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5. STRONG KRULI. PAIRS: EXAMPLES 

\Ve use the terminology and the results of Part I throughout. In particular, 
(E, R) denotes a Krull pair, that is, E is a subring of R, maximal in its Asano 
class such that the E is &Noetherian (the Noether condition for divisorial 
thick two-sided ideals of E holds). 

To establish a factorization of all one-sided thick ideals of E we impose 
one more condition: 

5.1. A Krull pair (E, R) is called strong if every maximal element F in 
the Asano class 01 of E is d-Noetherian and R is a left-Asano quotient ring of E. 

This condition entails that every thick divisorial left ideal of every maximal 
order in iy is symbolically invertible, that is, a member of the Brandt groupoid 
B&Q) = K (see Theorem 3.6 and Corollary 3.8). In Section 6, the groupoid k’ 
is investigated from a general point of view. This is used in Section 7 to obtain 
a factorization theory for one-sided ideals of a strong Krull pair. But since 
we now have completed the essential definitions, it is appropriate first to point 
out examples of Krull pairs and strong Krull pairs showing that important 
classes of rings are of the type considered in this paper. 

(a) The Commutative Case. 

We begin with a more general result. 

5.1. PROPOSITION. Let (E, R) be a Krull pair such that the center Z of E is a 
domain, and the center of R contains the quotient field K of Z. Then Z is a Krull 
domain. 

Proof. For a prime P of E let P(‘l) be the symbolic product of n factors P. 
By setting +(x) _ n ifs t P(“o, x $ P’ ,171) for x E Z, s == 0, we define a discrete , 
valuation of Z. (zlp(.v~) =: E$(.Y) + (* ) . ZJ 2’ 1s seen using the fact that every two- 
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sided ideal Ex has the ideal factorization Ex -= Pfwpfr)) h A, where A $L P, 
and the commutativitp of G,(E) is proved in Theorem 4.5. V, may be trivial 
on 2; in fact, all et, are trivial on 2 (hence K) if and only if Z = K. Clearly, 
2 is the intersection of the valuation rings in K which belong to the vp , since 
E n k’ = 2. r+(x) # 0 for only finitely many P is clear since Ex is a symbolic 
product of only finitely many primes of E (see Theorem 4.5). These properties 
characterize Krull domains (see Bourbaki [2]). 

5.2. CCROLLARY. Let Z be a (commutative) domain, K its quotient field. Then 
(Z, K) is a KruN pair if and only if Z is a lCrul1 domain. 

Proof. Specializing 5.1 (K = R), we obtain the “only if” contention. 
Now suppose that Z is a Krull domain. It is easy to see that our concepts of 
divisorial ideals and modules are equivalent to the usual ones in the com- 
mutative case (cf. Bourbaki, in particular [2, Sect. 1, Proposition l,c]). If t3 
is the Asano class of Z, &fs is the set of “Z-lattices in K.” The maximality of Z 
in p follows from the fact that Krull rings are completely integrally closed 
(cf. Fossum [5, Chap. 1, Sect. 31). T ririally, every subring of a commutative 
ring is bounded, and every nonzero ideal of a domain thick. 

We want to point out that even in the commutative case our approach is a 
bit more general than, say, Bourbaki’s, for we did not exclude rings containing 
divisors of zero. In this case, (E, R) being a Krull pair with R commutative, 
the usual Krull ring ideal theory holds for thick ideals by Theorem 4.5. 

(b) Asano’s Noncommutatizfe Arithmetics 

If E is a bounded maximal Asano order, and R is its Asano quotient ring, 
then our Ms is the set of fractional left or right ideals of orders Asano-equivalent 
to E. In fact, Asano [l] and Jacobson [S] show implicitly that these fractional 
ideals form a module system. The ascending chain condition for two-sided 
ideals now implies that (E, R) is a Krull pair. By the maximality of prime 
ideals (one of Asano’s axioms) we may apply Proposition 4.7 to obtain Theorem 
4.5 with ordinary ideal products, i.e., the fundamental theorems of Asano’s 
on two-sided ideals. 

Factorization of one-sided ideals is approached by Asano as follows: By 
imposing a restricted descending chain condition, the Artin-Wedderburn 
structure theory is available for factor rings modulo two-sided primes. This 
yields that these factor rings are principal ideal rings. The factorization theory 
of principal ideal rings is then used to find the desired ideal theory of E. These 
methods cannot be applied for a general Krull pair (E, R), because there is no 
structure theory of the factor ring even available if one imposes descending 
chain conditions on divisorial one-sided ideals containing a prime of E. However, 
for a strong Krull pair, Asano’s techniques can be replaced to some extent 
by a closer inspection of the Brandt groupoid and its ordering (Sections 6 and 7). 
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(c) Finite Central Extensions of Commutative Krull Domains 

The “orders over Krull domains” as defined in Fossum [6] also yield a 
wide class of interesting Krull pairs. Fossum considers a simple central algebra R 
of finite dimension over the quotient field K of a commutative Krull domain Z. 
(We do not bother with the easy modifications if R is only semisimple, or K 
is a subfield of the center.) If now His an order in Fossum’s sense (a “Z-lattice” 
of full rank which is a ring of Z-integral elements), we only reformulate state- 
ments of the paper [6] in saying that the Asano class /3 of H consists of all 
Z-orders in R and that MB is identical with the set of Z-lattices (of full rank) 
in R (cf. 5.4 below), The maximal elements of /3 are just the “maximal orders.” 
Fossum shows, by- a classical discriminant argument, that each order H is a 
subring of some maximal order E. 

5.3. If E is a maximal Z-order (in the sense of [6]), Z a Krull domain, 
and R the full quotient ring of E, then (E, R) is a strong Krull pair. 

