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5. StroNG KRruLL Pairs: EXAMPLES

We use the terminology and the results of Part I throughout. In particular,
(E, R) denotes a Krull pair, that is, £ is a subring of R, maximal in its Asano
class such that the E is d-Noetherian (the Noether condition for divisorial
thick two-sided ideals of E holds).

To establish a factorization of a// one-sided thick ideals of E we impose
one more condition:

5.1. A Krull pair (E, R) is called strong if every maximal element F in
the Asano class « of E is d-Noetherian and R is a left-Asano quotient ring of E.
This condition entails that every thick divisorial left ideal of every maximal
order in « is symbolically invertible, that is, a member of the Brandt groupoid
By(ag) = K (see Theorem 3.6 and Corollary 3.8). In Section 6, the groupoid K
is investigated from a general point of view. This is used in Section 7 to obtain
a factorization theory for one-sided ideals of a strong Krull pair. But since
we now have completed the essential definitions, it is appropriate first to point
out examples of Krull pairs and strong Krull pairs showing that important
classes of rings are of the type considered in this paper.

(a) The Commutative Case.

We begin with a more general result.

5.1. ProposiTiON. Let (E, R) be a Krull pair such that the center Z of E is a
domain, and the center of R contains the quotient field K of Z. Then Z is a Krull
domain.

Proof. For a prime P of E let P™ be the symbolic product of n factors P.
By setting vp(x) = nifx e P, x ¢ PV for x € Z, x = 0, we define a discrete
valuation of Z. (vp(xy) = wvp(x) + ©(3) is seen using the fact that every two-

166
Copyright © 1977 by Academic Press, Inc.
All rights of reproduction in any form reserved. ISSN 0021-8693


https://core.ac.uk/display/81962058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MULTIPLICATIVE IDEAL THEORY, II 167

sided ideal Ex has the ideal factorization Ex = PP 5 4 where 4 L P,
and the commutativity of G4E) is proved in Theorem 4.5. vp may be trivial
on Z; in fact, all v, are trivial on Z (hence K) if and only if Z = K. Clearly,
Z is the intersection of the valuation rings in K which belong to the v, , since
ENn K = Z. 9p(x) 5 0 for only finitely many P is clear since Ex is a symbolic
product of only finitely many primes of E (see Theorem 4.5). These properties
characterize Krull domains (see Bourbaki [2]).

5.2. CcROLLARY. Let Z be a (commutative) domain, K its quotient field. Then
(Z, K) is a Krull pair if and only if Z is a Krull domain.

Proof. Specializing 5.1 (K = R), we obtain the ‘“only if” contention.
Now suppose that Z is a Krull domain. It is easy to see that our concepts of
divisorial ideals and modules are equivalent to the usual ones in the com-
mutative case (cf. Bourbaki, in particular [2, Sect. 1, Proposition 1.c]). If 8
is the Asano class of Z, M, is the set of “Z-lattices in K.” The maximality of Z
in B follows from the fact that Krull rings are completely integrally closed
(cf. Fossum [5, Chap. 1, Sect. 3]). Trivially, every subring of a commutative
ring is bounded, and every nonzero ideal of a domain thick.

We want to point out that even in the commutative case our approach is a
bit more general than, say, Bourbaki’s, for we did not exclude rings containing
divisors of zero. In this case, (E, R) being a Krull pair with R commutative,
the usual Krull ring ideal theory holds for thick ideals by Theorem 4.5.

(b) Asano’s Noncommutative Arithmetics

If E is a bounded maximal Asano order, and R is its Asano quotient ring,
then our Mj is the set of fractional left or right ideals of orders Asano-equivalent
to E. In fact, Asano [1] and Jacobson [8] show implicitly that these fractional
ideals form a module system. The ascending chain condition for two-sided
ideals now implies that (E, R) is a Krull pair. By the maximality of prime
ideals (one of Asano’s axioms) we may apply Proposition 4.7 to obtain Theorem
4.5 with ordinary ideal products, i.e., the fundamental theorems of Asano’s
on two-sided ideals.

Factorization of one-sided ideals is approached bv Asano as follows: By
imposing a restricted descending chain condition, the Artin-Wedderburn
structure theory is available for factor rings modulo two-sided primes. This
yvields that these factor rings are principal ideal rings. The factorization theory
of principal ideal rings is then used to find the desired ideal theory of E. These
methods cannot be applied for a general Krull pair (E, R), because there is no
structure theory of the factor ring even available if one imposes descending
chain conditions on divisorial one-sided ideals containing a prime of E. However,
for a strong Krull pair, Asano’s techniques can be replaced to some extent
by a closer inspection of the Brandt groupoid and its ordering (Sections 6 and 7).
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(c) Finite Central Extensions of Commutative Krull Domains

The ‘“‘orders over Krull domains™ as defined in Fossum [6] also yield a
wide class of interesting Krull pairs. Fossum considers a simple central algebra R
of finite dimension over the quotient field K of a commutative Krull domain Z.
(We do not bother with the easy modifications if R is only semisimple, or K
is a subfield of the center.) If now H is an order in Fossum’s sense (a “‘Z-lattice”
of full rank which is a ring of Z-integral elements), we only reformulate state-
ments of the paper [6] in saying that the Asano class 8 of H consists of all
Z-orders in R and that M, is identical with the set of Z-lattices (of full rank)
in R (cf. 5.4 below). The maximal elements of 8 are just the ““maximal orders.”
Fossum shows, by a classical discriminant argument, that each order H is a
subring of some maximal order E.

