
minimal supports of the singular measure under a change of boundary con- 
dition which were established in Lemma 6 are not immediately obvious 
corollaries to Proposition 1. However, the necessity of this behaviour is 
apparent at once from Theorem 3; for, clearly, the presence or absence of a 
subordinate solution of Lu = xu at a given point x is independent of the 
boundary condition at r = 0, whereas it is impossible for more than one 
distinct boundary condition to be satisfied by a subordinate solution at x. 

EXAMPLE 2. If V(r) is in L, [0, co), then L is regular at 0 and in the 
limit point case at infinity; moreover, the spectrum of each Schrodinger 
operator arising from L is absolutely continuous on (0, 00) and discrete on 
(- co, 0). This analysis of the spectrum was demonstrated by Titchmarsh 
using boundary properties of m(z) [6, Section 5.33. 

By suitably rearranging the expression which is obtained for a solution 
u(r, x) of Lu = xu using the variation of constants formula (3.5), it may be 
shown that, up to a multiplicative constant, an arbitrary solution of 
Lu = xu has the asymptotic form 

u(r, x) = sin(& r + t(x)) + o(1) 

as r + co, whenever x > 0; the function r(x) depends on the boundary con- 
ditions which are satisfied by u(r, x) at 0 (cf. [6, lot. tit]). It is therefore 
evident that for fixed x > 0, the linearly independent solutions of Lu = xu 
differ from one another “at infinity” only by a phase shift, and we may 
deduce, using Definition 2, that for each x > 0 no subordinate solutions of 
Lu = xu exists. The conclusion that the spectrum is absolutely continuous 
on (0, co) is then immediate by Theorem 3. If x < 0, the solutions ul(r, x) 
(see (2.2)) of Lu=xu have the asymptotic form (exp sr)(q(s) + o(l)) as 
r--t co, where s= fi and q(s) is an analytic function of s for s>O (cf. 
[6, lot. tit]). Since the zeros of q(s) must be isolated, Lu=xu is non- 
oscillatory for x < 0; hence the parabolic point is 0, and the spectrum is 
discrete on (-co, 0). 

Comparing Titchmarsh’s proof with the method outlined above, it is 
seen that a considerable economy of effort has been achieved by the use of 
Theorem 3. 

In conclusion, we remark that the results of this paper apply equally to 
any Sturm-Liouville operator for which the corresponding differential 
expression is regular at 0 and in the limit point case at infinity. We have 
emphasised the application to Schriidinger operators because the particular 
decomposition of the spectrum we have considered is especially relevant to 
quantum mechanics. 
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