Proof. Since E is an arbitrary maximal order, and the boundedness is 
trivial in central quotient rings, we need only show that E is d-Noetherian. 
For a hight one prime ideal p of Z write, as usual, Z, = {y-?v; X, y E Z, y $p}, 
and for A E -MB let R, == Z, A4. Using the fact that E =I n E, (p runs through 
all hight one prime ideals of Z), and that all these E, are maximal ZB-orders, 
it is not difficult to see that for a divisorial left ideal -4 of E (in our sense) there 
holds iz = n A, . From this we obtain, by the arguments proving [5, 
Theorem 3.61, that E is &Noetherian, even &left-Noetherian. 

(d) -2 Small Injkite Matrix Ring over Krull Domains 

5.4. Let R be a central quotient ring of the ring E and Z be the center 
of E. Then E is bounded in R. -4 is in M, (/I the ilsano class of E) if and only 
if there are zr , zs E R* n Z such that z,E $ ,4 C z;‘E. (If c E R*, then c-l = 
z-It for some .a E Z n R* and t E E. Hence c-lE =I +tE L .z1E2 = z-‘E, 
Ez == zE C cl?. This argument shows that E is bounded, and may be used 
to find z1 and z, such that z,E C uE, vE c‘ z;‘E, where u, ~1 are elements in 
R* such that uE C _i $ aE, existing by 2.3. if &4 E 11&j .) 

Now let Z be a Krull domain and K be its quotient field. In the ring S of, 
say, row-finite matrices over K choose a set of matrix units eij (I .< i, j < CO), 
eijekz == &. . eiz . The unit of S is 1 = Cy=, eii . We consider the subring R 
of S, consisting of the elements 

(:V may be arbitrary large.) 1Ve write this in a shorter form, 

r : = x + C xijeii , 
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tacitly assuming almost all sij to be 0. We denote R by K:,, and consider 
the subring E = .ZLxm ={r~+C~,~.e~,~Rand~,xij~Z}. 

Clearly, R is a central quotient ring of E. Hence E is bounded by 5.4. Let 
,6? be the Asano class of E, and suppose that there is an order F in B such that 
E CF. By Theorem 4.5 we tind a x E Z n R such that E CF C z-lE. If now 
r := x + x xijeij = Cyijeij , then for every entry y = yij of the matrix r 
we find 

ye,, = e,,rejl cz EFE C F3 == F. 

This implies that all the natural powers, (yer$ = y”e,, , are in F, hence 
.P E s-12. Since Krull rings are completely integrally closed, this is only 

-P ossible for y E 2. We have seen r E E, hence E is maximal in 8. 
Next we want to show that E is d-Noetherian. For this purpose it is necessary 

to inspect two-sided ideals of E more closely. If r = x + C xijeij =: ~~~~~~~~ 
we define y(r) = x, and D(r) = zy4’ijZ. D(r) is an ideal of 2, and IJI a ring 
epimorphism E --f 2. The kernel U of q~ consists precisely of all finite matrices 
(that is, those having almost all entries 0). U is not thick (no finite matrix is 
in R*). For any thick ideal A of E we may define D(A) =: xrEA D(r), and 
q(z4) = xrEA v(r) . Z. D(A) and p(A) are ideals of 2. 

5.5. If .-I is a two-sided ideal of E then d = D(a) . Z: + q(A) . E. 
rl is thick, iff v,(J) :f 0. There holds ~(4) C D(A). A is divisorial iff 0(.4) = 
?(A), and D(.4) is a divisorial idea1 of 2. 

Proof. First we show that D(d) . U 5 ‘-1. Let x E D(,4). Then there exist 
m elements rill = C y$eij E A, such that CT”=, xj,j y$)Z 3 x. x is a finite sum 
of elements in the ideals yj:‘Z. For any triple (i, j, I) and x E Z, we have 
2 elirc~)e,l z 2 . yli)e,, E A, hence s . e,, E ,4, and s eii === eiixellelj E A. 
This proves ,9(.-Z) UC A. 

If x E I then there exist rl ,..., I’,,, E ‘4, such that x == x:1, p)(rJ 1 p(r), 
where r = xr:, ri E il. Therefore we have r = x + xlGi,jc,v xijeij for some 
natural number N. Note that all x . eii E A, since x = x,v+r v+.r E D(4). . . 
Similarly (.x + xii)eid and xije, E -4, if 1 < i, j ,< N and i # j. This implies 
~:lsi,jc,v xijeij E --l, and finally x E -4. Hence ~(4) C 4, and q(d) E C -4. 

If conversely r E 24, then r - F(r) E d n U, since q(r) E =1. But B n c: c 
D(,4) . C’and pi(r) E ~(4) . E imply r = (r -- v(r)) + q(r) E D(A) L’ t y(=l) E. 
In view of the formula A = D(A) . U $- v(A) . E the remark on thickness is 
trivial. ~(~-1) C D(-4) follows from the definitions. Note p(A)-’ 1 Z&4-r. 

Xext we show -4-l = D(A)-l . E, if -4 is thick. (D(a)-l, ~(4))~ are meant to 
be inverses in K.) Since E is a maximal order we have -4-l == E/A. Clearly 

D(A)-l E . rl = &4)-l . D(A) . U + D(A)-’ . ~(14) . E 

C Z . U + c&4-’ . &4) . E 

CZ.U+Z.EECE. 
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It follows that D(A)-l E C A-l. Conversely, if r E -4-l, that is Y . rl C E; we 
obtain r . D(J) CT C E. But U, hence Y . D(tl) U, contains only finite matrices, 
that is r . D(A) U C L;, hence CT Y U D(A) C U2 == U. This Gelds that 
for all coefficients yi, of Y = x:3’ijeii there holds yijD(A) L 2, hence J[, E 
Z/D(rZ) = 0(,4)-l, proving T E D(A)-l . E and D(A)-l E = .-1-l. 