5.3. If E is a maximal Z-order (in the sense of [6]), Z a Krull domain,
and R the full quotient ring of E, then (E, R) is a strong Krull pair.

Proof. Since E is an arbitraryv maximal order, and the boundedness is
trivial in central quotient rings, we need only show that E is d-Noetherian.
For a hight one prime ideal p-of Z write, as usual, Z, = {y~lx; x, y€ Z, y ¢ p},
and for A € Mglet 4, == Z, - 4. Using the fact that £ = () E, (p runs through
all hight one prime ideals of Z), and that all these E, are maximal Z -orders,
it is not difficult to see that for a divisorial left ideal 4 of E (in our sense) there
holds 4 = (Y A,. From this we obtain, by the arguments proving [5,
Theorem 3.6], that E is d-Noetherian, even d-left-Noetherian.

(d) A Small Infinite Matrix Ring over Krull Domains

5.4. Let R be a central quotient ring of the ring E and Z be the center
of E. Then E is bounded in R. A is in }M; (B the Asano class of E) if and only
if there are 2, , 2, € R* N Z such that 2,E C A4 C 25 E. (If ce R*, then ¢! =
271t for some 2€ ZMN R* and te E. Hence ¢71E == 2 tEC 37 1E? = 271E,
Ez = zE C cE. This argument shows that E is bounded, and may be used
to find 2, and =2, such that z,E C uE, 2E C z,'E, where u, v are elements in
R* such that uE C 4 C ¢E, existing by 2.3, if 4 M, .)

Now let Z be a Krull domain and K be its quotient field. In the ring S of,
say, row-finite matrices over K choose a set of matrix units e;; (I < i, j < o),
€j€r: == O, " €. The unit of S is 1 = Z::l e;; . We consider the subring R
of S, consisting of the elements

r=ux-1-—+ z 2505, %, 2;€ K, NeN;j

1dugN

(N may be arbitrary large.) We write this in a shorter form,

roe=x Yy e,
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tacitly assuming almost all x;; to be 0. We denote R by K, and consider
the subring £ = Z,, = {rx + Y x;; - ¢;€ R and x, x;;€ Z}.

Clearly, R is a central quotient ring of E. Hence E is bounded by 5.4. Let
B be the Asano class of E, and suppose that there is an order F in § such that
ECF. By Theorem 4.5 we find 2 2€ Z N R such that ECF C 271E. If now
r=2x 43 x,6; =3 Vi€;;, then for every entry y = y,; of the matrix r
we find

ye, = e re; e BFECF3 = F.

This implies that all the natural powers, (ye;,)® = ¥"¢;,, are in F, hence
vtez1Z. Since Krull rings are completely integrally closed, this is only
possible for v € Z. We have seen r € E, hence E is maximal in 8.

Next we want to show that E is d-Noetherian. For this purpose it is necessary
to inspect two-sided ideals of E more closely. If r = x + 3 %6, = 3. yies
we define @(r) = x, and D(r) =3 y,,Z. D(r) is an ideal of Z, and ¢ a ring
epimorphism E — Z. The kernel U of ¢ consists precisely of all finite matrices
(that is, those having almost all entries 0). U is not thick (no finite matrix is
in R¥). For any thick ideal 4 of E we may define D(4) = ¥ ,., D(r), and
o(4) =3 ,ca9(r) - Z. D(A) and ¢(A4) are ideals of Z.

55. If 4 is a two-sided ideal of E then 4 = D(4) - U + ¢(4) - E.
A is thick, iff (1) 5= 0. There holds ¢(4) C D(A). 4 is divisorial iff D(4) =
¢(4), and D(4) is a divisorial ideal of Z.

Proof. First we show that D(A) - UC 4. Let x € D(4). Then there exist
m elements r'"' =¥ yDe;; € 4, such that 37 3, . yPZ3x. x is a finite sum
of elements in the ideals y{"Z. For any triple (;, 7, 1) and z€ Z, we have
3 erVey =z vie €4, hence x-e €4, and x - e == eqve e € A
This proves D(A) - UC 4.

If x € p(d) then there exist r, .., 1, € 4, such that x =" o(r;) = o(r),
where 7 == 3", r,€ A. Therefore we have r = x + Y, ;cv ¥;;¢;; for some
natural number N. Note that all x-e;€d, since x = xy,, v, € D(A).
Similarly (x + x;)e;; and xe;€ 4, if 1 <4, j < N and i 5 j. This implies
Di<ii<n Xi;¢i; € A, and finally x € 4. Hence ¢(4) C A4, and ¢(A) - EC A.

If conversely re A, then r — o(r)e AN U, since pr)e A. But AN LT
D(A)- Uand g(r)e o(A) - Eimply r = (r — @(r)) + @(ry e D(A) - U + @(4) - E.
In view of the formula 4 = D(4) - U + ¢(4) - E the remark on thickness is
trivial. @(.d) C D(4) follows from the definitions. Note @(4)~! D D(A4)-1.