A similar reasoning shows A := (D(J)-l . E)--’ = D(A) . E. -4 is thick and 
divisorial, iff D(rZ) U + y(-q) . E == D(A) . E. Th is is only possible if ~(-4) z=. --- -- -- 
D(A), which, conversely, implies D(A) =: D(.4) = p(A), and -4 == D(A) E. 
It is now evident that D + DE defines a monotone bijective map of the set 
of divisorial ideals in 2 onto the set of divisorial two-sided ideals of Z&., . 
Hence Z:,, is &Noetherian. In view of Proposition 5.1 we have proved 

5.6. PROPOSITIOE. Let Z he a commutative domain e&h quotient jield K. 
Then the infinite matrix rings (ZL,, , KL,,), as defined in this section, form 
a Krull pair if and only if Z is a Krull ring. 

It should be noted that Zk,, is not, as a ring, finitely generated over its 
center Z. The structure of natural numbers as an index set of matrix units 
did not enter into the discussion. A similar construction for an arbitrary index 
set would allow for noncountable generating sets. But Z>,,, is locall!- algebraic 
over Z. 

It is an entertaining exercise to compare the results of Section 4, applied 
to the Krull pair of Proposition 5.6, with a more direct and comprehensive 
discussion using the formula .-I = D(A) L; + ~(-4) . E. It can be shown 
that for Zk,, the ascending chain condition for divisorial left ideals does not 
apply, even if Z is the ring of rational integers. 

6. NORMAL MODULE SYSTEMS 

6.1. A module system R is called normal if (i) K = li,! , i.e., every 
order of K is maximal; (ii) K = K*, i.e., every element of K is invertible; 
(iii) there is an order E in K such that the bimodule group G,(E), defined in 1.6, 
is Abelian and freely generated by the maximal ideals in E. 

By Theorems 3.6 and 4.5. and by 4.11 we know that if (E, Rj is a Gull 
pair, and R a left Ore quotient ring of E then the system K of thick dirisorial 
modules in R for which =Ij,l and A\>-4 are &Noetherian and maximal in the 
Asano class of E, form a normal module systems. The multiplication, then, 
is the symbolic one. In this section anything is done in the abstract system K. 
Therefore, we write the product of A, B in K as A& A . B, or sometimes 
.-1 : B, if it is proper. In applying the results to a Krull pair, the asterisks ha\-e 
to be inserted. Note that what is here called, say, a left ideal of E, is to be taken 
with respect to the system K, and means in the application to the Gull system 
(E, R) a “thick di\-isorial left ideal of E.” 
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In the rest of this paper, K denotes a normal module system. K carries 
two kinds of structure: the original module system structure (it is a special 
kind of partially ordered semigroup), and the Brandt groupoid structure (that 
is a proper multiplication which is not everywhere defined). In our applications 
the Brandt groupoid was derived from the module system. Here we do a partial 
converse for a normal system. We want to describe the basic operations of 
the module system in terms of the Brandt groupoid operations, which are 
(A, B) -+ (A-1 : B, &‘). 

1Ce first describe the partial ordering, which is done by singling out the 
“positive” elements, in this case called “integer.” 

6.11. A E K is called integer iff A” C A. (This is equivalent to -4 being 
contained in its left (or right) order E : R/.4, or to A being an ideal in E.) 

6.1. If -4B = A 0 B and A, B are integers, then -4 0 R is an integer. 
(For ,4 = B _C (.4\A) 0 B = (B/B)B = B C B\,B, and B\B is the right order 
of -4B. This may be wrong if the product is not proper.) 

6.111. If E and F are orders of K then D,, = (FE)-’ is called distance 
(from E to F). \Ve reserve the letter D for distances. FE > E implies D,, C E, 
hence D,, is an integer and a left E; right F-ideal. Note D,, =z E. 

6.2. Let S, Y E K. Then X 2 I’ if and only if there are integers -d, B E R 
such that A c I7 0 B = X. If, in addition, X/X = Y/Y then we may take 
--l = Y/l-, hence Y 0 B = X. 

Proqf. It is convenient to indicate the left and right orders by subscripts. 

6.IV. For any -4 E K write =1 -= AGH if and only if J/.-1 = G and 
-i,,d = H. Let X = XE, , Y = Yc,., , X _C 1: Then A =;I D,, , B = Y-IS 
will do, for B = BHF implies AYB = D,,GX = (GE)-‘. (GE) . .r(: q = EX = S 
and B = Y-rXC Y-lY = H shows B to be an integer. 

Conversely, if A 0 I-‘0 B = X, with A, B integers, then .J = -gCE C E, 
B = B, c F, thus Y == AXB 2 EXF = ,Y. 

6.3. COROLL.~RY. If X C k; and Y is an integer, then X is an integer. 

6.4. COROLL.4RY. A E K is an integer if and only if A is contained in some order. 

Kext we describe multiplication and residuation in terms of Brandt groupoid 
operations. 

6.5. If A, BE K, and A = AEF , B = B,, , then 

BB = A 0 D;:. 0 B, A/B = A 0 DFH 0 B-l. 
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Prooj. The first equation is trivial. Since B-lB = H, we see that 
AD,B-‘B =: -4 i D, C A, showing A 0 DrH 0 B-l CA/B. On the other hand, 
we conclude from (A/B)B c A that A == r3F 1 (A/B) BHF = (A/B) BDii , 
finally AD,&1 2 (A/B) BD;iDI;&’ = (A/B) BH%-1 2 (A/B). 

6.6. COROLLART. If E, F are orders then E/F = D,, . 

Hence if we “know” the set of distances, the module system operations 
can be expressed by those of the Brandt groupoid. 

6.7. If d == -4,, , and G, H are orders, then (G, H) contains a unique 
smallest A’ containing A, and a unique largest E’ contained in A, namely, 
X == GAH = 0,; 0 A c D;: , and Ir = G\A/H =: DGE 0 A 0 DFH . 

Proof. For the equations see 6.5. That S has the required properties is 
clear since G is a left unity for (G, H). k’3_ R follows from 6.2 and the remark 
following 6.111. Clearly IIE (G, H). Now, if Z = Z,, c A, then l&iZD;A -: 
EGZHF = EZH C E,4H = A, h ence Z = D,,D;iZD;;:D, C D,,AD,, =- I’. 

6.8. COROLLARY. If A = tl,, , then A has a unique integral proper minimal 
left factor in G(E), containing A, namely AE, and then A = (AE) 3 D,, . 4 is an 
integer if and only if AE is an integer. 

Proof. A = .4E c D,, and the first assertion only specializes 6.7. If .-1E 
is an integer so is rZ by Corollary 6.3. If A is an integer then =1 C E, thus 
-3E C E, and AE is an integer too. 

Next we characterize distances. 

6.9. PROPCSITICK. Let rZ E K, and define E, F by A = AEF . Then the 
folloming statements on A are equivalent: 

(i) A is a distance (i.e., A -_ D,,); 

(ii) A is the unique largest integer in (E, F); 

(iii) =1 C E, and there is no integer C E G(E), such that A C C C E; 

(iv) d is an integer, and if for an integer B = B,, there holds A C B, then 
B is an order (i.e., I3 = G); 

(v) d(A/A) == A/A; 

(vi) A,22 == 4 . . 

Proof. By Corollary 6.8, AE .= E and A = D,, are equivalent, showing 
that (i), (ii), and (v) are equivalent. AE = E can be written AAA-’ .= AA-’ 
which is equivalent to A2 = AAA-lA = AA-IA = A, that is (vi). (iv) entails 
(iii), and (iii) entails (i). Last, we show that (iii) entails (iv). If B is as supposed 
in (iv) then by 6.2 there exist integers S, 1. such that d ~- -Y : B 1 1’ =: 
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X 0 B 0 Z’ 0 (X 0 Y) C XBX-l. But XBX-1 is an integer element of G(E). 
By (iii) we get XBX-1 -Z E, or B := X-IEX z X-IX = BB-1 .= G. 

6.10. COROLLARY. If -3 L C, C is an integer, and A a distance, then C is a 
distance. 

6.11. PROPOSITION. If E, F are orders in K and B E (E, F) then A - B-l 0 
A 0 B is an isomorphism of lattice ordered groups G(E) + G(F), which does not 
depend on B E (E, F). 

Only the independence from B needs a proof. 
Using commutativity, A = -3 0 (DEFB-l)(D,&l)-l = (DE~B-l)-lAD,FB-l=z 

B o D o -q;i o DEF F B-1, hence B-IAB == D;:AD,, , as required. 

6.V. We form the abstract lattice-ordered group G of those classes 
(B-‘AB, BIB = E) = :A. Then there is, for each order F, one and only one 
A, E A n G(F), and A - A, is an isomorphism of lattice-ordered groups. 

It is convenient to let 6 act on K from the right and left, defining, if 
X = XGH , AX = A, o X, XA = X o A,. 

6.12. In the action just defined (6 centralizes K, that is AX = XA 
for each X E K. 

Proof. 

A x A-l = AC X A$ = DGHAH(D;: X A$) 

= D&D;& X A;‘) AH = X. 

6.VI. We define two functions @, !l-‘: K -+ G by setting A = YA . 
DEl’ = @A 0;: for every A E (E, F). We call @ lower bound and Y upper 
bound. 

By 6.7 and Corollary 6.8 (@A)E is the unique largest E-bimodule contained 
in A, (OA)F the unique largest F-bimodule contained in F, (!#‘A), the unique 
smallest E-bimodule containing A, and (!PA)F the unique smallest F-bimodule 
containing A = AEF . Note @(‘4-l) = (y-4)-l. A is an integer iff y-4 is an 
integer, and A is a distance iff Y’L4 = 1 ( see Corollary 6.8 and Proposition 6.9). 

6.13. IfA_CB,then@AC@BandYACYB. 

Proof. This is clear if A and B have the same right (or left) order. If not, 
then there exist integers X, Y such that A = X 0 B 0 Y _C BY_C B. A and BY 
have the same right order, BY and B the same left order. 
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6.14. Let L9, B E K, .4 E (E, F), B E (G, N). Then there holds 

(i) (@A .@B), = dBD,,D,,DFE = @(AB).D&D,,,D,,D,,, 
(ii) (Ya4 .YB), =: rlBD&,D,,D;k === Y(Y(=IB). D,,D&D,,D,i. 

Proof. By 6.1- and 6.11 we find 

(@A), . PPNE = AD,(%DFE)-~ B@,G(&A~ 

-A4F(FG)BIjHCDGFDFE q = rZBDHcD,,D,,. 

(ii) is proved similarly. 

6.15. COROLLARY. If --I, B E K, then @A . @B C @(AB). If, in addition, 
AB = A 0 B, then Y.4 . YB 2 Y(AB). 

Proof. Since D,{,Do,DF, is a proper product of integer modules, it is 
an integer, and 6.14 shows (@=1 @B), C =IB. (@(=2B))E is the largest E- 
bimodule contained in AB, hence (D-4 @B)E C (@.4B)E. From this we derive 
YA . YB I Y(AB) using the formulas (@X-l)--l = Y(X), and B-l 0 ,4-l := 
(A 0 B)-I. 

6.16. COROLLARY. If A, B E K, -4 E (E, F), B E (G, H), then 

(i) (PA . @B = @(dB) is equiwalent to FG c EH. 