Next we show 4-1 = D(4)~1 - E, if 4 is thick. (D(4)%, p(4)* are meant to
be inverses in K.) Since E is a maximal order we have -1 = E/A. Clearly

D(A)* - E- 4 = DAy - D(d) - U+ D(A)" - o(4) - E
CZ U+ oA)r-o(d) - E
CZ-U+Z-ECE.
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It follows that D(A4) - EC 4-1. Conversely, if re A1, thatisr - 4 C E; we
obtainr - I{A) - U C E. But U, hencer - D(A4) - U, contains only finite matrices,
that is 7 - D(A) - UC U, hence U -r-U-D(A)C U? == U. This vields that
for all coefficients y;, of r = Y y;e;; there holds y;P(4)C Z, hence v, €
ZID(A) = D(AY™?!, proving r e D(A) - Eand D(4)1- E = 41

A similar reasoning shows A4 = (D(A) - E)! = D(A) - E. 4 is thick and
divisorial, iff D(A) - U + @(4) - E == D(A) - E. This is only possible if p(4) =
D(A), which, conversely, implies D(4) =- D(4) = ¢(4), and 4 = D(4) - E.
It is now evident that D+~> DE defines a monotone bijective map of the set
of divisorial ideals in Z onto the set of divisorial two-sided ideals of 7, .
Hence Z, . is d-Noetherian. In view of Proposition 5.1 we have proved

x

5.6. ProposiTiON. Let Z be a commutative domain with quotient field K.
Then the infinite matrix rings (Z,. ,K.,,), as defined in this section, form

w©

a Krull pair if and only if Z is a Krull ring.
It should be noted that Z,

0,5
center Z. The structure of natural numbers as an index set of matrix units
did not enter into the discussion. A similar construction for an arbitrary index
set would allow for noncountable generating sets. But Z, , is locally algebraic
over Z.

It is an entertaining exercise to compare the results of Section 4, applied
to the Krull pair of Proposition 5.6, with a more direct and comprehensive
discussion using the formula 4 = D(A) - U + ¢(4) - E. It can be shown
that for Z, . the ascending chain condition for divisorial left ideals does not
apply, even if Z is the ring of rational integers.

is not, as a ring, finitely generated over its

6. NormAL MODULE SYSTEMS

6.1. A module system K is called normal if (1) K = K, , 1e., every
order of K is maximal; (ii) K = K*, i.e., every element of K is invertible;
(iii) there is an order E in K such that the bimodule group G4(E), defined in 1.6,
1s Abelian and freely generated by the maximal ideals in E.

By Theorems 3.6 and 4.5. and by 4.11 we know that if (E, R) s a Krull
pair, and R a left Ore quotient ring of E then the system K of thick divisorial
modules in R for which 4/4 and A\A are d-Noetherian and maximal in the
Asano class of E, form a normal module systems. The multiplication, then,
is the symbolic one. In this section anything is done in the abstract system K.
Therefore, we write the product of 4, B in K as AB, 4 - B, or sometimes
A = B, if it is proper. In applying the results to a Krull pair, the asterisks have
to be inserted. Note that what is here called, say, a left ideal of E, is to be taken
with respect to the system K, and means in the application to the Krull system
(E, R) a “thick divisorial left ideal of E.”
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In the rest of this paper, K denotes a normal module system. K carries
two kinds of structure: the original module system structure (it is a special
kind of partially ordered semigroup), and the Brandt groupoid structure (that
is a proper multiplication which is not everywhere defined). In our applications
the Brandt groupoid was derived from the module system. Here we do a partial
converse for a normal system. We want to describe the basic operations of
the module system in terms of the Brandt groupoid operations, which are
(4,B) —>(4:B,47).

We first describe the partial ordering, which is done by singling out the
“positive” elements, in this case called “integer.”

contained in its left (or right) order £ = A/4, or to A being an ideal in E.)

6.II. 1€ K is called integer iff 4> C 4. (This is equivalent to .4 being

6.1. If 4B = 4-B and A4, B are integers, then .4 - B is an integer.
(For 4-BC(4\4)-B = (B/B)B = BC B\B, and B\B is the right order
of AB. This may be wrong if the product is not proper.)

6.III. If E and F are orders of K then Dge = (FE)™! is called distance
(from E to F). We reserve the letter D for distances. FE D E implies Dy C E,
hence Dgy is an integer and a left E; right F-ideal. Note Dy == E.

6.2. Let X, Ye K. Then X C Y if and only if there are integers .4, Be K
such that A< Y B = X. If, in addition, X/X = Y/Y then we may take
A4 =YY, hence Yo B = X.

Proof. 1t is convenient to indicate the left and right orders by subscripts.

6.IV. For any A€ K write 4 = Agy if and only if 4/d = G and

Ad =H Let X = Xgp, YV =Yg, XCV. Then 4 = Dy, B = V1LY

will do, for B = By implies AYB = DycGX = (GE).(GE) - X = EX = X
and B = Y2X C Y'Y = H shows B to be an integer.

Conversely, if 40YoB = X, with 4, B integers, then d = 4, CE,
B = B;; CF, thus Y = AXBD EXF -~ X.

6.3. CoroLLARY. If X C Y, and Y is an integer, then X is an integer.

6.4. CoroLLARY. A€ K is aninteger if and only if A is contained in some order.

Next we describe multiplication and residuation in terms of Brandt groupoid
operations.