(ii) YA * YB = Y(AB) is equivalent to D,,Do, = D,, , or HDo,E =: HE. 

If, in addition, ;1B = =1 ; B, then @A diB = @(.;1B), and YA YB -: 
Y(AB) is equivalent to F c EH, and F C HE. (D,iD,,D,,DFE is equivalent 
to EH I= EFGH, or FG L EH.) These properties of upper and lower bounds 
are used in Section 7. The next proposition is announced for its own sake. 

6.17. PROPOSITION. Let E, F be orders of the normal module system K. Then 
A --f A\A maps the set of Ieft E-ideals (in K) which contain the distance De, 
bijectively onto the set of orders contained in FE. 

Proof. D,, ‘c .-l c E, E = J/&4 implies .-I = DEc , DEF :== D,, c D,, , 
where G =- A\A. Hence I = YDe, = 1 . 1 = YD,, . YD,, , and by Corollary 
6.16 we see G C FE. Conversely, if G C FE, we conclude GE C FE, D,, 2 DEf . 
Thus G --, D,, is the inverse map of A + A,=1. 

7. FACTORIZATION OF ONE-SIDED IDEALS 

Let (E, R) be a strong Krull pair and K be the Brandt groupoid of thick 
divisorial modules with left-order maximal in the Asano-class of E. First 
we want to look at lattice properties of k’. If -4, B E K, the set theoretic intersec- 
tion rZ n B may be not in K. But we have the following 
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7.1. If A, B E K have the same left (or right) order F then -4 n B and -- 
.4 + B E K. 

PYOO~. By 4.6 there are (two-sided) thick divisorial ideals X, I’, U, V of F 
suchthatXCA, YCB, UC-d-l, VcB-l, henceXr YCXn YCAnBC -- 
A + B _C A + B C U-’ * V; 2.3 yields A n B, A + B, A + B E -VI@. 
Because of i4 n B C A n B C A n B = A n B, the module A n B is divisorial. 

7.2. PROPOSITION. Let (E, R) be a strong KruN pair. For any maximal element 
F of the Asano class 01 of E the set FK of left F-modules in K = Bd(q) forms 
a lattice if meet and join are defined by A n B to be the set intersection, and 
AuB=A+B. IjA,BeFK and CEK, then (L4~B):rC=(-4*C)~ 
(B * C) and C * (A u B) = (C * =1) u (C * B). 

Proof. By 7.1 it is easily seen that pK is a lattice-ordered semigroup under 
symbolic multiplication. For additive subgroups of R we have (A + B)C = 
AC + BC hence, for A, B E pK and C E K, ?i?? + %? <, cATB)C == 
(A + B) * C C (A u B) * C holds, which implies (-4 c C) U (B * C) C 
(14 u B) * C. 

Using 2.14, we find, on the other hand, (A T C) u (B * C) Z AC + BC = -- 
(A + B)C 1 (A + B)C = (-4 u B)C, which implies (-4 ic C) u (B * C) 1 
(A u B) * C. We have shown (A u B) * C = (A ;i: C) u (B * C). If C is on 
the left side we must not apply 2.14 because we do not know whether A f B 
has a maximal right order. But then, for any X E $ we may write C * S = 
CO D--l 0 X, where D is the distance D =: D,, , G = C\,C (see 6.5) and 
conclude as follows: 

C*(9uB) I (C*A)U(C*B)=(C.~D-~*=~)U(C~D-~~B) 

== (C * C-l) * ((C * D-’ x A) u (C * D-’ * B)) 

2 C c ((C-l * C * D-l i: A) u (C-l s C c D-’ > B)) 

= C * ((D-l * A) u (D-l * B)) 2 C * (A u B). 

7.1. We call a normal module system K a normal lattice system if it 
has the properties which are proved in Proposition 7.2 for the system K = 
&(4. 

In order to spare asterisks we operate (in the rest of this section) in a normal 
lattice system K and write multiplication in K without on asterisk. All results 
are, after inserting the asterisks, propositions on thick divisorial ideals (and 
modules) of the system K = Bd(+) of a strong Krull pair. 

Ule investigate now how the prime factorization of the universal bimodule 
group G of K can be used to obtain factorizations for the elements of K. 

7.11. (i) If Aj E k’ (; = I,..., r) the product A, . ... -;I, is called smooth 
if @(A, ... -4,) = G-4, .” G-4, and Y(L4i ... A,) = Y-44, ... Y“4,. 

481/48/1-x2 
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(ii) An element Q E K is called smoothly atomic if Q is an integer, not an 
order, and for any smooth proper product Q = A 0 B with integers A, B there 
holds A = Q or B = Q. (If rZ =L- Q, this implies @B = 1, hence B must 
be an order; in fact, B == Q-‘Q.) 

It turns out that every integer d can be written as a proper smooth product 
of smoothly atomic factors and the smoothly atomic elements can be charac- 
terized (Theorem 7.6 below). Proposition 7.7 says to what extent this factoriza- 
tion is unique. We make some preparatory observations. 

It should be noted that ABC is a smooth product if ilB and BC are so. 
Inserting two-sided factors in proper products does not affect smoothness, 
as expressed by 

7.3. Let B c B be a smooth product, d = .4,, , and XE G(F). Then 
-4 0 X 0 B is a smooth product. 

Proof. Let @X = A. Then, since X is two-sided, we have A == YX, and 
-4 5 X 0 B = (AA)B = A(,4B). It follows from Corollary 6.16 that for any 
U E K, A E 6 there holds @(AU) = A@(U), and ?P(AU) = dY( U). From 
@(AB) = @(A)@(B) we conclude, therefore, that @(AXB) = @(AAB) = 
A@(.4B) = A . @A . @B z Q-4 A . @B == a.4 @X . @B, and similarly 
Y(a4XB) = Y/l . Y/k- YB. 

7.4. Let =1 = d,, E K, @A = rA, r, A integer elements of the universal 
bimodule group G of the normal lattice system K. Then A == I’,A, (which is 
not smooth for E + F). 

Proof. Use 6.5, 6.12, and 6.V in order to obtain r,A, = r,D;iA, = 
rD$A = I-AD;; =: Q-4 0;; = =1. 

7.5. Let -4, r, A be as in 7.4, and A be a distance. Then -4 =: 
(d u A,)(.4 u r,) w ic is a smooth (but not necessarily proper) product. h’ h 

Proof. Note A,A c d, dr, C -4, AErF = A = A2 (see 6.2, 7.4). Using 
Proposition 7.2, we find (A u A,)(‘4 u r,) == A2 u A,A u Ar, u A,r, = A, 
since . . C A u A, C E, A C A u r, c F, A u AE , and A u r, are distances 
(6.10). As for smoothness, we show @(A u AE) = A and @(A u r,) = r. 
By 6.13 we see @(A u A,) >_ A, and @(,4 u r,) 1 r. Using 6.15 we obtain 
Al’ = @A = @((.4 u A,)(A u r,)) 1 @(A u AE) @(A u r,) r> Ar. This is only 
possible if @(A u AE) = A, and @(A u I’,) = r. 

Now we can prove the following fundamental facts: 

7.6. THEOREM. Let K be a normal lattice system. Then (i) holds: Q E K is 
smoothIy atomic zy and only if Q is an integer and @Q is a prime. (In other words, 
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a left ideal Q of the order E is smoothly atomic if and only {f it contains a two- 
sided prime ideal of E, and is d$ferent from E. We say “Q belongs to @Q.“) 

(ii) IfAEKisaninteger,and@A -II; ... .17,,wherethe1Ti(i- l,...,~) 
are (not necessarily dt$ferent) primes of G, then there exist smoothly atomic elements 

Q,. of K, such that A == Q1 . ..’ . QT , and @(Qi) == Iii (i = I,..., r). 
$i-~i d p d e en on the sequel in which the ITi are taken. But since d determines 
@A uniquely, the d$j%rent primes of G to which the atomic factors belong and 
their multiplicities are the same for an?’ such factorization.) 

Proof. (i) If Q is integer, SPQ is a prime, and Q = A 3 B is a smooth product 
of integers A, B E K, then @Q = @(AB) = @A@B implies, say, @.4 :y: 1, 
@B = @Q. Since Ld is an integer, @A = 1 entails that A is an order, namely, the 
left order of ,4 5 B = Q. Hence, B == Q, and Q is shown to be smoothly atomic. 

If .-I = D,, E K is a distance, not an order, and @-+I is not prime, then for 
some prime 17 and integer r + 1 we have @PI -_ I7r. From 7.5 we obtain 
A = QX where Q == -4 u L’c , S = -4 v rr, @Q ;: II, @S = r. Observing 

-4 C Q C E, we find (by 6.2) an integer I’E K such that il = Q 2 I, namely, 
I’ =z Q-i o A. Then I’ = Q-‘QXZ Ly, h ence @y 1 @S == r. and IIr = 
@(QI’) 2 @Q . @Y 2 IIll7 [. see 6.15). This is only possible, if @If == @9 = I’, 
hence @(Q 0 I’) q = @(Q) @(I-). L.. Cmce -4 is a distance we have Y-4 =- 1. From 
A C Q _C E, A _C FLF we obtain, using 6.15, that YQ = 1, YJ- = 1, hence 
the product il = Q 0 I- is smooth. This shows that -4 is not smoothly atomic. 
If A = YA De, is an integer, not a distance and not an order, then Y-4 C 1. 
A =-- (Y& c D,, is smooth by 7.3. Hence, in this case, -4 is smoothlq- atomic, 
iff E = F, and (Y’A), == (@rl), == ;1 is prime; (i) is proved. 

As to (ii), we note first that we may assume B to be a distance: if --I == 
YA . DEF then -4 = (YA), 0 DEF is a smooth product. If (ii) is known for 
D EP, that is, DEF=Q1o...oQrr Qi smoothly atomic, and Y-4 = 17. I’, 
n prime, r integer, then for any i (; =: l,..., r - 1) we have .-I == 
(r. Q1 . ... Qi) (flQ,+r .‘. Qr) by 6.12, and if G is the right order of Qi 
we may write A = r (Qr 2 ... 0 Qi 0 Llo 0 Q,+t 5 ... 2 Q,). 17, is smoothly 
atomic and belongs to Ll, hence the factor right of r is written as a smooth 
product of smoothly atomic factors (see 7.3). Assuming we can start with an 
arbitrary sequel of fl, such that @(QJ == D, , we may insert the prime factors 
of Y-4 at any position we want, and are done. 

In order to prove that (ii) is correct for =1 = De, being a distance, we observe 
that we have already found a smooth factorization A = Q 0 E’, where @Q = 1;1 
was an arbitrary prime factor of G-4. @I’ = n-l@(4) has one prime factor 
less than @A, and Er is a distance. Hence, by induction, y has a factorization 
E’=Q20...oQr as required in (ii), and ,-I = Q 0 Q, 0 ... 0 Q,. is the desired 
factorization of A. 

The factorization of Theorem 7.6(ii) is generally not unique. For two factors 
we describe which factors are possible. 
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7.7. PROPOSITICN. Let -4 = Be, E K be an integer, (PA == FA, F, A C 1. Then 
(i) and (ii) are equiwaIent statements for an U E K: 

(i) -4 u rE c UC A(d u A,)-‘, and Lr15-l == E. 

(ii) There exists a b’ E K such that tI = C’ : T, Lr, 1’ are integers and 
@U = r, CD?,’ = A. 