6.5. 1f A,Be K, and A = Ayp, B = Bgy, then

AB = Ao Dgro B, A[B = Ao Dgyo B,
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Proof. The first equation is trivial. Since B-1B = H, we see that
ADpyB B = 4 < Dy C A, showing A o Dpy o B2 C A{B. On the other hand,
we conclude from (A/B)BC 4 that A = AF 2 (A4/B) BHF = (4/B) BD;} ,
finally ADgy 8712 (A/B) BDsg Dy B = (4/B) BHB1D (A/B).

6.6. CoroLLARY. If E,F are orders then E/FF = Dgg.

Hence if we “know” the set of distances, the module system operations
can be expressed by those of the Brandt groupoid.

6.7. M A = dpp, and G, H are orders, then (G, H) contains a unique
smallest X containing A, and a unique largest Y contained in .1, namely,
X = GAH = DgtoAc Dyt ,and ¥ = G\4/H = Do Ao Dgy .

Proof. For the equations see 6.5. That X has the required properties 1is
clear since G i1s a left unity for (G, H). Y 2 A follows from 6.2 and the remark
following 6.111. Clearly Y € (G, H). Now, if Z = Z;, C A, then DLZDg} =
EGZHF = EZHCEAH = A, hence Z = DggDgrZD Dy C DpADypy = Y.

6.8. CoroLLARY. If A = Agp, then A has a unique integral proper minimal
left factor in G(E), containing A, namely AE, and then A = (AE) > Dgp. Ais an
tnteger if and only if AE is an integer.

Proof. A = AE < Dy and the first assertion only specializes 6.7. If 4K
is an integer so is A by Corollary 6.3. If A4 is an integer then 4 C E, thus
AE C E, and AFE is an integer too.

Next we characterize distances.

6.9. Prorcsitics. Let A€ K, and define E,F by A = Agp. Then the
following statements on A are equivalent:
(1) A is a distance (i.e., A = Dgg);
(il) A is the unique largest integer in (E, F);
(iii) 4 CE, and there is no integer C € G(E), such that AC CC E;
(iv) A is an integer, and if for an integer B = Bg there holds A C B, then
B is an order (i.e., B = G);
) A4 = Al4;
(vi) A% = A
Proof. By Corollary 6.8, AE == E and A = Dgg are equivalent, showing
that (i), (ii), and (v) are equivalent. AE = E can be written A4A4™! = A4
which is equivalent to 4? = AA4A4 = AAA = A, that is (vi). (iv) entails
(iii), and (iii) entails (i). Last, we show that (iii) entails (iv). If B is as supposed
in (iv) then by 6.2 there exist integers X, Y} such that d = \':B-Y =
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XoBoX1o(XoY)C XBXY, But XBX~' is an integer element of G(E).
By (iii) we get XBX! =E, or B = X1 EX = XX = BB! =G.

6.10. CoroLrarY. If 4 C C, C is an integer, and A a distance, then C is a
distance.

6.11. ProposiTION. If E,F are orders in K and Be (E, F) then A — B0
Ao B is an isomorphism of lattice ordered groups G(E) — G(F), which does not
depend on B e (E, F).

Only the independence from B needs a proof.
Using commutativity, 4 = .4 o (DgpB-1)(DgpB)t = (DepB-1)14DgsB 1=
BoDo Azt o Dypo B, hence BAB == D;% 4D, as required.

6.V. We form the abstract lattice-ordered group G of those classes
{BYAB, B|B = E} = :4. Then there is, for each order F, one and only one
dped N G(F), and 4 — 4 is an isomorphism of lattice-ordered groups.

It is convenient to let G act on K from the right and left, defining, if
X =Xy, dX =460 X, X4 = Xo4dy,.

6.12. In the action just defined G centralizes K, that is 4X = X4
for each X e K.

Proof.
A XA_I == AG XA[?l: DGHAH(DEI‘II X A;Il)

= DGH(D—G‘]F.I XA}_{I) AH = X.

6.VI. We define two functions @, ¥: K — G by setting 4 = ¥4 -
Dgy = @A - D} for every Ae(E,F). We call @ lower bound and ¥ upper
bound.

By 6.7 and Corollary 6.8 (94); is the unique largest E-bimodule contained
in 4, ($4), the unique largest F-bimodule contained in F, (¥'4); the unique
smallest E-bimodule containing A4, and (¥’A4); the unique smallest F-bimodule
containing 4 = Agp. Note O(4~1) = (WA). 4 is an integer iff YA is an
integer, and A4 is a distance iff ¥.4 = 1 (see Corollary 6.8 and Proposition 6.9).

6.13. If AC B, then @4 C @B and Y4 C ¥B.

Proof. 'This is clear if 4 and B have the same right (or left) order. If not,
then there exist integers X, ¥ such that 4 == X e Bo Y CBY C B. A and BY
have the same right order, BY and B the same left order.
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6.14. Let 4,BeK, 4 (& F), Be(G, H). Then there holds

(1) (‘DA *®B)g = ABDyGD¢pDer = (D(AB) ’ D;IIEDHGDGFDFE ,
(i) (Y4 -¥B); ~ ‘4BD5}1DGFDE;‘ = W(4B) - DEHD(_;}iDGFDE}’ :

Proof. By 6.V and 6.11 we find

(PA): - (P(B)): = ADpe(DgrDre) ™ BDye(De D)
= AF(FG) BDHGDGFDFE = ABDycDerDee -

(1) is proved similarly.