Proof. Assume (ii). From @U =.: r we conclude r, L c’, and since --I x: 
L’ c K c L. this implies =2 u r, C C. Similarly .-l u A, C TV. hence 1’ = 
A-ll’F--l C .4(,4 U A,)-‘. dd-l = UC,T-l is clear. 

Assume (i). Define I- by I-’ = Z’-l=1. 
B _C U implies I* to be integer. 1Ve have I’ == L’-lrZ 2 (A(4 U AF) ‘))‘-+I == 

AvA,. Hence by 6.13, @I’2 A, @U3 r, and 6.15 yields dr =- Q-4 == 
@(IX’) 2 @ju @I’ == dr. This is only possible if @U == A, and @I,’ = L’. 

By 7.7 cases of unique smooth factorizations are pointed out. 

7.8. COROLLARY. If d = .dEF. E K is an integer, @PA c l7?, and A v LIE is a 
maximal left ideal of E, then Q == A v II, is the unique smooth!y atomic proper 
left factor of A belonging to Il. 

Prooj. -4pplying 7.7 with r == Ii’, A = IV@A, we have for any atomic 
smooth proper left factor U that -4 u L7, C I;‘C =Z(A u A,)-’ holds. .4(J U A,)-’ 

is a left ideal of E, and different from E, for E == -4(A u ~4,))~ would imply 
iz = EC4 u Ar) 2 .d u d, , and @A 2 @(A u LjF) 2 A, which is impossible. 
The maximality of =1 u l7, entails d u I7, == CT -:= A(.4 u Ar)-I. 

7.9. PROPCSITICN. Let J,, =. A = Q, z ... o Q,. such that (i) all Qi are 
maximal left ideals in their left order, (ii) @Qi : Ll (i = I...., r), and (iii) 
D-4 :- IT. Then, if -4 y- Q,’ i ... D QS’, with all Qi’ (i ::m I,..., s) smoothI> 
atomic, it follows that I’ = s, and Q, =-= Q1’, Q)p -mm Q).“,..., Q,. -: Q,.‘. If further 
A c B C F, and B is a right ideal of F, then, for some i, there holds B - Qi = 
Qi,l c ..’ = Q,q . 

Proof. First we show A u LIE =.= Q, . From 7.7 we know d u fl, L Q, c 
.3(rZ v Il-‘)-I. If .-I’ = Qa ... Qr, then @.A’ 3 @Q, . ... . @Q, = II-l, and 
l7r = @(--I) 2 Li’ . @(d’), hence Q-4 = LrT-l. Since Proposition 7.9 is trivial 
for y == 1, we may assume r :- I and by induction on I, that Proposition 7.9 
is proved for =1’ instead of -4. Clearly .+I’ =~ Oil.4 c (-4 u n&l-4 C .+-i-4 = F, 
hence by Proposition 7.9 (applied to --f’ and B’ =: (A u Zi’&t.J), we find 
some i =.- 2, such that B’ = (=1 u IT,)-l--f -Z Q; o ... ,I Cl,. Now Lfr = @A == 

@((A LJ Ii’,)B’) 2 I7 II-i-l, hence r-<r-i+2, i:z2, that is, i=2, 
and B’ mu Qe: .‘. : Q,. . From ,4 7 Q, : 8’ -: (--I u L!,)c B’ we conclude 
Q, z- -4 U LrE , as desired. In particular, -4 u ILIE is a masimal left ideal of E, 
and 7.8 shows that Q, :- --I u L17, : Qi’, and B’ == Q2’ ti ... 1 Q*‘. Applying 
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the induction hypothesis once more, we obtain s = Y, and Qa = Q2?‘,..., 
Qr = Q,.‘. Finally, if A C B C F, B a right ideal of F, the contention is trivial 
if .-1 = B (; = 1). If A C B, there exists an integer I’E Ksuch that A = 1’0 B, 
and 1- is not an order. Then I’ u 17, is not an order because, by 7.7, we have 
@(I‘ u ZI,) = 17. (Note @Y S 17, since Y is not an order, and @(UE) _C n 
imply @(I- u ZIE) C n.) M’e conclude -4 u IIE C Y u fl, C E, and Q, z 
A u Ii’, :: T- u ITE 3 ET. Hence there exists an integer Ztr K such that 
1- =: Qr : Z, and therefore Q, 0 A’ = Q, o Z c B. This implies -21’ = Z J B _C B, 
hence by the induction hypothesis, 13 = Qi 3 ... 0 Q,. (J’ >:: 2). and Proposi- 
tion 7.9 is proved. Note that if A is as in Proposition 7.9, there is a unique 
fine chain of left F-ideals from .-1 to F. 

*\Ye want to apply- Proposition 7.9 to the following: Let Z be a Dedekind 
ring, K be its quotient field, and R be a simple central K-algebra of K-dimen- 
sion 4. Let E be a maximal Z-order (see 5~). For a prime ideal p of Z we suppose 
that p does not ramify, and Z mod p is finite. Then pE =- P is a prime ideal 
of E, and the factor ring modulo P is a full ring at 2 >: 2 matrices over a field. 
If fl is the prime of G such that n, =: pE = P then for any maximal order F 
there holds: Every smoothly atomic left ideal Q of F, such that @Q = l7, 
is either pF or a marimal left ideal of F (because in the ring of 2 x 2 matrices 
over a field all proper left ideals are maximal). I%ow consider a left ideal d 
of E such that Q-4 == 17’ for some r ;> 1. (This is equivalent to the norm of A 
being a power of p.) From A = !?A D,, and nr cz YA _C 1, it follows that -il 
is a distance if and only if P == pE is not a proper left factor of =1 (for this 
implies YA == 1). NOW factorize A smoothly according to Theorem 7.6: 
A = Q1c ... c Q,, . d is a distance iff none of the Qi is two-sided, hence iff 
all Qi are maximal left ideals of their left orders. 

By Proposition 7.9, the tuple (Q, ,... , Qr) is uniquely determined. Together 
with Theorem 7.11 and the fact that the factorization of ideals rZ with @A 
a power of a ramified prime is trivial (namely commutative), this provides 
a very full insight in the factorization of left ideals of E.* If the K-dimension 
of R is :;.4, the uniqueness statement of Proposition 7.9 applies only to part 
of the set of distances, because, as examples show, in Proposition 7.7(i) we 
need not have equality. But note the following: 

7.10. PROPOSITION. Suppose in Propositiofz 7.7 there Iaolds, in addition, 
T u A = 1 (that is, r, A are relatively, prime). Then there holds A u r, := 

A(A u A,)-I, A = (-4 U r,) 0 (A U A,), and, if A = llo V, U, L-E K integers, 
and~iUuA=l,~~‘~r=l,thellO’=rl~r~,V=-,~~A~. 

Proof. From the assumptions we get A c U, and rA = @A L @LT. This 
implies, since @U and A are relatively prime, that @I?3 r, and similarly 
@V> A. Now we find I’A == @A Z, @LT. @L’I PA. This entails SPU = r, 
Ok’ == A. Hence U, I’ are as required in Proposition 7.7(ii), and therefore 
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A v I’, c U. There exists an integer Z E K such that A u rE = U 0 Z C Z, 
which implies I’c @(A u r,) C @Z. Comparing A = U 0 Z 0 (A u P&l 0 A 
with .4 == UT 0 T*’ we conclude 6’ = Z 0 (r-l u T&l-4 C Z, since (A u I’,)-‘A 
is an integer. 1-c Z yields @Z1 @F’ = r, @Z2 r v A == 1. Since Z is an 
integer, it must be an order, and (A U FE) I= U 0 Z = U. We can argue 
similarly for any U in Proposition 7.7(ii) with r, A as in Proposition 7.10, in 
particular for UT =m _4(-4 u A,)-l, and we see U =: A u r, = A(A u A,)-l. 
This shows that the right order of =2 u rE is the left order of A u A, , and from 
A = U 0 1’ = c’o (-4 u A,) we get TV =: A u A,. Proposition 7.10 allows us 
to establish some sort of unique multiplicative “primary” decomposition. 

7.111. X E K is called primary (a primary module) it for some prime 
17~ G and rational integers m, n. there holds IIn C XC IIm, that is, @X and 
Y-Y are in the subgroup of G generated by the prime 17 (we refer to X as 
n-primary). 

*This concept is not to be confused with primary ideals of rings in the usual 
sense but the concepts coincide in the case of ideals of Dedekind rings.* 

7.11. THEOREM (Rlultiplicative primary decomposition). Let K be a normal 
lattice system, A C K, A not an order. Then there are uniquely determined d&&rent 
primes III ,..., 17, of G, such that for IT,-primary elements Ai (i =: l,..., t), all 
not orders, there holds A = A, 0 .‘. 3 A, . The .ili are determined uniquely too 
(but depend on the sequel of the ITi (i = l,..., t) which is arbitrary). A, 1 ... 0 A, 
is a smooth product. A is an integer i’ all A, are integers, and a distance iff all -4i 
are distances. 

Proof. Recall A = !FA DEF, hence @A =-: Y-4 . @De, , if -4 E (E, F). 
Then we decompose @D,, into a product of prime powers: 

all the 17i different, and all ni > 0 (the product may be empty if E = F). 
We use Theorem 7. II inductively, beginning with r == &‘I, in order to obtain 
a smooth product De, = U, 0 ... 0 U, , with@Ui == Kl,?Q, YU, =: 1 (i = l,..., s). 
LVe write YA == IIF1 .‘. lI:‘s, .ni2;l ... nyt, with m,,, ,..., m, + 0, and using 
Ai =z IIyiX, (i = l,..., t), Aj = l7F~ (j = s + l,..., t) we obtain the smooth 
product rZ = A, 0 ... 0 A,, where none of the izi (i =z l,..., t) is an order. 
The sequel of the 171 ,..., l7, (for possible decompositions of De,) is arbitrary, 
and so is the sequel of the IT1 ,..., II, for possible decompositions of .4. 

Let A = -4, o ... 0 ,4, = -dr’ 0 ... 0 rl,.‘, where A, is not an order, both 
-4, , -;I,’ are ni-primary, --I2 ,..., J, , -4a’,..., -4,’ are primary with respect to 
primes different from 17, . There exists a positive exponent r, and an integer 
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element TE G such that I7r p r, and 17rr.4, , 17rrAI’, I’-ge ... At , I’-&’ 
... . A,’ all are integers. 

(IT,rA,)(~A, . ... . At) = (IIr’A,‘)(rA, . ... . --l,,<‘) implies, by Proposition 
7.10, that 17r7A, = LrrrA,‘, A, = A,’ and -4, .‘. A, == A, . ... . .4,,,‘. The 
uniqueness follows by induction on t. Now the !?A[ are powers (possibly 
with negative or zero exponent) of different primes, hence in Y-4, ... . Y-4, 
nothing can be cancelled. Therefore, YL4 _C 1 (resp., F-4 := 1) is equivalent to 
YAi C 1 (resp., Y&4$ = 1) for all i = I,..., t. These values at Y characterize 
integral modules (resp., distances). 

Note added in proof. There is little overlapping of [IO] with this paper, since Brung’s 
“Noncommutative Krull Rings” are quite different from our “Krull Pairs.” For example, 
the maximal order of the Hurwitz quaternion algebra is not a Krull ring in Brung’s senst’. 
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