6.15. CoroLLarY. If 4,BeK, then ®A- OB C &(AB). If, in addition,
AB = Ao B, then WA - WB D W(AB).

Proof. Since DycDgpDpe is a proper product of integer modules, it is
an integer, and 6.14 shows (9.1  ®B). C AB. (P(AB)); is the largest E-
bimodule contained in AB, hence (9.4 - ®B); C (P.AB); . From this we derive
VY4 -¥YBJOY(AB) using the formulas (PX 1)1 = P(X), and B~1o 41 =
(A o B)_l.

6.16. CororLrary. If 4, Be K, Ae(E,F), Be (G, H), then

(i) P4 dB = D(AB) is equivalent to FG C EH.
(iiy WA -¥B == VY(A4B)isequivalent to DgyDgp == Dgp,or HDGpE = HE.

If, in addition, AB = A< B, then @4 ®PB = O®(4B), and ¥4 -¥B =
Y(AB) is equivalent to FC EA, and FC HE. (DgpDyDgrDrr is equivalent
to EH = EFGH, or FG C EH.) These properties of upper and lower bounds
are used in Section 7. The next proposition is announced for its own sake.

6.17. ProrosiTioN. Let E, F be orders of the normal module system K. Then
A — A\A maps the set of left E-ideals (in K) which contain the distance Dgp
bijectively onto the set of orders contained in FE.

Proof. DgsCACE, E = 4/4 implies d = Dge, Dgp = Dgg < Dgp,
where G = A\A. Hence | = ¥Dpp = 1 -1 = ¥Dg; - YD, and by Corollary
6.16 we see G CFE. Conversely, if G C FE, we conclude GE C FE, Dy 2 Dgy .
Thus G — Dy is the inverse map of 4 — A\ 4.

7. FactorizATION oF ONE-SIDED IDEALS

Let (E, R) be a strong Krull pair and K be the Brandt groupoid of thick
divisorial modules with left-order maximal in the Asano-class of E. First
we want to look at lattice properties of K. If 4, B € K, the set theoretic intersec-
tion 4 M B may be not in K. But we have the following
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7.1. If A, Be K have the same left (or right) order F then 4 N B and
A+ Bek.

Proof. By 4.6 there are (two-sided) thick divisorial ideals X, Y, U, V of F
suchthat XC A, YCB UCALIFCB Y hence X« YCXNYCANBC
A+BCA+BCUYxVL, 23 yields AnB, A-+ B, Tﬁeﬂlﬁ.
Becauseof ANBC AN BC AN B = AN B, the module 4 N B is divisorial.

7.2. ProposITION. Let (E, R) be a strong Krull pair. For any maximal element
F of the Asano class o of E the set K of left F-modules in K = By(a,) forms
a lattice if meet and join are defined by A N\ B to be the set intersection, and
AUuB=A+B. If A,Be K and CcK, then (1UB)+«C =(A+C)U
(BxC)and Cx (AU B) =(CxA4)u(Cx+B).

Proof. By 7.1 it is easily seen that K is a lattice-ordered semigroup under
symbolic multiplication. For additive subgroups of R we have (4 + B)C =
AC + BC hence, for A,Be K and CeK, AC +BC C(A + B)IC =
A+ B)~CC(4dyu B)*C holds, which implies (4 C)U (BxC)C
(AuB)xC.

Using 2.14, we find, on the other hand, (4 « C) U (B x C)2 AC + BC =
(4+B)XC2(4+ B)C = (4 v B)C, which implies (4= C)U (B« C)2
(4 U B) x C. We have shown (AU B)+C =(A«CYU B +«C). If Cis on
the left side we must not apply 2.14 because we do not know whether 4 + B
has a maximal right order. But then, for any X € ;K we may write C « X =
CoD7'sX, where D is the distance D = D.;, G = C\C (see 6.5), and

conclude as follows:

Cx(AUB) 2 (CxA)V({CxB)=(Cx«D1xA)u(C«xD*=xB)
=(CxCY)x(CxD1=~Ayu(CxD'xB)
QC*((CrxCxDxA)U(C-txCx D1+B)
=Cx*x({(D1xA)V (D'« B)2Cx(4yU B).

7.1. We call a normal module system K a normal lattice system if it
has the properties which are proved in Proposition 7.2 for the system K =
By(ag).

In order to spare asterisks we operate (in the rest of this section) in a normal
lattice system K and write multiplication in K without on asterisk. All results
are, after inserting the asterisks, propositions on thick divisorial ideals (and
modules) of the system K = By(x,) of a strong Krull pair.

We investigate now how the prime factorization of the universal bimodule
group G of K can be used to obtain factorizations for the elements of K.

7I. ()If 4,e K (f = 1,...,r) the product 4, - -+ - 4, is called smooth
if @4, - A,) = ®A, - BA, and ¥(4, - A,) = ¥4, - P4, .

4+81/48/1-12



176 HANS PETER REHM

(ii) An element Qe K 1s called smoothly atomic if Q is an integer, not an
order, and for any smooth proper product QO = 4 o B with integers 4, B there
holds 4 = QO or B = Q. (If 4 = Q, this implies @B = 1, hence B must
be an order; in fact, B == Q0~10.)

It turns out that every integer .4 can be written as a proper smooth product
of smoothly atomic factors and the smoothly atomic elements can be charac-
terized (Theorem 7.6 below). Proposition 7.7 says to what extent this factoriza-
tion is unique. We make some preparatory observations.

It should be noted that ABC is a smooth product if AB and BC are so.
Inserting two-sided factors in proper products does not affect smoothness,
as expressed by

7.3. Let d < B be a smooth product, 4 = Ags, and X & G(F). Then
Ao X o B is a smooth product.

Proof. Let ®X = A. Then, since X is two-sided, we have 4 = ¥X, and
A:2XeB = (44)B = A(AB). It follows from Corollary 6.16 that for any
UeK, 4eG there holds @(dU) = AD(U), and ¥(AU) = 4¥(U). From
P(AB) = 9(A4) &(B) we conclude, therefore, that P(AXB) = P(44AB) =
AD(AB) = 4 - ®A - DB = ¢4 -4 - OB == ®A4 - X - ®B, and similarly
Y(AXB) =¥4 - -PX - ¥B.

74. Letd = Agre K, @4 = I'd, I', 4 integer elements of the universal
bimodule group G of the normal lattice system K. Then 4 == ['z4p (which is
not smooth for £ = F).

Proof. Use 6.5, 6.12, and 6.V in order to obtain I'gd; = I'yD7id; =
I'D;l4 = I'AD;} = ®4 - Dyt = A.

75, Let 4, I, 4 be as in 7.4, and A be a distance. Then 4 =
(4 U dg)(A v I'y) which is a smooth (but not necessarily proper) product.

Proof. Note 4;AC A, AI'y C A, 4Ty = A = A (see 6.2, 7.4). Using
Proposition 7.2, we find (AU AN AU TE) = A2V A AU AT'r U 4T = A,
since ACAUACE, ACAUT:CF, AU 4g, and A U I'; are distances
(6.10). As for smoothness, we show ®(A U dg) =4 and KAV ) =T
By 6.13 we see ®(A U dg) D4, and @A I'p)2 I Using 6.15 we obtain
AT = DA = (A U YAV I'p)) 2DP(4 U Ag) D(A L I'y) D AI. This is only
possible if P4 U dg) = 4, and DAV TE) =1T.

Now we can prove the following fundamental facts:

7.6. THEOREM. Let K be a normal lattice system. Then (i) holds: Qe K is
smoothly atomic if and only if Q is an integer and DQ is a prime. (In other words,
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a left ideal O of the order E is smoothly atomic if and only if it contains a two-
sided prime ideal of E, and is different from E. We say “Q belongs to ©0.")

(i} IfAe Kisaninteger,and @4 = II, - - - II, ,where the IT, (i = 1,...,r)
are (not necessarily different) primes of G, then there exist smoothly atomic elements
0,,.,0, of K, such that A =Q, - 0Q,, and Q) =11, (i = 1,..,r).
(The Q, depend on the sequel in which the I1; are taken. But since A determines
DA uniquely, the different primes of G to which the atomic factors belong and
their multiplicities are the same for anv such factorization.)

Proof. (1) If Q is integer, @O is a prime, and @ = 4 o B is a smooth product
of integers A, Be K, then ®Q = ®(AB) = PADB implies, say, ?4 =1,
@B = ®Q. Since A is an integer, 4 = | entails that 4 is an order, namely, the
left order of 4 > B = Q. Hence, B = O, and Q is shown to be smoothly atomic.

If 4 = Dgre K is a distance, not an order, and @ is not prime, then for
some prime /1 and integer I' 5¢ 1 we have @4 = III". From 7.5 we obtain
A=0Xwhere Q =4UIll;, X = AUl ®Q = II, X = I'. Observing
AC OCE, we find (by 6.2) an integer ¥ € K such that 4 = Q> ¥, namely,
Y = Q104 Then ¥V = Q1QXDX, hence PY 2PN = 1. and III" =
H(QY) 2 PQ - PY D IIT (see 6.15). This is only possible, if @Y = @X =T,
hence @(Q o V) = &(Q) - P(Y). Since 4 is a distance we have ¥4 = [. From
ACQCE, AC YCF we obtain, using 6.15, that ¥YQ = 1, YY = I, hence
the product A = Q¢ Y is smooth. This shows that .1 is not smoothly atomic.
If A = WA - Dgp is an integer, not a distance and not an order, then YA C 1.
A = (WA)g ¢ Dgg 1s smooth by 7.3. Hence, in this case, A is smoothly atomic,
iff £ = F, and (WA)g = (@4)g = A is prime. (i) is proved.

As to (ii), we note first that we may assume A4 to be a distance: if . =
WA - Dy then 4 = (WA)g o Dep is a smooth product. If (i) is known for
Dgp, that is, Dgp = Q,0 -0 Q,, O, smoothly atomic, and ¥4 = [T T,
Il prime, I’ integer, then for any / (! = 1,..,r — 1) we have 4 =
T Q- Q) {IQ, - Q) by 6.12, and if G is the right order of Q;
we may write A =1 (Qy0 00,0l 0;,,°<0,). Il; 1s smoothly
atomic and belongs to /1, hence the factor right of I" is written as a smooth
product of smoothly atomic factors (see 7.3). Assuming we can start with an
arbitrary sequel of IT; such that @(Q,) = I1;, we may insert the prime factors
of ¥4 at any position we want, and are done.

In order to prove that (ii) is correct for 4 = Dg, being a distance, we observe
that we have already found a smooth factorization 4 = Qo Y, where @Q = IT
was an arbitrary prime factor of @4. @Y = II-'P(4) has one prime factor
less than @4, and Y is a distance. Hence, by induction, Y has a factorization
Y = Qyo o0, as required in (it), and 4 = Qo Qy0 -~ = O, is the desired
factorization of A.

The factorization of Theorem 7.6(ii) is generally not unique. For two factors
we describe which factors are possible.
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7.7. ProposITION. Let A = Agy € Kbe an integer, @A =T'A, I, AC 1. Then
(i) and (11) are equivalent statements for an U e K:

1) AUIT L UL AV Adg)y™, and CUT = L.
1) AUl CUCAA VAN, and UUL = E

(ii) There exists a Ve K such that 4 = U =1, U, I are integers and
U =T, OV = 4.

Proof. Assume (ii). From @U == I we conclude I'» C U, and since 4 =
U<V CU this implies AU Iy CU. Similarty 4U 4 C 1", hence [ =
AVC A v Ayt A4 = UU L is clear.

Assume (i). Define 1" by 17 = U-14d.

A C U implies 1" to be integer. We have 1" = U4 D (4A(A U dp)y ) td =
Av A, . Hence by 6.13, ¢ 24, ®UD T, and 6.15 yields dI" == 4 =
DUITY2 DU - @17 == AI". This is only possible if PU = 4, and §1" =T

By 7.7 cases of unique smooth factorizations are pointed out.

7.8. CoroLLARY. Ifd = Agze K is an integer, PACII, and AV Il is a
maximal left ideal of E, then Q == A U Il is the unigue smoothly atomic proper
left factor of A belonging to I1.

Proof. Applying 7.7 with I' == II, 4 = [1-'®4, we have for any atomic
smooth proper left factor U that 4 U [T C U'C A(4 U dg)t holds. A(d v 4p)?
is a left ideal of E, and different from E, for E == A(4 U 4;)7* would imply
A=EAdudn)2d9ud,, and ?42P(A U ._IF) 2 4, which is impossible.
The maximality of 4 U IT; entails 4 U [T == U = A(4 U 4"

7.9. ProposiTION. Let App = A = Qyc -0 Q, such that (i) all Q, are
maximal left ideals in their left order, (i) @0, = IT (i = 1,...,r), and (iii)
DA == II". Then, if A =Q, c-Q/, with all Q; (i = 1,...,5) smoothly
atomic, it follows that r = s, and Q1 =0, Oy = Qy,..., O, == Q,. If further
ACBCF, and B is a right ideal of F, then, for some i, there holds B = ;>

Qi.+lc e 2 Q.\‘ i

Proof. First we show AU HE == @, . From 7.7 we know 4 U I, CQ, C
AAVIIEHY L L =0, - 0,, then®d' 200, - - - PO, = II'"', and
I = () 2 IT - (4", hence @4’ = II"1. Since Proposition 7.9 is trivial
for » = I, we may assume r > | and by induction on 7, that Proposition 7.9
is proved for A’ instead of 4. Clearly A" = Q;7'4 C (AU Iy t4C 414 = F,
hence by Proposmon 7.9 (applied to 4" and B’ = (4 u ITg)14), we find

some { - 2, such that B = (d U ITy)'d = Q;0 > 0Q,. Now [1" == ¢4 =
D((A U II)BYD M- [T+, hence 7 sir — i~ 2, [=02, that is, [ =2,
and B = Q,c--:0,. From A = Q,:B = (dUlly)c B we conclude

0O, = A U I, as desired. In particular, 4 U Il is a maximal left ideal of E,
and 7.8 shows that Q, = AU Il = @), and B’ == Q, s - > Q. Applying
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the induction hypothesis once more, we obtain s =r, and Q, = 0,,...,
Q, = 0, Finally, if 4 C BCF, B a right ideal of F, the contention is trivial
if 4 = B (i = 1). If AC B, there exists an integer ¥ € K such that 4 = Y - B,
and Y is not an order. Then } U Il is not an order because, by 7.7, we have
O(Y U IT;) = IT. (Note @Y C 11, since Y is not an order, and @(II;) C I1
imply @Y UII)CIL) We conclude 4V, CYUII,CE, and O, =
Aull, = YOIl 2 Y. Hence there exists an integer Ze& K such that
Y = Q, : Z, and therefore Q; o A" = Q; o Z< B. This implies A" = Z - B B,
hence by the induction hypothesis, B = Q; 5 -0 0, (i 2= 2), and Proposi-
tion 7.9 is proved. Note that if 4 is as in Proposition 7.9, there is a unique
fine chain of left F-ideals from .1 to F.

*We want to apply Proposition 7.9 to the following: Let Z be a Dedekind
ring, K be its quotient field, and R be a simple central K-algebra of K-dimen-
sion 4. Let E be a maximal Z-order (see 5c). For a prime ideal p of Z we suppose
that p does not ramify, and Z mod p is finite. Then pE = P is a prime ideal
of E, and the factor ring modulo P is a full ring at 2 > 2 matrices over a field.
If IT is the prime of G such that II; = pE = P then for any maximal order F
there holds: Every smoothly atomic left ideal Q of F, such that @Q = II,
is either pF or a maximal left ideal of F' (because in the ring of 2 x 2 matrices
over a field all proper left ideals are maximal). Now consider a left ideal A
of E such that @4 = II" for some r 2> |. (This is equivalent to the norm of 4
being a power of p.) From A4 = WA - Dgpand II"C WA C 1, it follows that 4
is a distance if and only if P = pE is not a proper left factor of A (for this
implies ¥4 = 1). Now factorize 4 smoothly according to Theorem 7.6:
A=0Q,c<0Q,. A is a distance iff none of the Q; is two-sided, hence iff
all Q; are maximal left ideals of their left orders.

By Proposition 7.9, the tuple (O, ,..., O,) is uniquely determined. Together
with Theorem 7.11 and the fact that the factorization of ideals 4 with @A
a power of a ramified prime is trivial (namely commutative), this provides
a very full insight in the factorization of left ideals of £.* If the K-dimension
of R is >4, the uniqueness statement of Proposition 7.9 applies only to part
of the set of distances, because, as examples show, in Proposition 7.7(i) we
need not have equality. But note the following:

7.10. PrOPOSITION. Suppose in Proposition 7.7 there holds, in addition,
I'ud =1 (that is, I, A are relatively prime). Then there holds AU I'y —=
AAV AL, A =(AUTg)o(AVdg),and, if A=U-V, U, Ve K integers,
and QU U A =1, 0V Ul =1,then U =AU,V =4duUd.

Proof. From the assumptions we get 4 C U, and I'4 = &4 C @U. This
implies, since @U and 4 are relatively prime, that @U 2 T, and similarly
OV 24. Now we find [4 = @42 PU - PV 2 I'd. This entails U = I,
@V = 4. Hence U, I’ are as required in Proposition 7.7(ii), and therefore
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AU g C U. There exists an integer Ze K such that AU Ty = Uo-ZC Z,
which implies I'C P4 U I't) CDZ. Comparing 4 = UoZo (AU gy 1o 4
with 4 = Uo I we conclude V' = Zo (AU I'y)"'AC Z, since (4 U I'y)*4
is an integer. ['C Z yields @Z2 PV =T, PZ2I'U 4 = 1. Since Z is an
integer, it must be an order, and (AU %) = UecZ = U. We can argue
similarly for any U in Proposition 7.7(ii) with I', 4 as in Proposition 7.10, in
particular for U = 4(4 U 4p)™L, and we see U = AU T = A4V 4L
This shows that the right order of A4 U I is the left order of AU 4, and from
A=UsV =Us(4Udy) weget I" == 4U 4. Proposition 7.10 allows us
to establish some sort of unique multiplicative “primary” decomposition.

TII. XeK is called primary (a primary module) it for some prime
ITe G and rational integers m, n there holds [T C X T IT™, that is, X and
YX are in the subgroup of G generated by the prime IT (we refer to X as
I-primary).
*This concept is not to be confused with primary ideals of rings in the usual
sense but the concepts coincide in the case of ideals of Dedekind rings.*

7.11. Tueorem (Multiplicative primary decomposition). Let K be a normal
lattice system, A C K, A not an order. Then there are uniquely determined different
primes 11, ..., IT, of G, such that for Il -primary elements A; (i = 1,..., 1), all
not orders, there holds 4 = A, 0+ s A;. The 4; are determined uniquely too
(but depend on the sequel of the II; (i = 1,..., t) which is arbitrary). A, - --- = A4,
is a smooth product. A is an integer iff all A, are integers, and a distance iff all 4;
are distances.

Proof. Recall 4 = WA Dgp, hence @A == WA -BDyp, if de(E,F).
Then we decompose @Dy into a product of prime powers:

(DDEF —= Hlnl e s H:’s,

all the II; different, and all n; > 0 (the product may be empty if E = F).
We use Theorem 7.11 inductively, beginning with I' == [I}'1, in order to obtain
asmooth product Dgp = U, 0 == o Uy, with@U,; = I, WU, = 1 (i = 1,..., s).
We write WA == II{h - s, - sy - II7, with my ..., mg % 0, and using
A; = IIMX; (= 1., 1), 4; = II" (j = s + L,..., t) we obtain the smooth
product A == A;c - 4,, where none of the A, (i = 1,...,t) is an order.
The sequel of the I, ,..., IT, (for possible decompositions of Dgp) 1s arbitrary,
and so is the sequel of the [T, ..., I, for possible decompositions of 4.

Let A =A4y004;, =24,0--0A/ , where 4; is not an order, both
A, , .4, are II,-primary, A,,..., 4,, 45,..., 4,/ are primary with respect to
primes different from I7, . There exists a positive exponent r, and an integer
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element "¢ G such that [T, DI, and II,'4,, 1,74, I'4, - d,, T'd, -

-~ 4, all are integers.

({IrA)T Ay - - - Ay) = (L7 4, T4y - -+ - 4,) implies, by Proposition
7.10, that 1’4, =II'4), 4, =A,and 4, - - - 4, =4, - - 4,". The
uniqueness follows by induction on t. Now the YA, are powers (possibly
with negative or zero exponent) of different primes, hence in ¥4, - -+ - ¥4,
nothing can be cancelled. Therefore, ¥.4 C | (resp., ¥4 = |) is equivalent to
YA, C1 (resp., ¥4; = 1) for all i = 1,...,f. These values at ¥ characterize
integral modules (resp., distances).

Note added in proof. There is little overlapping of [10] with this paper, since Brung’s
“Noncommutative Krull Rings” are quite different from our ‘“Krull Pairs.” For example,
the maximal order of the Hurwitz quaternion algebra is not a Krull ring in Brung’s sense.
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